EP0290663B1 - Ein- oder mehrstufige Zweiwellenvakuumpumpe - Google Patents

Ein- oder mehrstufige Zweiwellenvakuumpumpe Download PDF

Info

Publication number
EP0290663B1
EP0290663B1 EP87107090A EP87107090A EP0290663B1 EP 0290663 B1 EP0290663 B1 EP 0290663B1 EP 87107090 A EP87107090 A EP 87107090A EP 87107090 A EP87107090 A EP 87107090A EP 0290663 B1 EP0290663 B1 EP 0290663B1
Authority
EP
European Patent Office
Prior art keywords
pump according
expansion
pump
housing
pistons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87107090A
Other languages
English (en)
French (fr)
Other versions
EP0290663A1 (de
Inventor
Ralf Steffens
Hans-Peter Dr. Kabelitz
Hanns-Peter Dr. Berges
Hartmut Kriehn
Wolfgang Leier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Priority to DE8787107090T priority Critical patent/DE3786917D1/de
Priority to EP87107090A priority patent/EP0290663B1/de
Priority to US07/192,559 priority patent/US4983107A/en
Priority to JP63115016A priority patent/JP2650041B2/ja
Publication of EP0290663A1 publication Critical patent/EP0290663A1/de
Application granted granted Critical
Publication of EP0290663B1 publication Critical patent/EP0290663B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the invention relates to a twin-shaft vacuum pump with the features of the preamble of claim 1.
  • Two-shaft pumps are e.g. Root pumps, the rotary lobes of which are approximately 8-shaped on average, Northey pumps with claw rotors, screw pumps and the like.
  • the pairs of rotary lobes rotate in a contact-free manner with respect to one another and to the walls of the pump chamber and cause the pumping medium to be conveyed from the inlet to the outlet of the pump.
  • the two-shaft pumps mentioned are particularly suitable for use as vacuum pumps, since there is no need for sealants and coolants in the suction chamber, so there is no risk of contamination due to the sealant.
  • twin-shaft pumps of this type are therefore defined by the ratio of the amount of gas actually pumped to the theoretically pumpable amount of gas.
  • the selection of any small games is not possible due to thermal reasons.
  • the pump heats up during operation. There is a reduction in the existing games, so that there is a risk of the pistons starting up on the housing. With an increase in the speeds, which for If the construction volume is to be reduced, these difficulties increase because of the increased power density.
  • twin-shaft vacuum pumps with claw-type rotors as are known, for example, from DE-A-20 07 880.
  • measures to overcome the difficulties have not been disclosed.
  • the housing there is the possibility of dissipating the heat by water or air cooling.
  • the heat from the rotating pistons is essentially dissipated only by the medium itself, which either transfers the heat of the piston to the housing or removes it itself. Since only a few molecules are available to dissipate the heat when the twin-shaft pumps are operated in a vacuum, the thermal problems in this area of application are particularly critical.
  • a root pump is known in which the rotary lobes and the housing consist of different materials, the coefficient of expansion of the rotary lobe material being smaller than the coefficient of expansion of the housing material. This allows the housing to expand in the radial direction, but not in the axial direction.
  • the present invention has for its object to reduce the adverse effects of thermal expansion occurring in two-shaft vacuum pumps of the type mentioned, both in the radial and in the axial direction.
  • the pistons are made of gray cast iron or ceramic and the associated housing ring is made of aluminum, then the less warming housing can follow the expansion of the more warming rotors, since aluminum is much larger Has coefficient of expansion as gray cast iron or ceramic.
  • the housing even because of the very small coefficient of expansion of ceramic, it may be necessary to cool the housing so that the play between the rotor and the housing does not increase when the pistons are heated up strongly and the housing is heated up less.
  • the claws of these rotors are made of ceramic, for example, in order to delay radial play or prevent them from occurring.
  • a rotor of this type is less expensive to manufacture than a rotor made entirely of ceramic.
  • bushings are arranged which consist of a material whose coefficient of expansion is smaller than the coefficient of expansion of the rotor material. Such bushings expand less when heated than the rotary pistons, so that a relative displacement of the pistons relative to the housing is fully or partially compensated. Overall, it is achieved that the housing follows the expansion movements of the more warming rotary lobes, i.e. that the housing "breathes".
  • a further advantageous measure consists in cooling the outer side shields, but not the housing ring (s) and the intermediate shields present in multi-stage pumps. This keeps the bearing temperature low and reduces the rotor temperature somewhat, while the housing temperature takes on higher values. This enables the housing to take part in the expansion movements of the rotors, which heat up more strongly (to "breathe”). This applies in particular if the pump housing is encapsulated and the heat emission is further reduced.
  • the temperature of the rotors can be further reduced if they are equipped with cooling.
  • the rotary pistons are of the claw type (cf. FIG. 2) and rotate in the scoops 11, 12, 13, which are formed by the shields 14 to 17 and the housing rings 18 to 20.
  • the shafts 2, 3 are arranged vertically. This also applies to the drive motor, not shown, which is arranged next to the pump housing. Below the lower bearing plate 17, the shafts 2, 3 are equipped with gear wheels 23, 24 of the same diameter, which serve to synchronize the movement of the rotor pairs 4, 5 or 6, 7 or 8, 9.
  • the drive motor also has a gear on its underside. The drive connection is established by a further gearwheel 26 which is in engagement with the gearwheel of the drive motor and the gearwheel 24 of the synchronizing gear.
  • the shafts 2, 3 are supported by roller bearings 27.
  • the upper end plate 14 is equipped with a horizontally arranged connecting flange 28, which forms the inlet 29 of the pump.
  • the inlet channel 31 opens at the end (opening 32) into the scoop chamber 11 of the first stage.
  • the end opening of the first stage is designated 33 and leads into the connecting channel 34.
  • the connecting channel 34 located in the shield 15 is connected to the inlet opening 35 of the second stage.
  • the end shield 16 is designed accordingly.
  • Below the lowest (third) pump stage is the outlet 36, which is connected to the front outlet opening 37 in the lower end plate 17.
  • An oil-containing space 40 formed by a common shaft trough 41, is provided below the system consisting of the pump housing and motor.
  • An oil pump 42 connected to the shaft 2 projects into this shaft trough 41.
  • Lubricant channels not shown in detail, extend from the oil pump to the points of the pump (bearings, engagements of the gearwheels 23 to 26, oil seals or the like) which require oil lubrication .
  • cooling water channels 43 and 44 are provided in the side plates 14 and 17. Cooling water inlet and outlet are labeled 45 and 46 (upper plate 14) and 47 and 48 (lower plate 17).
  • a cooling water drain 49 is arranged at the lowest point of the channel system 44, so that a simple cooling water drain is possible and complete emptying is ensured.
  • the rotors 4 to 9 are pushed onto and held on the shafts 2, 3 in such a way that their positions are not influenced by a longitudinal play of the shafts. Torque transmission must be possible without play.
  • the upper bearings 27 are designed as roller or needle bearings, which form a longitudinal expansion play of the shafts.
  • pairs of bushings 51 to 53 are provided, which are located at the level of the intermediate shields 15, 16 and in the lower end shield 17.
  • the packages consisting of bushings and rotors are spring-loaded on the shafts with the help of disc springs 54, 55 and nuts 56, 57.
  • the material of the bushings is steel or ceramic and therefore has a smaller coefficient of expansion than pistons made of gray cast iron, for example.
  • Thermal operational safety is further improved if the side shields 14, 17 are cooled, but the housing rings 18 to 20 and the intermediate shields 15, 16 are not. An effective movement of the housing and the intermediate shields is thereby achieved. Storage temperatures can be kept low. In addition, piston cooling is associated with this to a small extent.
  • the side shields 14, 17 are flowed through essentially horizontally.
  • the cooling water outlet 46 of the upper plate 14 is connected to the cooling water inlet 47 of the lower plate 17 and the outlet 48 of the lower plate 17 to the inlet 45 of the upper plate 14 by two connecting lines 58 and 59.
  • a closed cooling circuit is formed, in which a circuit of the cooling medium occurs only by conventional means. This convection flow is increased when the cooling water inlet 45, 47 is respectively lower than the cooling water outlet 46, 48.
  • a fresh water supply line 61 with a valve 62 is connected to the line 59.
  • the valve opens when the temperature of the cooling medium exceeds a specified value (measuring point 63).
  • the cold cooling medium supplied initially mixes with the existing warm coolant, so that the pump is not subjected to a cold shock.
  • a container 64 is connected to the line 58, which receives excess cooling water and serves as an expansion vessel.
  • Fig. 3 shows a piston 4 to 9 of the claw type.
  • the central section 65 and the claw 66 are separate components, each with a flat surface. The two parts are screwed together (screw connection 67) in such a way that the flat surfaces lie against one another.
  • the central body 65 is made of gray cast iron, for example, while the claw 66 is made of ceramic. When a piston of this type is heated, the axial expansion is reduced.
  • FIGS. 1 and 4 show a single-stage, likewise vertically arranged two-shaft vacuum pump 1.
  • Parts of the exemplary embodiments according to FIGS. 1 and 4 which correspond to one another are provided with the same reference numerals.
  • To reduce excessive heating and thus expansion of the pistons 4, 5, these are equipped with cooling.
  • the shafts 2, 3 are extended downward and passed through the oil space 40 and the oil pan 41.
  • the radial shaft sealing rings 71, 72 serve to seal the shafts 2, 3 in the oil pan.
  • the shafts 2, 3 are each provided with a blind hole 73, 74 which is open at the bottom. With their lower ends, the shafts 2, 3 protrude into a coolant tank 75, which is arranged below the oil space 40. Coolant supply lines 76, 77 protrude into the blind bores 73, 74 from below and extend with open ends to approximately the center of the rotors 4, 5.
  • the coolant supply lines 76, 77 are connected to a feed pump 78, the inlet side of which is connected to the coolant tank 75 via the line 79.
  • a heat exchanger 81 is expediently switched on in line 79 so that a sufficiently low temperature of the coolant is ensured.
  • the coolant is injected into the blind bores 73, 74 and flows back into the coolant tank 75 due to gravity. From there it passes through line 79 and the heat exchanger back to the feed pump 78.
  • Water is expediently considered as a coolant. Oil or compressed air can also be used. If oil is used for lubricating the bearings and / or gearwheels at the same time, separate oil and coolant containers 40 and 75 can be dispensed with, so that seals 71 and 72 can also be dispensed with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

  • Die Erfindung bezieht sich auf eine Zweiwellenvakuumpumpe mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.
  • Zweiwellenpumpen sind z.B. Rootspumpen, deren Drehkolben im Schnitt etwa 8-förmig ausgebildet sind, Northey-Pumpen mit Klauen-Rotoren, Schraubenpumpen und dergleichen. Die Drehkolbenpaare rotieren zueinander und zu den Schöpfraumwandungen berührungsfrei und bewirken eine Förderung des Pumpmediums vom Einlaß zum Auslaß der Pumpe. Für die Verwendung als Vakuumpumpen sind die genannten Zweiwellenpumpen besonders geeignet, da auf Dicht- und Kühlmittel im Schöpfraum verzichtet werden kann, eine Kontaminationsgefahr infolge des Dichtmittels also nicht besteht.
  • Wegen der berührungsfreien Anordnung der Kolben im Gehäuse sind Rückströmungen des geförderten Mediums unvermeidbar. Der volumetrische Wirkungsgrad von Zweiwellenpumpen dieser Art ist deshalb definiert durch das Verhältnis von der effektiv geförderten Gasmenge zur theoretisch förderbaren Gasmenge. Je geringer das Spiel der Kolben zueinander und zur Schöpfraumwandung ist, desto geringer ist die Rückströmung, das heißt, desto besser ist ihr volumetrischer Wirkungsgrad. Die Wahl beliebig kleiner Spiele ist jedoch aus thermischen Gründen nicht möglich. Während des Betriebs erwärmt sich die Pumpe. Es kommt zu einer Reduktion der vorhandenen Spiele, so daß die Gefahr des Anlaufens der Kolben am Gehäuse besteht. Bei einer Steigerung der Drehzahlen, welche zur Verkleinerung der Bauvolumina erwünscht ist, nehmen diese Schwierigkeiten wegen der erhöhten Leistungsdichte zu. Dieses gilt insbesondere für Zweiwellenvakuumpumpen mit Rotoren vom Klauentyp, wie sie beispielsweise aus der DE-A-20 07 880 bekannt sind. Maßnahmen zur Beseitigung der Schwierigkeiten sind jedoch nicht offenbart.
  • Bezüglich des Gehäuses besteht die Möglichkeit, die Wärme durch eine Wasser- oder Luftkühlung abzuführen. Die Abführung der Wärme von den rotierenden Kolben erfolgt jedoch im wesentlichen nur durch das geförderte Medium selbst, das entweder die Wärme des Kolbens auf das Gehäuse überträgt oder selbst mit abführt. Da beim Betrieb der Zweiwellenpumpen im Vakuum nur relativ wenig Moleküle zur Abführung der Wärme zur Verfügung stehen, sind die thermischen Probleme in diesem Einsatzgebiet besonders kritisch.
  • Aus der GB 21 41 486 ist eine Rootspumpe bekannt, bei der die Drehkolben und das Gehäuse aus unterschiedlichen Werkstoffen bestehen, wobei der Ausdehnungskoeffizient des Drehkolbenwerkstoffes kleiner ist als der Ausdehnungskoeffizient des Gehäusematerials. Damit ist eine Dehnung des Gehäuses in radialer Richtung möglich, in axialer Richtung jedoch nicht.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, bei Zweiwellenvakuumpumpen der eingangs genannten Art die nachteiligen Auswirkungen von auftretenden Wärmedehnungen zu reduzieren, und zwar sowohl in radialer als auch in axialer Richtung.
  • Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Die Anwendung dieser Merkmale bei mehrstufigen Pumpen mit Drehkolbenpaaren vom Klauentyp bewirkt, daß die geschilderten, sich in radialer und axialer Richtung auswirkenden Wärmedehnungsprobleme nicht mehr bestehen.
  • Bestehen zum Beispiel die Kolben aus Grauguß oder Keramik und der zugehörige Gehäusering aus Aluminium, dann kann das sich weniger erwärmende Gehäuse den Dehnungen der sich stärker erwärmenden Rotoren folgen, da Aluminium einen wesentlich größeren Ausdehnungskoeffizienten hat als Grauguß oder Keramik. Bei einem Kolben aus Keramik kann es sogar wegen des sehr kleinen Ausdehnungskoeffizienten von Keramik erforderlich sein, das Gehäuse zu kühlen, damit das Spiel zwischen Rotor und Gehäuse bei einer starken Erwärmung der Kolben und bei einer geringeren Erwärmung des Gehäuses nicht zunimmt.
  • Bei einer mehrstufigen Pumpe mit Rotoren des Klauentyps reicht es aus, wenn die Klauen dieser Rotoren zum Beispiel aus Keramik bestehen, um eine radiale Spielaufzehrung zu verzögern oder nicht eintreten zu lassen. Ein Rotor dieser Art ist kostengünstiger herstellbar als ein vollständig aus Keramik bestehender Rotor. Auf den Wellen zur Lagefixierung der Rotoren sind Buchsen angeordnet, die aus einem Material bestehen, dessen Ausdehnungskoeffizient kleiner ist als der Ausdehnungskoeffizient des Rotormaterials. Derartige Buchsen dehnen sich damit bei einer Erwärmung weniger stark aus als die Drehkolben, so daß eine relative Verschiebung der Kolben gegenüber dem Gehäuse ganz oder teilweise kompensiert wird. Insgesamt wird erreicht, daß das Gehäuse die Dehnungsbewegungen der sich stärker erwärmenden Drehkolben mitmacht, d.h. daß das Gehäuse "mitatmet".
  • Eine weitere vorteilhafte Maßnahme besteht darin, die äußeren Seitenschilde zu kühlen, den oder die Gehäusering(e) und die bei mehrstufigen Pumpen vorhandenen Zwischenschilde jedoch nicht. Dadurch wird die Lagertemperatur niedrig gehalten und die Rotortemperatur etwas reduziert, während die Gehäusetemperatur höhere Werte annimmt. Das Gehäuse wird dadurch in die Lage versetzt, die Dehnungsbewegungen der sich stärker erwärmenden Rotoren mitzumachen (mitzu"atmen"). Dieses gilt insbesondere dann, wenn das Gehäuse der Pumpe gekapselt und damit die Wärmeabgabe weiter reduziert wird.
  • Die Temperatur der Rotoren kann weiter reduziert werden, wenn diese mit einer Kühlung ausgerüstet sind.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 bis 4 dargestellten Ausführungsbeispielen erläutert werden. Es zeigen:
  • Fig. 1
    einen Längsschnitt durch eine dreistufige Zweiwellenvakuumpumpe nach der Erfindung,
    Fig. 2
    einen Querschnitt durch ein Rotorpaar,
    Fig. 3
    einen Querschnitt durch einen Rotor des Klauentyps mit aus Keramik bestehender Klaue und
    Fig. 4
    einen Längsschnitt durch eine einstufige Zweiwellenvakuumpumpe mit Rotorkühlung.
  • Bei dem in Fig. 1 dargestellten Ausführungsbeispiel handelt es sich um eine dreistufige Vakuumpumpe 1 mit zwei Wellen 2 und 3 sowie drei Rotorpaaren 4, 5 bzw. 6, 7 bzw. 8, 9. Die axiale Länge der Rotoren nimmt von der Saugseite zur Druckseite ab. Die Drehkolben sind vom Klauentyp (vergleiche Fig. 2) und rotieren in den Schöpfräumen 11, 12, 13, welche von den Schilden 14 bis 17 und den Gehäuseringen 18 bis 20 gebildet werden.
  • Die Wellen 2, 3 sind vertikal angeordnet. Dieses gilt ebenfalls für den neben dem Pumpengehäuse angeordneten, nicht dargestellten Antriebsmotor. Unterhalb des unteren Lagerschildes 17 sind die Wellen 2, 3 mit Zahnrädern 23, 24 gleichen Durchmessers ausgerüstet, welche der Synchronisation der Bewegung der Rotorpaare 4, 5 bzw. 6, 7 bzw. 8, 9 dienen. Auch der Antriebsmotor weist an seiner Unterseite ein Zahnrad auf. Die Antriebsverbindung wird hergestellt durch ein weiteres Zahnrad 26, das mit dem Zahnrad des Antriebsmotors und dem Zahnrad 24 des Synchronisationsgetriebes in Eingriff steht.
  • In dem oberen Lagerschild 14 und dem unteren Lagerschild 17 stützen sich die Wellen 2, 3 über Wälzlager 27 ab. Der obere Lagerschild 14 ist mit einem horizontal angeordneten Anschlußflansch 28 ausgerüstet, welcher den Einlaß 29 der Pumpe bildet. Der Einlaßkanal 31 mündet stirnseitig (Öffnung 32) in den Schöpfraum 11 der ersten Stufe.
  • Die stirnseitig angeordnete Auslaßöffnung der ersten Stufe ist mit 33 bezeichnet und führt in den Verbindungskanal 34. Der im Schild 15 befindliche Verbindungskanal 34 steht mit der Einlaßöffnung 35 der zweiten Stufe in Verbindung. Der Lagerschild 16 ist entsprechend gestaltet. Unterhalb der untersten (dritten) Pumpstufe befindet sich der Auslaß 36, der mit der stirnseitigen Auslaßöffnung 37 im unteren Lagerschild 17 in Verbindung steht.
  • Unterhalb des aus Pumpengehäuse und Motor bestehenden Systems ist ein Öl enthaltender Raum 40, gebildet von einer gemeinsamen Wellenwanne 41, vorgesehen. In diese Wellenwanne 41 hinein ragt eine mit der Welle 2 verbundene Ölpumpe 42. Von der Ölpumpe aus erstrecken sich im einzelnen nicht dargestellte Schmiermittelkanäle zu den Stellen der Pumpe (Lager, Eingriffe der Zahnräder 23 bis 26, Simmerringe oder dergleichen), welche einer Ölschmierung bedürfen.
  • Das dargestellte Ausführungsbeispiel der dreistufigen Zweiwellenvakuumpumpe ist wassergekühlt. Dazu sind in den Seitenschilden 14 und 17 Kühlwasserkanäle 43 und 44 vorgesehen. Kühlwassereintritt und -austritt sind mit 45 und 46 (oberes Schild 14) bzw. 47 und 48 (unteres Schild 17) bezeichnet. Ein Kühlwasserablaß 49 ist an der untersten Stelle des Kanalsystems 44 angeordnet, so daß ein einfacher Kühlwasserablaß möglich und eine vollständige Entleerung sichergestellt sind.
  • Die Rotoren 4 bis 9 sind auf die Wellen 2, 3 derart aufgeschoben und gehaltert, daß ihre Positionen von einem Längsspiel der Wellen unbeeinflußt sind. Eine Drehmomentübertragung muß dabei spielfrei möglich sein. Die oberen Lager 27 sind als Rollen- oder Nadellager ausgebildet, die ein Längsdehnungsspiel der Wellen gestalten.
  • Um die richtigen Positionen der Rotoren 4 bis 9 auf den Wellen 2, 3 sicherzustellen, sind Buchsenpaare 51 bis 53 vorgesehen, die sich in Höhe der Zwischenschilde 15, 16 und im unteren Lagerschild 17 befinden. Die aus Buchsen und Rotoren bestehenden Pakete sind mit Hilfe von Tellerfedern 54, 55 und Muttern 56, 57 auf den Wellen federnd eingespannt.
  • Das Material der Buchsen ist Stahl oder Keramik und hat damit einen kleineren Ausdehnungskoeffizienten als die zum Beispiel aus Grauguß bestehenden Kolben.
  • Bei einer Erwärmung des in dieser Weise aufgebauten Rotorsystems bewirken die Buchsen 51 bis 53, die sich weniger stark ausdehnen als die Rotoren, daß eine relative Verschiebung der Kolben gegenüber dem Gehäuse, welche sich im Bereich der ersten Stufe besonders stark auswirken würde, ganz oder teilweise kompensiert wird. Sind darüber hinaus die Gehäuseringe 18 bis 20 aus Aluminium hergestellt, dann dehnt sich das Gehäuse trotz geringfügiger Erwärmung stärker aus, so daß es den Ausdehnungsbewegungen der Kolben folgt. Insgesamt sind Pumpen dieser Art thermisch wesentlich höher belastbar und erlauben deshalb eine Erhöhung der Drehzahl und/oder einen Betrieb mit höheren Druckdifferenzen.
  • Die thermische Betriebssicherheit wird weiterhin verbessert, wenn die Seitenschilde 14, 17 gekühlt werden, die Gehäuseringe 18 bis 20 und die Zwischenschilde 15, 16 jedoch nicht. Eine wirksame Mitbewegung des Gehäuses und der Zwischenschilde wird dadurch erreicht. Die Lagertemperaturen können niedrig gehalten werden. Außerdem ist damit in geringem Maße eine Kolbenkühlung verbunden.
  • Bei dem in Fig. 1 dargestellten Ausführungsbeispiel mit vertikalen Wellen 2, 3 sind die Seitenschilde 14, 17 im wesentlichen horizontal durchströmt. Durch zwei Verbindungsleitungen 58 und 59 sind der Kühlwasseraustritt 46 des oberen Schildes 14 mit dem Kühlwassereintritt 47 des unteren Schildes 17 bzw. der Austritt 48 des unteren Schildes 17 mit dem Eintritt 45 des oberen Schildes 14 verbunden. Dadurch wird ein geschlossener Kühlkreislauf gebildet, in dem ein Kreislauf des Kühlmediums allein durch Konvenktion eintritt. Diese Konvektionsströmung wird verstärkt, wenn der Kühlwassereintritt 45, 47 jeweils tiefer liegt als der Kühlwasseraustritt 46, 48.
  • Im Bereich des oberen Kühlwasseraustrittes 46 ist eine Frischwasserzuführungsleitung 61 mit einem Ventil 62 an die Leitung 59 angeschlossen. Das Ventil öffnet sich, wenn die Temperatur des Kühlmediums einen festgelegten Wert überschreitet (Meßstelle 63). Das zugeführte kalte Kühlmedium vermischt sich zunächst mit dem vorhandenen warmen Kühlmittel, so daß die Pumpe nicht durch einen Kälteschock belastet wird. Im Bereich des oberen Kühlwassereintrittes 45 ist an die Leitung 58 ein Behälter 64 angeschlossen, der überschüssiges Kühlwasser aufnimmt und als Dehnungsgefäß dient.
  • Fig. 3 zeigt einen Kolben 4 bis 9 vom Klauentyp. Der zentrale Abschnitt 65 und die Klaue 66 sind separate Bauteile mit jeweils einer Planfläche. Die beiden Teile sind derart miteinander verschraubt (Verschraubung 67), daß die Planflächen einander anliegen. Der zentrale Körper 65 besteht zum Beispiel aus Grauguß, während die Klaue 66 aus Keramik besteht. Bei einer Erwärmung eines Kolbens dieser Art ist die axiale Ausdehnung reduziert.
  • Fig. 4 zeigt eine einstufige, ebenfalls vertikal angeordnete Zweiwellenvakuumpumpe 1. Einander entsprechende Teile der Ausführungsbeispiele nach den Figuren 1 und 4 sind mit gleichen Bezugszeichen versehen. Zur Reduzierung einer zu starken Erwärmung und damit Ausdehnung der Kolben 4, 5 sind diese mit einer Kühlung ausgerüstet. Dazu sind die Wellen 2, 3 nach unten verlängert sowie durch den Ölraum 40 und die Ölwanne 41 hindurchgeführt. Der Abdichtung der Wellen 2, 3 in der Ölwanne dienen die Radialwellendichtringe 71, 72.
  • Die Wellen 2, 3 sind jeweils mit einer Sackbohrung 73, 74 versehen, die nach unten offen ist. Mit ihren unteren Enden ragen die Wellen 2, 3 in einen Kühlmittelbehälter 75 hinein, der unterhalb des Ölraumes 40 angeordnet ist. In die Sackbohrungen 73, 74 ragen von unten Kühlmittelzuführungsleitungen 76, 77 hinein, die mit offenen Enden bis etwa in das Zentrum der Rotoren 4, 5 reichen. Die Kühlmittelzuführungsleitungen 76, 77 stehen mit einer Förderpumpe 78 in Verbindung, deren Einlaßseite über die Leitung 79 mit dem Kühlmittelbehälter 75 in Verbindung steht. Zweckmäßigerweise ist in die Leitung 79 ein Wärmetauscher 81 eingeschaltet, damit eine ausreichend niedrige Temperatur des Kühlmittels sichergestellt ist.
  • Während des Betriebs wird das Kühlmittel in die Sackbohrungen 73, 74 eingespritzt und strömt infolge der Schwerkraft in den Kühlmittelbehälter 75 zurück. Von dort aus gelangt es durch die Leitung 79 und den Wärmetauscher wieder zur Förderpumpe 78.
  • Als Kühlmittel kommt zweckmäßigerweise Wasser infrage. Auch Öl oder Preßluft können verwendet werden. Bei der Verwendung von gleichzeitig der Lager- und/oder Zahnradschmierung dienendem Öl kann auf separate Öl- und Kühlmittelbehälter 40 und 75 verzichtet werden, so daß auch die Abdichtungen 71 und 72 entfallen können.

Claims (11)

  1. Zweiwellenvakuumpumpe mit einem Schöpfraum, mit einem im Schöpfraum (11, 12, 13) befindlichen Drehkolbenpaar (4, 5; 6, 7; 8, 9;), mit den Schöpfraum seitlich begrenzenden Schilden (14, 15, 16, 17) und mit einem den Schöpfraum peripher begrenzenden Gehäusering (18, 19, 20), bei welcher der Ausdehnungskoeffizient des Drehkolbenmaterials kleiner ist als der Ausdehnungskoeffizient des Gehäusematerials, dadurch gekennzeichnet, daß die Pumpe mehrstufig ausgebildet ist, daß die Drehkolbenpaare (4 bis 9) vom Klauentyp sind, daß auf den Wellen (2, 3) zur Lagefixierung der Drehkolbenpaare (4 bis 9) Buchsen (51 bis 53) vorgesehen sind und daß die Buchsen (51 bis 53), die Drehkolben (4 bis 9) und die Gehäuseringe (18 bis 20) aus unterschiedlichen Materialien bestehen, wobei der Ausdehnungskoeffizient der Buchsen kleiner ist als der Ausdehnungskoeffizient des Drehkolbenmaterials.
  2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, daß die Buchsen (51 bis 53) aus Stahl bestehen.
  3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kolben (4 bis 9) aus Grauguß bestehen.
  4. Pumpe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Gehäuseringe (18 bis 20) aus Aluminium bestehen.
  5. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die auf die Welle aufgeschobenen Buchsen (51 bis 53) und Kolben (4 bis 9) mittels Federn (54, 55) in ihrer Lage fixiert sind.
  6. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die beiden äußeren Seitenschilde (14, 17) mit einer Wasserkühlung ausgerüstet sind und daß die Gehäuseringe (18 bis 20) ungekühlt, vorzugsweise gekapselt sind.
  7. Pumpe nach Anspruch 6, dadurch gekennzeichnet, daß die Wellen (2, 3) vertikal angeordnet sind und daß die beiden Seitenschilde (14, 17) im wesentlichen senkrecht zur Rotorachse durchströmt sind und über zwei äußere Verbindungsleitungen (58, 59) derart miteinander zu einem einheitlichen Kühlsystem verbunden sind, daß infolge der Temperaturunterschiede eine Konvektionsströmung des Kühlmediums im Kreislauf stattfindet.
  8. Pumpe nach Anspruch 7, dadurch gekennzeichnet, daß der Kühlwassereintritt (45, 47) zu den Seitenschilden (14, 17) jeweils tiefer liegt als der Kühlwasseraustritt (46, 48).
  9. Pumpe nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß im Bereich des oberen Kühlwasseraustritts (46) eine Frischwasserzufuhr (61) angeschlossen ist.
  10. Pumpe nach Anspruch 9, dadurch gekennzeichnet, daß in der Frischwasserzuführungsleitung (61) ein Ventil (62) angeordnet ist, das in Abhängigkeit von der Temperatur im Kühlkreislauf betätigbar ist.
  11. Pumpe nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet , daß im Bereich des oberen Kühlwasserzulaufs (43) ein Ausdehnungsgefäß (64) angeschlossen ist, das gleichzeitig der Aufnahme von warmem Kühlwasser während der Frischwasserzufuhr dient.
EP87107090A 1987-05-15 1987-05-15 Ein- oder mehrstufige Zweiwellenvakuumpumpe Expired - Lifetime EP0290663B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE8787107090T DE3786917D1 (de) 1987-05-15 1987-05-15 Ein- oder mehrstufige zweiwellenvakuumpumpe.
EP87107090A EP0290663B1 (de) 1987-05-15 1987-05-15 Ein- oder mehrstufige Zweiwellenvakuumpumpe
US07/192,559 US4983107A (en) 1987-05-15 1988-05-11 Multistage rotary piston vacuum pump having sleeves to fix shaft positions
JP63115016A JP2650041B2 (ja) 1987-05-15 1988-05-13 2軸真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP87107090A EP0290663B1 (de) 1987-05-15 1987-05-15 Ein- oder mehrstufige Zweiwellenvakuumpumpe

Publications (2)

Publication Number Publication Date
EP0290663A1 EP0290663A1 (de) 1988-11-17
EP0290663B1 true EP0290663B1 (de) 1993-08-04

Family

ID=8196997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87107090A Expired - Lifetime EP0290663B1 (de) 1987-05-15 1987-05-15 Ein- oder mehrstufige Zweiwellenvakuumpumpe

Country Status (4)

Country Link
US (1) US4983107A (de)
EP (1) EP0290663B1 (de)
JP (1) JP2650041B2 (de)
DE (1) DE3786917D1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59200347D1 (de) * 1991-02-01 1994-09-08 Leybold Ag Trockenlaufende zweiwellenvakuumpumpe.
EP0497995A1 (de) * 1991-02-01 1992-08-12 Leybold Aktiengesellschaft Trockenlaufende Vakuumpumpe
DE4233142A1 (de) * 1992-10-02 1994-04-07 Leybold Ag Verfahren zum Betrieb einer Klauenvakuumpumpe und für die Durchführung dieses Betriebsverfahrens geeignete Klauenvakuumpumpe
GB9604486D0 (en) * 1996-03-01 1996-05-01 Boc Group Plc Improvements in vacuum pumps
DE19736017A1 (de) * 1997-08-20 1999-02-25 Peter Frieden Trockenverdichtende Vakuumpumpe oder Kompressor
DE19820523A1 (de) * 1998-05-08 1999-11-11 Peter Frieden Schraubenspindel-Vakuumpumpe mit Rotorkühlung
US7077159B1 (en) * 1998-12-23 2006-07-18 Applied Materials, Inc. Processing apparatus having integrated pumping system
DE19963172A1 (de) 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Schraubenpumpe mit einem Kühlmittelkreislauf
DE19963171A1 (de) * 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Gekühlte Schraubenvakuumpumpe
DE10040482A1 (de) * 2000-08-18 2002-02-28 Univ Ilmenau Tech Zweiwellenklauenpumpe
JP3673743B2 (ja) * 2001-09-27 2005-07-20 大晃機械工業株式会社 スクリュー式真空ポンプ
GB0223769D0 (en) * 2002-10-14 2002-11-20 Boc Group Plc A pump
GB2426036A (en) * 2005-05-10 2006-11-15 Bernard Whicher Vertical Northey compressor
DE102014101113A1 (de) * 2014-01-30 2015-07-30 Pfeiffer Vacuum Gmbh Vakuumpumpe
US20200032799A1 (en) * 2017-01-10 2020-01-30 The Queenstown Trust Improvements in rotary claw pumps
CN111594439A (zh) * 2020-04-23 2020-08-28 浙江佳成机械有限公司 一种三级螺杆压缩机
JP7008955B1 (ja) * 2021-07-16 2022-01-25 オリオン機械株式会社 クローポンプ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US901539A (en) * 1905-06-14 1908-10-20 John George Leyner Multiple-stage air-compressor.
US1653814A (en) * 1926-01-02 1927-12-27 William E Mild Rotary compressor
US2014932A (en) * 1933-03-17 1935-09-17 Gen Motors Corp Roots blower
GB525761A (en) * 1939-02-28 1940-09-04 Milo Ab Improvements in or relating to rotary compressors
US2367463A (en) * 1939-03-18 1945-01-16 Heimbach Bruno Rotary blower
DE758120C (de) * 1939-03-19 1953-10-05 Bosch Gmbh Robert Drehkolbengeblaese
GB529059A (en) * 1939-05-11 1940-11-13 James Pontus Johnson Improvements in or relating to air pumps
US2708548A (en) * 1953-10-12 1955-05-17 Hosdreg Company Inc Blower
US2938664A (en) * 1955-01-17 1960-05-31 Leybold S Nachfolger Fa E Pump
CH365821A (de) * 1959-03-17 1962-11-30 Balzers Hochvakuum Verfahren zum Betrieb von mechanischen Vakuumpumpen und Vakuumpumpe zur Durchführung dieses Verfahrens
US3150593A (en) * 1961-04-24 1964-09-29 Waukesha Foundry Co Metering pump
DE1425080A1 (de) * 1962-05-04 1969-03-13 Ohe Ernst Von Der Hohlzylinder-Rotor nach Baukastensystem in Typnormung
DE2007880A1 (de) * 1970-02-20 1971-09-02 Brown, Arthur Corning N Y (VStA) Rotationsverdrangungsmaschine
JPS4857706U (de) * 1971-10-29 1973-07-23
US4035112A (en) * 1974-02-20 1977-07-12 Outboard Marine Corporation Rotary engine cooling and exhaust system
FR2389784B1 (de) * 1977-05-06 1984-02-24 Siebec Filtres
GB2088957B (en) * 1980-12-05 1984-12-12 Boc Ltd Rotary positive-displacement fluidmachines
DE3124247C1 (de) * 1981-06-19 1983-06-01 Boge Kompressoren Otto Boge Gmbh & Co Kg, 4800 Bielefeld Schraubenverdichter
JPS58160585A (ja) * 1982-03-19 1983-09-24 Hitachi Ltd スクリユ−ロ−タ
US4504201A (en) * 1982-11-22 1985-03-12 The Boc Group Plc Mechanical pumps
DE3321718A1 (de) * 1983-06-16 1984-12-20 Arthur Pfeiffer Vakuumtechnik Wetzlar Gmbh, 6334 Asslar Waelzkolbenpumpe
IT1179911B (it) * 1984-04-16 1987-09-16 Gilardini Spa Compressore volumetrico per l alimentazione a motori endotermici di veicoli
JPS61152991A (ja) * 1984-12-26 1986-07-11 Hitachi Ltd スクリユ−流体機械
DE3545821A1 (de) * 1985-12-23 1987-07-02 Wankel Gmbh Fluessigkeitsgekuehltes gehaeuse einer rotationskolbenbrennkraftmaschine

Also Published As

Publication number Publication date
JPS63302193A (ja) 1988-12-09
DE3786917D1 (de) 1993-09-09
JP2650041B2 (ja) 1997-09-03
EP0290663A1 (de) 1988-11-17
US4983107A (en) 1991-01-08

Similar Documents

Publication Publication Date Title
EP0290663B1 (de) Ein- oder mehrstufige Zweiwellenvakuumpumpe
EP1021653B1 (de) Gekühlte schraubenvakuumpumpe
DE3601674C2 (de)
DE69631447T2 (de) Spiralmaschine
EP0834017B1 (de) Vakuumpumpe
EP0834018B1 (de) Mehrstufiger schraubenspindelverdichter
EP0166807B1 (de) Drehschieber-Vakuumpumpe
DE19745615A1 (de) Schraubenvakuumpumpe mit Rotoren
DE3127323A1 (de) Schraubenkompressor mit geschlossenem druckgassystem mit oelnebelschmierung
WO2002012726A1 (de) -weiwellenvakuumpumpe
DE10031470A1 (de) Zahnradpumpe
EP0569455B1 (de) Trockenlaufende zweiwellenvakuumpumpe
DE19749572A1 (de) Trockenlaufender Schraubenverdichter oder Vakuumpumpe
DE112012004417T5 (de) Rotationskolben-Verbrennungsmotor
EP2952678B1 (de) Vakuumpumpe mit kühlrippen
EP1855009B1 (de) Drehkolbenmaschine
DE20302989U1 (de) Drehkolbenpumpe
WO1984000409A1 (en) Hydrostatic driving device particularly for mixer drums of concrete-mixer trucks
EP0287797B1 (de) Zweiwellenvakuumpumpe mit einem Synchronisationsgetriebe
DE19748385A1 (de) Trockenlaufender Schraubenverdichter oder Vakuumpumpe
EP0233372B1 (de) Kühlsystem einer Rotationskolbenbrennkraftmaschine
DE2233580C3 (de) Rotationskolbenverdichter mit radial beweglichen Arbeitsschiebern
DE19736017A1 (de) Trockenverdichtende Vakuumpumpe oder Kompressor
WO1983004075A1 (en) Seal for rotary piston pump
EP2957772B1 (de) Vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19890331

17Q First examination report despatched

Effective date: 19891121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930811

REF Corresponds to:

Ref document number: 3786917

Country of ref document: DE

Date of ref document: 19930909

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990412

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990420

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990426

Year of fee payment: 13

Ref country code: CH

Payment date: 19990426

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST