EP0290546B1 - Broche porte-piece a paliers magnetiques et dispositifs de mise en oeuvre de celle-ci pour machine-outil de tres haute precision - Google Patents

Broche porte-piece a paliers magnetiques et dispositifs de mise en oeuvre de celle-ci pour machine-outil de tres haute precision Download PDF

Info

Publication number
EP0290546B1
EP0290546B1 EP87907621A EP87907621A EP0290546B1 EP 0290546 B1 EP0290546 B1 EP 0290546B1 EP 87907621 A EP87907621 A EP 87907621A EP 87907621 A EP87907621 A EP 87907621A EP 0290546 B1 EP0290546 B1 EP 0290546B1
Authority
EP
European Patent Office
Prior art keywords
spindle
workpiece
slide
detectors
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87907621A
Other languages
German (de)
English (en)
Other versions
EP0290546A1 (fr
Inventor
Claude Fouche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Europeenne de Propulsion SEP SA
Original Assignee
Societe Europeenne de Propulsion SEP SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Europeenne de Propulsion SEP SA filed Critical Societe Europeenne de Propulsion SEP SA
Publication of EP0290546A1 publication Critical patent/EP0290546A1/fr
Application granted granted Critical
Publication of EP0290546B1 publication Critical patent/EP0290546B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2552Headstock
    • Y10T82/2562Spindle and bearings

Definitions

  • the subject of the present invention is a workpiece spindle with active magnetic bearings for a very high precision machine tool, comprising a spindle body mounted on a guide slide in a predetermined direction, a spindle rotor mounted inside the spindle. spindle body and a mandrel secured to the spindle rotor, to the first and second active radial magnetic bearings for supporting the spindle rotor, controlled at least from radial detectors of the rotor position, an axial stop constituted by an active magnetic bearing axial cooperating with a disc integral with the spindle rotor, and controlled from at least one axial detector of the position of the rotor, and an electric motor for driving the spindle rotor in rotation.
  • the invention also relates to devices for implementing such a spindle for high precision machines in order to facilitate the precise machining of complex surfaces in Cartesian coordinates or in polar coordinates.
  • High-precision machine tools use a workpiece spindle mounted on a slide generally controlled by a screw-nut system associated with a direct current electric motor, the rotor of which is directly coupled to the drive screw of the slide.
  • the spindle rotor on which the workpiece is fixed is mounted in the spindle by means of air bearings which give the spindle rotor a high stiffness.
  • the present invention aims to remedy the aforementioned drawbacks and to allow very high precision machining work to be carried out to produce typical or atypical surfaces whose general shape is of revolution, by eliminating or correcting the defects of the various mechanical assemblies. movable with respect to each other for the production of complex surfaces in a Cartesian or polar axis system.
  • a workpiece spindle of the type mentioned at the head of the description characterized in that the electric motor is external to the spindle body, is arranged at the rear of the spindle rotor and substantially in alignment with that here, in that the external motor has a smaller air gap than the air gap between the radial magnetic bearings and the spindle rotor, in that the speed of rotation communicated to the spindle rotor by the external motor, expressed in revolutions / second, is outside the servo bandwidth of the magnetic suspension system expressed in hertz, in that a flexible coupling device connects the output shaft of the external motor to the rear part of the spindle rotor while ensuring the filtering of mechanical disturbances from the engine runout, and in that the spindle further comprises additional means for detecting movements of the spindle guide rail and means for selective modification of the reference electrical voltages of the servo loops of the axial bearing and of the radial bearings as a function of the signals from said additional detection means, said
  • the mandrel secured to the spindle rotor can be either a suction plate provided with suction orifices distributed over its front face, either a magnetic plate, or even a so-called American pliers, or a mechanical mandrel.
  • the mandrel secured to the spindle-holder rotor is constituted by a suction plate provided with suction ports and the suction device comprises a vacuum pump, a suction buffer tank arranged at the rear of the electric motor and connected to the vacuum pump, and a suction conduit originating inside the buffer tank, extending axially inside the motor shaft, of the coupling and spindle rotor to open into a cavity formed in the workpiece chuck and with which the suction ports are in communication.
  • the arrangement of the suction device is simple to carry out and effectively prevents disturbances due to pumping from being communicated to the spindle rotor.
  • the coupling device comprises a sealed tubular sleeve made of a material such as rubber or an elastomer.
  • the external motor has an air gap of the order of 0.1 mm while the air gap between the radial magnetic bearings and the spindle rotor is of the order of 0.3 mm.
  • the natural frequency of the magnetic suspension system is of the order of 50 to 60 Hz while the speed of rotation of the spindle rotor is between approximately 25 and 40 revolutions / second.
  • the spindle comprises first and second stiff detectors axially spaced apart and situated on either side of said second front radial magnetic bearing arranged in the vicinity of the workpiece chuck, the second radial detector is removably mounted between said second radial magnetic bearing and the workpiece disc and in a first development phase the second radial magnetic bearing is controlled by the first radial detector to perform a rectification operation on the spindle rotor of the reference track of the second radial detector and in subsequent phases of machining of parts supported by the workpiece chuck, the second radial magnetic bearing is controlled by the second radial detector cooperating with said reference track.
  • the spindle can successively use first and second axial detectors, the first axial detector disposed at the rear of the spindle serving to control the axial stop for an operation of rectifying a reference track on a front face formed at the front of the spindle, and the second axial detector which cooperates with said reference track serving for controlling the axial stop for a subsequent phase of machining of a part.
  • the invention also relates to a device for correcting faults (roll, yaw, pitch and faults of horizontal and vertical straightness), movements of slides of a machine tool used in a Cartesian coordinate system and comprising first and second slides whose movement axes are oriented in two perpendicular directions XX ⁇ and YY ⁇ , a turntable placed on the first slide, and a workpiece spindle placed on the second slide, and devices for measuring the displacements of the first and second slides, characterized in that that it comprises a work-holding spindle with active magnetic bearings of the aforementioned type, additional means for detecting the movements of the first guide slide of the turntable, said additional means for detecting the movements of the first slide on which the turntable comprising a mobile detector placed in a green plane ical containing the axis of the tool and integral with the first slide, a flat reference surface placed perpendicular to the axis of the workpiece spindle and means for detecting variations in the spacing between the detector and the surface reference plane, and the
  • Another subject of the invention is a device for correcting faults (eccentricity, haze, defect in circularity) of rotation of the turntable of a machine tool used in polar coordinates comprising a first adjustment slide, which spans a turntable at vertical axis on which is placed a second adjustment slide of a tool support and a workpiece spindle placed on the first adjustment slide, characterized in that it comprises a workpiece spindle of the type mentioned above, in that it further comprises a spherical reference surface centered on the axis of the turntable and placed on a fixed support integral with the table, a proximity sensor between the sensor and the spherical reference surface and means modification in real time of the reference voltage of the servo loop of the axial bearing of the workpiece spindle as a function of said variations in proximity between the sensor and the spherical reference surface.
  • faults eccentricity, haze, defect in circularity
  • the various measures recommended by the present invention contribute to obtaining performances which lie in the field of optical precision.
  • machining of parts carried out in accordance with the invention using a work-holding spindle mounted on controlled magnetic bearings has made it possible to obtain cylindrical parts for which the defects in circularity or in cylindricity are less than tenth micrometer.
  • a machined part with a diameter of 220 mm made of AG5 aluminum alloy has a peak-to-peak difference of 0.1 micrometer and a machined part with a diameter of 55 mm made of germanium has a peak-to-peak difference of 0.089 micrometer.
  • Figure 1 shows schematically the overall structure of a workpiece spindle 1 intended to be mounted on a slide of a high precision machine tool.
  • the spindle 1 comprises a spindle body 10 made integral with an adjustment slide, such as the slide referenced 202 in Figures 8 and 9 and 401 in Figures 11 and 12.
  • the spindle body 10 serves as a housing for the elements stator of a front radial magnetic bearing 12 and a rear radial magnetic bearing 11 which define with the rotor 50 of the spindle 1 a relatively large air gap 13, of the order of 0.3 mm.
  • the spindle body 10 also incorporates stator elements of an axial magnetic bearing which cooperate with a disc 141 integral with the rear part of the spindle rotor 50, and perpendicular to the axis of the latter, to constitute an axial stop.
  • the spindle rotor 50 ends at its front part with a workpiece mandrel 5 fixed on the axis of the spindle 1 and has a diameter greater than that of the spindle rotor 50.
  • the workpiece mandrel 5 is a suction plate
  • the workpiece mandrel 5 has a cavity 52 which is in communication with a duct 51 formed axially inside the spindle rotor 50.
  • Ports 54 are distributed in the front face 53 of the workpiece carrier disc 5 and open into the cavity 52 to ensure, by suction, the maintenance of a workpiece in contact with the front face 53 of the workpiece disc 5.
  • the rotor 50 of the spindle 1 is rotated from an electric motor 2 which is external to the spindle body 10 and comprises a rotor 20 which can be mounted on precision ball bearings 21, 22, on tapered rollers or on magnetic bearings.
  • the external motor 2 is designed so as not to have a runout greater than a few micrometers.
  • the spindle shaft 50 and the rotor 20 of the external motor 2 are connected by a coupling 3 intended to ensure the transmission of the motor torque while filtering the mechanical disturbances from the runout of the motor.
  • the coupling device 3 is advantageously constituted by a pipe 30 made of an elastometer or other material having similar elastic properties, which is tightly fixed by connecting means 37 to the free ends of the rotor 20 of the motor 2 and of the rotor 50 of pin 1 (fig 5).
  • a coupling mode guarantees a seal at the connection between the motor 2 and the spindle shaft 50, without the addition of an additional seal while ensuring fully satisfactory, the above mechanical functions.
  • the coupling device may however include a metal bellows 38 fixed by pinching on flanges 31, 32 for connection to the free ends of the motor rotor 2 and of the spindle shaft 50 (fig 6).
  • a metal bellows 38 fixed by pinching on flanges 31, 32 for connection to the free ends of the motor rotor 2 and of the spindle shaft 50 (fig 6). The tightness required when using a suction plate is ensured by O-rings 31 ⁇ and 32 ⁇ .
  • FIGS. 3 and 4 Another embodiment of the coupling device 3, shown in FIGS. 3 and 4, comprises flexible blades 35 fixed by pinching by means of connecting elements 34 between flanges 31, 32 for connection to the free ends of the motor rotor 2 and spindle shaft 50, and a central sleeve 33.
  • Connecting means 36 ensure the connection between the flanges 31, 32 and the ends of the rotors 20 and 50.
  • a conduit 31 is defined axially inside the coupling and ensures continuity between the conduit 51 of the spindle rotor 50 and a conduit 23 formed axially in the rotor 20 of the motor 2.
  • the conduit 31 is produced so as to ensure continuity of the seal between the conduits 23, 31 and 51.
  • a suction box 4 delimiting a distribution chamber 40 is attached to the rear of the motor 2 and rigidly fixed on the stator thereof.
  • the chamber 40 communicates on the one hand with a vacuum pump, not shown, by means of a pipe 41 and on the other hand, with the duct 23 formed in the rotor 20 of the motor 2.
  • the largest leaks to the outside coming from the suction circuit formed by the chamber 40, the conduits 23, 31, 51 and the chamber 52, are located at the air gap formed between the rotor 20 of the motor 2 and the stator of this motor. Given the low value of this air gap (of the order of 0.1 mm), the pressure drops due to these leaks are relatively low. It is therefore not necessary to install a baffle joint or a rotating joint which is always difficult to apply and which systematically causes axial vibrations.
  • the suction system according to the invention which ensures the pumping in the chamber 52 of the workpiece carrier plate 5 from the vacuum pump via the spindle rotor 50, of the coupling 3 with elastomeric pipe or with bellows metal, the rotor 20 of the motor 2 and the suction unit 4 guarantees that all the inevitable mechanical disturbances due to pumping, in particular the axial disturbances, are completely taken over by the motor 2 and are not transmitted to the rotor 50 the spindle, taking into account the present coupling 3.
  • the magnetic suspension shown in FIG. 2 comprises first and second active radial magnetic bearings 11, 12 disposed respectively at the rear part and at the front part of the spindle body 10.
  • Each radial magnetic bearing 11, 12 comprises, in a manner known in itself, a stator formed by a stack of sheets 111, 121 and windings 112, 122 and an armature 113, 123 which is attached to the rotor 50 of the spindle.
  • Each radial bearing 11, 12 is qualified as active because it is associated with a control loop and at least one radial detector of the position of the rotor 50, referenced 17, respectively 18, 61, arranged in the vicinity of the corresponding radial bearing. .
  • the radial detectors 17, 18, 61 can be of the inductive type with a stator armature 171, 181, 161 and windings 172, 182, 162 arranged opposite an annular track 173, 183, 163 formed on the rotor 50.
  • Advantageously used for the detectors 17, 18, 61 are radial detectors with harmonic rejection such as those described in French patent 2 214 890.
  • FIG. 2 shows an axial detector 19 and two radial detectors 17, 18 which can be used to control the axial stop 14 and the radial bearings 11, 12 during a machining operation of the reference track 163 d 'a new radial detector 61 placed in the vicinity of the front end of the rotor 50, and of the reference track 63 of a new axial detector 62 formed on the front face 55 of the rotor 50.
  • the front radial bearing 12 and the axial stop 14 can be controlled by the detectors 61 and 62.
  • the rear axial detector 19 can then be removed to disengage the duct 51 from the spindle rotor 50 if a suction mandrel is used.
  • the quality of the detectors can also be improved even in the total absence of an electronic harmonic correction device.
  • tracks 163 and 63 are machined with new radial and axial detectors 61, 62 which, in normal service, will then be connected to the control loops of the radial 12 and axial bearings 14 at the detectors 18 and 19.
  • references 15 and 16 designate emergency bearings constituted by ball bearings which are not used in normal service.
  • the present invention chooses the natural servo frequencies between about 50 and 80 Hz and preferably 50 and 60 Hz and the workpiece spindle is rotated at a speed lower than said natural frequencies and preferably at a speed between about 25 and 40 revolutions /second.
  • the control loops have a gain peak, for the first harmonic.
  • the machining passes are preferably carried out in a very fine manner.
  • a suction-type mandrel has been described above with reference to FIGS. 1 and 2. It is also possible, for certain applications, to use a magnetic mandrel. In this case, to avoid a disturbance in the operation of the detectors arranged in the vicinity of the mandrel, an axial detector 62 is used of the capacitive type and not of the iductive type as shown in FIG. 2.
  • the electric motor which is not interposed between the radial bearings 11, 12, avoids all the disturbances which would be caused by the presence of an electric motor in the immediate vicinity of the bearings, namely heat losses, vibrations and electrical and magnetic pollution from detectors. It may however be desirable to mount on the spindle body a device for regulating the temperature of the spindle body, for example by circulation of fluid. Indeed, although relatively low compared to the thermal losses of an electric motor, the thermal losses in the windings of the magnetic bearings are not always negligible.
  • FIG. 7 A first example of a machine for machining complex surfaces in a Cartesian coordinate system XX ⁇ , YY ⁇ is represented symbolically in FIG. 7.
  • Two slides 201, 202 whose axes of movement XX ⁇ and YY ⁇ are perpendicular are placed on a support 206, such as a solid mass of granite, which is separated from the ground using a pneumatic suspension.
  • the slide 201 supports a turntable 203 on which a tool 207 is placed while the slide 202 supports a workpiece spindle 205 which can be as described above for spindle 1.
  • a workpiece 204 is placed on the workpiece disc 5 which extends the spindle 205.
  • the turntable 203 makes it possible to orient the tool so that it is the same part of the cutting edge of the tool which performs the machining, which makes it possible to overcome the geometric irregularities of the edge.
  • FIGS. 8 and 9 represent an exemplary embodiment of a machine such as that which has been symbolized in FIG. 7.
  • DC electric motors 210, 220 each driving a screw-nut system which ensures the displacement of the slide 201, 202 respectively.
  • the slides 201, 202 are controlled by a digital control and their displacement is measured by a Doppler interferometric device, known per se.
  • the interferometric device essentially comprises a laser source 290, boxes 291, 292 comprising deflection cubes, a plane mirror box 294 and an interferometer box 293 for measuring the displacement of the slide 201 of the tool, two boxes with plane mirror 296, 399 and two interferometer housings 295, 398 for measuring the displacement of the slide 202 of the spindle, bellows 397, 396 for connection between the interferometer housings 295, 398 and the cases of plane mirrors 296, 399 and tubes 391 to 395 for protecting the laser measurement beams.
  • the planar mirror housings 294, 296, 399 each include, like the casing 296, a planar mirror 296a and adjustment stops 296b.
  • the interferometer housings 293, 295, 398 each include a measurement interferometer 293a, 295a, a receiver 293b, 295b, as well as an adjustment device such as 295c.
  • the workpiece spindle 1 also makes it possible to compensate for faults in the mechanical elements of the machine tool. By acting on the servo loops of the work-holding spindle 1 with magnetic bearings, it is possible to keep the spindle axis perfectly positioned despite the roll, pitch or yaw faults due to the movements of a slide 201, 202.
  • Such compensation can be carried out in real time if in each servo plane of the radial magnetic bearings 11, 12 two detectors are placed, for example of the capacitive type, 216, 218 respectively 215, 217 mounted on consoles 214, 213 secured to the body 10 of the spindle and which detect variations in distance with respect to fixed flat reference surfaces 211, 212 placed parallel to the direction YY ⁇ of movement of the spindle slide 212 and perpendicular to the servo axes shown in dashed lines on FIG. 13. As can be seen in this figure, the surfaces 211, 212 have an angle close to 45 ° relative to the support plane of the spindle 1.
  • the flat reference surface 211 is common to the detectors 215, 216 while the flat reference surface 212 is common to the detectors 217, 218.
  • the flat reference surfaces 211, 212 are preferably formed by metallized mirrors.
  • the signals from detectors 215 to 218 are processed and sent respectively in the control loops of the corresponding radial bearings to modify the voltages of reference which determine the position of the axis of the rotor 50 radially with respect to the stators of the magnetic bearings 11, 12.
  • a detector 281 in a vertical axial plane of the tool 207.
  • This detector 281 secured to the slide 201 measures the variations in proximity with a flat reference surface 282 previously placed perpendicular to the axis of the spindle 50 (FIGS. 8, 9 and 14).
  • the detector 281 is preferably of the capacitive type and cooperates with a plane mirror 282 mounted in a fixed support 280.
  • the signal from the detector 281 is processed and then sent to the servo loop of the axial magnetic bearing 14 in order to modify the reference voltage which defines the position of the axis of the rotor 50 relative to the spindle body.
  • FIGS. 15 and 16 show an embodiment of the invention in which the magnetic suspension of the rotor 50 of the spindle 1 makes it possible to correct not only defects in the spindle slide 202, but also defects in roll, yaw, pitch and straightness of the tool holder slide 201.
  • the detectors 285, 286 are themselves located in planes perpendicular to the planes P1 and P2 and containing the detectors 281 and 283 respectively.
  • the four detectors 281, 283, 285, 286 secured to the slide 201 measure the variations in proximity with respect to two flat reference surfaces 282, 284 perpendicular to each other and secured to the fixed support 206.
  • the planar surface 282 cooperating with the detectors 281 , 283 and the flat surface 284 cooperating with the detectors 285, 286 are constituted by metallized plane mirrors.
  • the signals delivered by the detectors 281, 283, 285, 286 make it possible to determine the faults of the slide 201 and, by acting on the reference voltages of the servo loops of the radial bearings 11, 12 of the workpiece spindle 205 allow compensate for these faults in real time by selectively modifying the position of the rotor 50 of the workpiece spindle. Given the fact that detectors 281?
  • 285 and 283, 286 are located in planes which are not those of the radial bearings 11, 12, unlike the case of the detectors 215, 217 and 216, 218 serving to compensate for the defects of the spindle slide 202, it is naturally necessary to carry out, with the aid of a computer, conversion operations which elaborate in the planes of the radial bearings 11, 12 compensation signals tending to cancel the error signals emitted by the detectors 281, 283, 285 and 286.
  • the signals delivered by the detectors 281, 283, 285 and 286 are processed two by two to determine the share of faults which results in translation and that which returns in rotation.
  • the modified reference voltages applied to the servo loops of the radial bearings and the axial bearing aim to keep the axis of the tool 207 perpendicular to the plane tangent to the point considered of the surface to be machined.
  • references 230, 231 respectively designate the direct current electric motor for driving in rotation the turntable 203 and a tachometric generator.
  • An angular encoder is also associated with the turntable 203.
  • FIG. 10 symbolically represents a machine for machining complex surfaces, of the polar type, which comprises a spindle 205 with a horizontal axis which can be in accordance with spindle 1 described above, placed on a slide of 401 which spans a turntable 403 with a vertical axis on which is placed a slide 402 of tool 203.
  • a support plate 406, for example of granite is detached from the ground by an air suspension.
  • FIG. 10 also shows a zeroing slide 404.
  • the room 204 is placed on the workpiece disc 5 of the spindle 205 as in the embodiment of FIGS. 7 to 9.
  • the machining frequency is the inverse of the time taken by the tool to travel the radius of the workpiece
  • the frequency of the reference voltage is less than the machining frequency
  • the tool 207 can be placed perpendicular to the surface to be machined, in a frontal position, or on the contrary be placed in a lateral position 207 ⁇ .
  • a machine of the polar type has a simpler overall structure than a structure of the Cartesian type and it is not necessary to use an interferometric measurement device as in the case of the embodiment of FIGS. 7 to 9. In indeed, during machining it is only necessary to check the rotation, all the other parameters depending on the adjustment conditions.
  • a tachometer generator and an angular encoder associated with the rotating platform 403 thus make it possible to ensure complete control of the machining operations.
  • FIG. 17 illustrates a means for correcting rotation defects of the turntable 403.
  • the spherical surface 480 formed on a part 408 is centered on the axis 232 of the turntable 403 and fixed on a fixed support.
  • a position sensor 407 is placed in the axis of the tool 207 and measures the variations in proximity with respect to the spherical surface 480. The signal from the sensor 407 is processed and then sent to the servo loop of the axial bearing 14 of spindle 1 carrying the workpiece 204.
  • the device for correcting rotational defects of a turntable is also applicable to a machine of the Cartesian type, as shown in FIG. 18.
  • a spherical reference surface 380 is used which is perfectly centered on the axis of the turntable and carried by a support 308 fixed on the movable plate of the slide 201.
  • the sensor 507 measuring the variations in proximity with respect to the spherical surface of 380 is placed in the axis of the tool 207 and the signal from the sensor 507 is processed, then used to selectively modify the reference voltage of the servo loop of the axial bearing 14 of the spindle 1 carrying the workpiece 204.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

La broche porte-pièce comprend un corps de broche (10) monté sur une glissière (202), un rotor de broche (50) supporté par des paliers magnétiques actifs et entraîné en rotation à partir d'un moteur électrique extérieur (2) relié au rotor par un accouplement (3) filtrant les perturbations mécaniques issues du faux-rond du moteur, et un mandrin (5) solidaire du rotor (50). Des moyens supplémentaires de détection des mouvements de la glissière de broche (202) comprennent dans le plan d'asservissement de chaque palier radial deux détecteurs de position (216, 218; 215, 217) solidaires du corps de broche (1) qui sont placés en regard de deux surfaces planes de référence (211, 212) disposées parallèlement à la direction du déplacement de la glissière (202), et délivrent des signaux qui sont appliqués à des moyens de modification sélective des tensions électriques de référence des boucles d'asservissement des paliers magnétiques. Application notamment aux machines-outils réalisant des usinages de qualité optique.

Description

  • La présente invention a pour objet une broche porte-pièce à paliers magnétiques actifs pour machine-outil de très haute précision, comprenant un corps de broche monté sur une glissière de guidage selon une direction prédéterminée, un rotor de broche monté à l'intérieur du corps de broche et un mandrin solidaire du rotor de broche, des premier et second paliers magnétiques actifs radiaux de support du rotor de broche, commandés au moins à partir de détecteurs radiaux de la position du rotor, une butée axiale constituée par un palier magnétique actif axial coopérant avec un disque solidaire du rotor de broche, et commandé à partir d'au moins un détecteur axial de la position du rotor, et un moteur électrique d'entraînement en rotation du rotor de broche.
  • L'invention concerne également des dispositifs de mise en oeuvre d'une telle broche pour des machines de haute précision afin de faciliter l'usinage précis de surfaces complexes en coordonnées cartésiennes ou en coordonnées polaires.
  • Les machines-outils de haute précision utilisent une broche porte-pièce montée sur une glissière généralement commandée par un système vis-écrou associé à un moteur électrique à courant continu dont le rotor est couplé directement à la vis d'entraînement de la glissière. Le rotor de la broche sur lequel est fixée la pièce est monté dans la broche à l'aide de paliers à air qui confèrent au rotor de broche une raideur élevée.
  • L'utilisation de paliers à air impose la réalisation d'entrefers très réduits, de l'ordre de 5 µm entre le rotor de broche et le corps de broche. Ceci ne permet pas d'éviter des mouvements résiduels de perturbation au niveau du rotor de broche qui limitent la précision d'autant plus que les défauts des glissières ne peuvent jamais être totalement éliminés.
  • On a déjà proposé de réaliser la rectification de pièces montées sur des paliers magnétiques actifs afin d'obtenir une grande précision et une grande stabilité dans le contrôle de la rotation de la pièce. Ceci implique cependant de disposer de paliers magnétiques amovibles et ne peut s'appliquer qu'à la réalisation de pièces d'une certaine géométrie.
  • On connait par ailleurs par le brevet US-A-4 180 946 correspondant au brevet français FR-A-2 326 270 une broche porte-outil, notamment pour rectifieuse, dont l'arbre est monté dans des paliers magnétiques actifs radiaux, et qui comporte un moteur électrique d'entraînement incorporé dans le corps de la broche et situé entre les deux paliers radiaux d'extrémité. Une telle broche porte-outil présente une certaine souplesse d'utilisation pour effectuer un certain nombre d'opérations d'usinage, mais n'est pas adaptée pour être incorporée dans l'architecture d'une machine-outil de très haute précision. De plus, la présence d'un moteur électrique intégré dans le corps de la broche et disposé entre les deux paliers radiaux augmente les dégagements de chaleur et les vibrations au niveau de la suspension magnétique et amène une pollution électrique et magnétique des différents détecteurs servant à l'asservissement des paliers magnétiques, de sorte que la commande du mouvement de l'outil reste d'une précision limitée.
  • La présente invention vise à remédier aux inconvénients précités et à permetre d'effectuer des travaux d'usinage de très haute précision pour réaliser des surfaces typiques ou atypiques dont la forme générale est de révolution, en éliminant ou en corrigeant les défauts des différents ensembles mécaniques mobiles les uns par rapport aux autres pour la réalisation de surfaces complexes dans un système d'axes cartésien ou polaire.
  • Ces buts sont atteints grâce à une broche porte-pièce du type mentionné en tête de la description, caractérisée en ce que le moteur électrique est extérieur au corps de broche, est disposé à l'arrière du rotor de broche et sensiblement en alignement avec celui-ci,en ce que le moteur extérieur présente un entrefer plus réduit que l'entrefer entre les paliers magnétiques radiaux et le rotor de broche, en ce que la vitesse de rotation communiquée au rotor de broche par le moteur extérieur, exprimée en tours/seconde, se situe en dehors de la bande passante d'asservissement du système de suspension magnétique exprimée en hertz, en ce qu'un dispositif d'accouplement souple relie l'arbre de sortie du moteur extérieur à la partie arrière du rotor de broche en assurant le filtrage des perturbations mécaniques issues du faux-rond du moteur, et en ce que la broche comprend en outre des moyens supplémentaires de détection des mouvements de la glissière de guidage de broche et des moyens de modification sélective des tensions électriques de référence des boucles d'asservissement du palier axial et des paliers radiaux en fonction des signaux issus desdits moyens supplémentaires de détection, lesdits moyens supplémentaires de détection des mouvements de la glissière sur laquelle est placée la broche porte-pièce comprenant dans le plan d'asservissement de chaque palier radial deux détecteurs solidaires du corps de broche qui sont placés en regard de deux surfaces planes de référence disposées parallèlement à la direction du déplacement de ladite glissière, lesdits détecteurs délivrant des signaux électriques proportionnels aux variations de distance entre lesdits détecteurs et lesdites surfaces planes de référence pour commander les moyens de modification sélective en temps réel des tensions de référence des boucles d'asservissement des paliers radiaux de la broche porte-pièce en fonction desdites variations de proximité entre les détecteurs et les surfaces de référence planes.
  • Grâce à la combinaison d'un dispositif de support de rotor de broche à paliers magnétiques actifs, d'un moyen d'entraînement de broche extérieur au corps de broche et de moyens supplémentaires de détection, il est ainsi possible de positionner la pièce à usiner avec une précision et une stabilité améliorées tout en compensant en permanence les défauts des éléments extérieurs de réglage tels que des glissières, et en facilitant l'exécution de surfaces typiques particulières telles que des bombés ou des cannelures.
  • Le mandrin solidaire du rotor de broche peut être soit un plateau à aspiration muni d'orifices d'aspiration répartis sur sa face frontale, soit un plateau magnétique, soit encore une pince dite américaine, ou un mandrin mécanique.
  • Toutefois, selon un mode de réalisation préférentiel, le mandrin solidaire du rotor porte-broche est constitué par un plateau à aspiration muni d'orifices d'aspiration et le dispositif d'aspiration comprend une pompe à vide, un réservoir tampon d'aspiration disposé à l'arrière du moteur électrique et relié à la pompe à vide, et un conduit d'aspiration prenant naissance à l'intérieur du réservoir tampon, s'étendant axialement à l'intérieur de l'arbre du moteur, du dispositif d'accouplement et du rotor de broche pour déboucher dans une cavité formée dans le mandrin porte-pièce et avec laquelle sont en communication les orifices d'aspiration.
  • L'agencement du dispositif d'aspiration est simple à réaliser et empêche efficacement que des perturbations dues au pompage soient communiquées au rotor de broche.
  • Avantageusement, le dispositif d'accouplement comprend un manchon tubulaire étanche en une matière telle que du caoutchouc ou un élastomère.
  • A titre d'exemple, le moteur extérieur présente un entrefer de l'ordre de 0,1 mm tandis que l'entrefer entre les paliers magnétiques radiaux et le rotor de broche est de l'ordre de 0,3 mm.
  • De préférence, la fréquence propre du système de suspension magnétique est de l'ordre de 50 à 60 Hz tandis que la vitesse de rotation du rotor de broche est comprise entre environ 25 et 40 tours/seconde.
  • Selon une caractéristique particulière de l'invention, qui contribue à accroître la précision, la broche comprend des premier et second détecteurs raidaux espacés axialement et situés de part et d'autre dudit second palier magnétique radial avant disposé au voisinage du mandrin porte-pièce, le second détecteur radial est monté de façon amovible entre ledit second palier magnétique radial et le disque porte-pièce et dans une première phase de mise au point le second palier magnétique radial est commandé par le premier détecteur radial pour effectuer sur le rotor de broche une opération de rectification de la piste de référence du second détecteur radial et dans des phases ultérieures d'usinage de pièces supportées par le mandrin porte-pièce, le second palier magnétique radial est commandé par le second détecteur radial coopérant avec ladite piste de référence.
  • De façon similaire, la broche peut successivement mettre en oeuvre des premier et second détecteurs axiaux, le premier détecteur axial disposé à l'arrière de la broche servant à la commande de la butée axiale pour une opération de rectification d'une piste de référence sur une face frontale formée à l'avant de la broche, et le second détecteur axial qui coopère avec ladite piste de référence servant à la commande de la butée axiale pour une phase ultérieure d'usinage de pièce.
  • L'invention concerne encore un dispositif de correction des défauts (roulis, lacet, tangage et défauts de rectitude horizontale et verticale), des mouvements de glissières d'une machine-outil utilisée dans un repère cartésien et comprenant des première et seconde glissières dont les axes de déplacement sont orientés selon deux directions perpendiculaires XXʹ et YYʹ, un plateau tournant placé sur la première glissière, et une broche porte-pièce placée sur la seconde glissière, et des dispositifs de mesure des déplacements des première et seconde glissières, caractérisé en ce qu'il comprend une broche porte-pièce à paliers magnétiques actifs du type susmentionné, des moyens supplémentaires de détection des mouvements de la première glissière de guidage du plateau tournant, lesdits moyens supplémentaires de détetion des mouvements de la première glissière sur laquelle est placé le plateau tournant comprenant un détecteur mobile placé dans un plan vertical contenant l'axe de l'outil et solidaire de la première glissière, une surface plane de référence placée perpendiculairement à l'axe de la broche porte-pièce et des moyens de détection des variations de l'espacement entre le détecteur et la surface plane de référence, et les moyens de modification en temps réel de la tension de référence de la boucle d'asservissement du palier axial étant commandés en fonction desdites variations de proximité entre ledit détecteur mobile solidaire de la première glissière et ladite surface de référence plane.
  • L'invention a encore pour objet un dispositif de correction de défauts (excentricité, voile, défaut de circularité) de rotation du plateau tournant d'une machine-outil utilisée en coordonnées polaires comprenant une première glissière de réglage, qui enjambe un plateau tournant à axe vertical sur lequel est placée une seconde glissière de réglage d'un support d'outil et une broche porte-pièce placée sur la première glissière de réglage, caractérisé en ce qu'il comprend une broche porte-pièce du type mentionné plus haut, en ce qu'il comprend en outre une surface de référence de forme sphérique centrée sur l'axe du plateau tournant et placée sur un support fixe solidaire de la table, un capteur de proximité entre le capteur et la surface de référence sphérique et des moyens de modification en temps réel de la tension de référence de la boucle d'asservissement du palier axial de la broche porte-pièce en fonction desdites variations de proximité entre le capteur et la surface de référence sphérique.
  • Les diverses mesures préconisées par la présente invention contribuent à l'obtention de performances qui se situent dans le domaine de la précision optique.
  • Ainsi, à titre d'exemple, un usinage de pièces réalisé conformément à l'invention en utilisant une broche porte-pièce montée sur paliers magnétiques asservis a permis d'obtenir des pièces cylindriques pour lesquelles les défauts de circularité ou de cylindricité sont inférieurs au dixième micromètre. En particulier, une pièce usinée de diamètre 220 mm en alliage d'aluminium AG5 présente un écart crête à crête de 0,1 micromètre et une pièce usinée de diamètre 55 mm en germanium présente un écart crête à crête de 0,089 micromètre.
  • Des pièces planes présentent également de très faibles défauts de planéité. Ainsi, des pièces de diamètre 105 mm en alliage d'aluminium AG5 et germanium présentent respectivement des écarts de forme par rapport au plan de λ/2,3 et λ/8 (avec λ = 0,6328 µm).
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, faite en référence aux dessins annexés, sur lesquels :
    • la figure 1 est une vue schématique en coupe axiale d'une poupée porte-pièce selon la présente invention,
    • la figure 2 est une vue de détail montrant les moyens magnétiques de support du rotor de la broche de la figure 1,
    • les figures 3 et 4 sont des vues respectivement en élévation et de l'arrière d'un premier exemple de dispositif d'accouplement utilisable dans la broche de la figure 1,
    • les figures 5 et 6 sont des vues en élévation d'un second et d'un troisième exemples de dispositif d'accouplement utilisable dans la broche de la figure 1,
    • la figure 7 est une vue schématique de dessus d'une machine à usiner dans un système d'axes en coordonnées orthogonales,
    • les figures 8 et 9 sont des vues respectivement de dessous et en élévation d'un exemple de machine à usiner de très haute précision dans un système d'axes cartésiens utilisant la broche de la figure 1,
    • la figure 10 est une vue schématique de dessus d'une machine à usiner dans un système d'axes en coordonnées polaires,
    • les figures 11 et 12 sont des vues respectivement de dessus et en élévation d'un exemple de machine à usiner de très haute précision dans un système d'axes en coordonnées polaires utilisant la broche de la figure 1,
    • la figure 13 est une vue schématique dans le plan d'asservissement du palier radial avant supportant le rotor de la broche de la figure 1,
    • la figure 14 est une vue schématique, dans le plan de la figure 9, d'une partie de la machine à usiner supportant l'outil,
    • les figures 15 et 16 sont des vues schématiques respectivement de dessus et dans le plan XVI-XVI de la figure 15, d'une partie de la machine à usiner des figures 8 et 9 selon une variante de réalisation,
    • la figure 17 est une vue schématique de dessus d'une partie d'une machine à usiner en coordonnées polaires montrant la présence d'une surface sphérique de référence, et
    • la figure 18 est une vue schématique de dessus d'une partie d'une machine à usiner en coordonnées cartésiennes montrant la présence d'une surface sphérique de référence.
  • La figure 1 montre de façon schématique la structure d'ensemble d'une broche porte-pièce 1 prévue pour être montée sur une glissière d'une machine à usiner de haute précision.
  • La broche 1 comprend un corps de broche 10 rendu solidaire d'une glissière de réglage, telle que la glissière référencée 202 sur les figures 8 et 9 et 401 sur les figures 11 et 12. Le corps de broche 10 sert de logement pour les éléments statoriques d'un palier magnétique radial avant 12 et d'un palier magnétique radial arrière 11 qui définissent avec le rotor 50 de la broche 1 un entrefer 13 relativement important, de l'ordre de 0,3 mm. Le corps de broche 10 incorpore également des éléments statoriques de palier magnétique axial qui coopèrent avec un disque 141 solidaire de la partie arrière du rotor de broche 50, et perpendiculaire à l'axe de ce dernier, pour constituer une butée axiale.
  • Le rotor de broche 50 se termine à sa partie avant par un mandrin porte-pièce 5 fixé sur l'axe de la broche 1 et présente un diamètre supérieur à celui du rotor de broche 50. Dans le cas préférentiel, tel que représenté sur la figure 1, où le mandrin 5 est un plateau à aspiration, le mandrin porte-pièce 5 présente une cavité 52 qui est en communication avec un conduit 51 ménagé axialement à l'intérieur du rotor de broche 50. Des orifices 54 sont répartis dans la face frontale 53 du disque porte-pièce 5 et débouchent dans la cavité 52 pour assurer, par aspiration, le maintien d'une pièce à usiner en contact avec la face frontale 53 du disque porte-pièce 5.
  • Le rotor 50 de la broche 1 est entraîné en rotation à partir d'un moteur électrique 2 qui est extérieur au corps de broche 10 et comprend un rotor 20 pouvant être monté sur des roulements à billes de précision 21, 22, sur des rouleaux coniques ou encore sur des paliers magnétiques. Le moteur extérieur 2 est conçu de manière à ne pas avoir un faux rond supérieur à quelques micromètres.
  • L'arbre de broche 50 et le rotor 20 du moteur extérieur 2 sont reliés par un accouplement 3 destiné à assurer la transmission du couple moteur tout en filtrant les perturbations mécaniques issues du faux rond du moteur.
  • Le dispositif d'accouplement 3 est avantageusement constitué par un tuyau 30 en élastomètre ou autre matière présentant des propriétés élastiques similaires, qui est fixé de façon étanche par des moyens de liaison 37 aux extrémités libres du rotor 20 du moteur 2 et du rotor 50 de la broche 1 (fig 5). Un tel mode d'accouplement garantit une étanchéité au niveau de la liaison entre le moteur 2 et l'arbre de broche 50, sans adjonction de joint supplémentaire tout en assurant de façon pleinement satisfaisante, les fonctions mécaniques susmentionnées.
  • A titre de variante, le dispositif d'accouplement peut toutefois comprendre un soufflet métallique 38 fixé par pincement sur des brides 31, 32 de raccordement aux extrémités libres du rotor de moteur 2 et de l'arbre de broche 50 (fig 6). L'étanchéité nécessaire dans le cas de l'utilisation d'un plateau à aspiration est assurée par des joints toriques 31ʹ et 32ʹ.
  • Un autre mode de réalisation de dispositif d'accouplement 3, représenté sur les figures 3 et 4, comprend des lames flexibles 35 fixées par pincement à l'aide d'éléments de liaison 34 entre des brides 31, 32 de raccordement aux extrémités libres du rotor de moteur 2 et de l'arbre de broche 50, et un manchon central 33. Des moyens de liaison 36 assurent la solidarisation entre les brides 31, 32 et les extrémités des rotors 20 et 50.
  • Dans ces différents modes de réalisation de dispositifs d'accouplement, un conduit 31 est défini axialement à l'intérieur de l'accouplement et assure une continuité entre le conduit 51 du rotor de broche 50 et un conduit 23 formé axialement dans le rotor 20 du moteur 2. Le conduit 31 est réalisé de manière à assurer une continuité de l'étanchéité entre les conduits 23, 31 et 51.
  • Un boîtier d'aspiration 4 délimitant une chambre de répartition 40 est rapporté à l'arrière du moteur 2 et fixé de façon rigide sur le stator de celui-ci. La chambre 40 communique d'une part avec une pompe à vide, non représentée, par l'intermédiaire d'une tubulure 41 et d'autre part, avec le conduit 23 ménagé dans le rotor 20 du moteur 2. Avec un tel agencement, les fuites les plus importantes vers l'extérieur provenant du circuit d'aspiration constitué par la chambre 40, les conduits 23, 31, 51 et la chambre 52, sont situées au niveau de l'entrefer ménagé entre le rotor 20 du moteur 2 et le stator de ce moteur. Compte tenu de la faible valeur de cet entrefer (de l'ordre de 0,1 mm), les pertes de charge dues à ces fuites sont relativement faibles. Il n'est donc pas nécessaire d'installer un joint à chicanes ou un joint tournant toujours délicats à mettre en oeuvre et qui provoquent systématiquement des vibrations axiales.
  • Le système d'aspiration selon l'invention, qui assure le pompage dans la chambre 52 du plateau porte-pièce 5 depuis la pompe à vide par l'intermédiaire du rotor de broche 50, de l'accouplement 3 à tuyau élastomère ou à soufflets métalliques, du rotor 20 du moteur 2 et du boîtier d'aspiration 4 garantit que toutes les perturbations mécaniques inévitables dues au pompage, notamment les perturbations dans le sens axial, sont reprises totalement par le moteur 2 et ne sont pas transmises au rotor 50 de la broche, compte tenu de la présente de l'accouplement 3.
  • L'absence de moteur électrique incorporé entre les paliers radiaux et l'absence de pompage effectué immédiatement à l'arrière du rotor de broche 50 permettent de conserver un rotor de broche 50 compact de faible longueur, qui confère ainsià la broche une raideur et une stabilité accrues.
  • On décrira maintenant de façon plus détaillée en référence à la figure 2 la suspension magnétique du rotor de broche 50 à l'intérieur du corps de broche 10.
  • La suspension magnétique représentée sur la figure 2 comprend des premier et second paliers magnétiques actifs radiaux 11, 12 disposés respectivement à la partie arrière et à la partie avant du corps de broche 10. Chaque palier magnétique radial 11, 12 comprend, de façon connue en soi, un stator formé d'un empilement de tôles 111, 121 et de bobinages 112, 122 et une armature 113, 123 qui est rapportée sur le rotor 50 de la broche. Chaque palier radial 11, 12 est qualifié d'actif car il est associé à une boucle d'asservissement et à au moins un détecteur radial de la position du rotor 50, référencé 17, respectivement 18, 61, disposé au voisinage du palier radial correspondant. Comme cela est connu dans le domaine des paliers magnétiques actifs, les détecteurs radiaux 17, 18, 61 peuvent être du type inductif avec une armature statorique 171, 181, 161 et des enroulements 172, 182, 162 disposés en regard d'une piste annulaire de référence 173, 183, 163 formée sur le rotor 50. On utilise avantageusement pour les détecteurs 17, 18, 61 des détecteurs radiaux à réjection d'harmoniques tels que ceux décrits dans le brevet français 2 214 890.
  • Compte tenu de l'application de la broche porte-pièce 1 selon l'invention à des machines de très haute précision, il est nécessaire d'effectuer une rectification du rotor de broche 50 afin d'améliorer les tolérances géométriques (concentricité des paliers et détecteurs), mais aussi d'augmenter la circularité des pistes des détecteurs ainsi que celle des paliers.
  • Pour cela, on peut par exemple, faire tourner dans un premier temps la broche à vide. Les signaux issus des détecteurs représentent alors exactement leurs défauts de circularité. Ces défauts sont enregistrés dans une mémoire et en fonctionnement normal ces défauts sont envoyés dans les boucles d'asservissement pour corriger les défauts des pistes des détecteurs.
  • Comme on l'a indiqué précédemment, il est important que les pistes de référence des détecteurs radiaux présentent une excellente circularité.
  • Si l'on désire ne pas utiliser de façon permanente un dispositif électronique constitué des cartes nécessaires à la fabrication des différents harmoniques de correction, on peut n'utiliser ce dispositif que pour faire tourner le rotor avec une grande précision à l'aide de détecteurs provisoires radiaux 17, 18 et axial 19 et usiner les pistes d'au moins un nouveau détecteur radial 61 et d'au moins un nouveau détecteur axial 62 à la précision de rotation du rotor 50. L'usinage terminé, on connecte les nouveaux détecteurs 61, 62 sur les boucles d'asservissement concernées et le dispositif électronique de fabrication d'harmoniques de correction peut être abandonné.
  • On a représenté sur la figure 2, un détecteur axial 19 et deux détecteurs radiaux 17, 18 qui peuvent servir à commander la butée axiale 14 et les paliers radiaux 11, 12 lors d'une opération d'usinage de la piste de référence 163 d'un nouveau détecteur radial 61 placé au voisinage de l'extrémité frontale du rotor 50, et de la piste de référence 63 d'un nouveau détecteur axial 62 formée sur la face frontale 55 du rotor 50. Après montage des détecteurs 61 et 62 rapportés dans la partie frontale avant 60 du corps de broche 10, le palier radial avant 12 et la butée axiale 14 peuvent être commandés par les détecteurs 61 et 62. Le détecteur axial arrière 19 peut alors être retiré pour dégager le conduit 51 du rotor de broche 50 si l'on utilise un mandrin à aspiration.
  • La qualité des détecteurs peut également être améliorée même en l'absence totale de dispositif électronique de correction d'harmoniques. Dans ce cas, dans une phase d'essai, on usine les pistes 163 et 63 de nouveaux détecteurs radial et axial 61, 62 qui, en service normal, seront ensuite connectés aux boucles d'asservissement des paliers radial 12 et axial 14 à la place des détecteurs 18 et 19.
  • Sur la figure 2, les références 15 et 16 désignent des paliers de secours constitués par des roulements à bille qui ne sont pas utilisés en service normal.
  • D'une manière générale, selon la présente invention, on choisit les fréquences propres d'asservissement comprises entre environ 50 et 80 Hz et de préférence 50 et 60 Hz et on fait tourner la broche porte-pièce à une vitesse inférieure auxdites fréquences propres et de préférence à une vitesse comprise entre environ 25 et 40 tours/seconde. Les boucles d'asservissement présentent une pointe de gain, pour le premier harmonique.
  • Afin de conserver toute la précision d'usinage, les passes d'usinage sont de préférence réalisées de façon très fine.
  • On a décrit précédemment en référence aux figures 1 et 2 un mandrin du type à aspiration. Il est également possible, pour certaines applications d'utiliser un mandrin magnétique. Dans ce cas, pour éviter une perturbation du fonctionnement des détecteurs disposés au voisinage du mandrin, on utilise un détecteur axial 62 de type capacitif et non de type iductif comme représenté sur la figure 2.
  • Par ailleurs, le moteur électrique qui n'est pas interposé entre les paliers radiaux 11, 12, évite toutes les perturbations qui seraient causées par la présence d'un moteur électrique au voisinage immédiat des paliers, à savoir les pertes thermiques, les vibrations et la pollution électrique et magnétique des détecteurs. Il peut cependant être souhaitable de monter sur le corps de broche un dispositif de régulation de température du corps de broche, par exemple par circulation de fluide. En effet, bien que relativement faibles par rapport aux pertes thermiques d'un moteur électrique, les pertes thermiques dans les enroulements des paliers magnétiques ne sont pas toujours négligeables.
  • On décrira maintenant en référence aux figures 7 à 18 des exemples d'application de la broche porte-pièce 1 selon l'invention à des machines-outils de très haute précision.
  • Un premier exemple de machine à usiner des surfaces complexes dans un repère cartésien XXʹ, YYʹ est représenté de façon symbolique sur la figure 7.
  • Deux glissières 201, 202 dont les axes de déplacement XXʹ et YYʹ sont perpendiculaires sont placées sur un support 206, tel qu'un massif de granit, qui est désolidarisé du sol à l'aide d'une suspension pnéumatique.
  • La glissière 201 supporte un plateau tournant 203 sur lequel est placé un outil 207 tandis que la glissière 202 supporte une broche porte-pièce 205 qui peut être conforme à la description faite plus haut de la broche 1. Une pièce à usiner 204 est placée sur le disque porte-pièce 5 qui prolonge la broche 205.
  • Le plateau tournant 203 permet d'orienter l'outil de telle sorte que ce soit la même partie de l'arête coupante de l'outil qui effectue l'usinage, ce qui permet de s'affranchir des irrégularités géométriques de l'arête.
  • Les figures 8 et 9 représentent un exemple de réalisation d'une machine telle que celle qui a été symbolisée sur la figure 7.
  • On voit ainsi des moteurs électriques à courant continu 210, 220 entraînant chacun un système vis-écrou qui assure le déplacement de la glissière 201, 202 respectivement. Les glissières 201, 202 sont pilotées par une commande numérique et leur déplacement est mesuré par un dispositif interférométrique Doppler, connu en soi.
  • Le dispositif interférométrique comprend essentiellement une source laser 290, des boîtiers 291, 292 comprenant des cubes de renvoi, un boîtier à miroir plan 294 et un boîtier d'interféromètre 293 pour la mesure du déplacement de la glissière 201 de l'outil, deux boîtiers à miroir plan 296, 399 et deux boîtiers d'interféromètre 295, 398 pour la mesure du déplacement de la glissière 202 de la broche, des soufflets 397, 396 de liaison entre les boîtiers d'interféromètre 295, 398 et les boîtiers de miroirs plans 296, 399 et des tubes 391 à 395 de protection des faisceaux laser de mesure. Les boîtiers à miroir plan 294, 296, 399 comprennent chacun, comme le boîtier 296, un miroir plan 296a et des butées de réglage 296b. Les boîtiers d'interféromètre 293, 295, 398 comprennent chacun un interféromètre de mesure 293a, 295a, un récepteur 293b, 295b, ainsi qu'un dispositif de réglage tel que 295c.
  • Pour que les surfaces usinées soient correctes, il est nécessaire que la broche tourne parfaitement rond mais aussi que le déplacement de la broche s'effectue avec précision, on est ainsi obligé de détecter les mouvements de la glissière porte-broche 202 et d'effectuer une correction en déplaçant le rotor 50 radialement. Cette correction peut atteindre + 150 µm, ce qui est important. Pour que les défauts engendrés par le déplacement de la glissière porte-outil 201 ne s'impriment pas sur la pièce à usiner il est encore nécessaire de pouvoir détecter le mouvement de la glissière 201 au niveau de l'outil pour interagir au niveau du rotor 50 axialement. Cette correction peut atteindre + 150 µm.
  • La broche porte-pièce 1 permet en outre de compenser des défauts des éléments mécaniques de la machine-outil. Par action sur les boucles d'asservissement de la broche porte-pièce 1 à paliers magnétiques, il est possible de maintenir l'axe de la broche parfaitement positionné malgré les défauts de roulis, tangage ou lacet dûs aux déplacements d'une glissière 201, 202.
  • Une telle compensation peut être effectuée en temps réel si dans chaque plan d'asservissement des paliers magnétiques radiaux 11, 12 on place deux détecteurs par exemple de type capacitif, 216, 218 respectivement 215, 217 montés sur des consoles 214, 213 solidaires du corps 10 de la broche et qui détectent des variations de distance par rapport à des surfaces de référence plane fixes 211, 212 placées parallèlement à la direction YYʹ de déplacement de la glissière 212 porte-broche et perpendiculairement aux axes d'asservissement représentés en traits mixtes sur la figure 13. Comme on peut le voir sur cette figure, les surfaces 211, 212 présentent un angle proche de 45° par rapport au plan de support de la broche 1.
  • La surface plane de référence 211 est commune aux détecteurs 215, 216 tandis que la surface plane de référence 212 est commune aux détecteurs 217, 218. Les surfaces planes de référence 211, 212 sont constituées de préférence par des miroirs métallisés.
  • Les signaux issus des détecteurs 215 à 218 sont traités et envoyés respectivement dans les boucles d'asservissement des paliers radiaux correspondants pour modifier les tensions de référence qui déterminent la position de l'axe du rotor 50 radialement par rapport aux stators des paliers magnétiques 11, 12.
  • Si maintenant on considère l'outil 207 placé sur sa glissière 201, pour garantir que la pointe de l'outil 207 reste dans un plan perpendiculaire à l'axe de la broche 1 quand la glissière 201 est activée, il est nécessaire de placer un détecteur 281 dans un plan axial vertical de l'outil 207. Ce détecteur 281 solidaire de la glissière 201 mesure les variations de proximité avec une surface plane de référence 282 préalablement placée perpendiculairement à l'axe de la broche 50 (figures 8, 9 et 14). Le détecteur 281 est de préférence de type capacitif et coopère avec un miroir plan 282 monté dans un support fixe 280.
  • Le signal issu du détecteur 281 est traité puis envoyé dans la boucle d'asservissement du palier magnétique axial 14 afin de modifier la tension de référence qui définit la position de l'axe du rotor 50 par rapport au corps de broche.
  • Les figures 15 et 16 montrent un mode de réalisation de l'invention dans lequel la suspension magnétique du rotor 50 de la broche 1 permet de corriger non seulement des défauts de la glissière porte-broche 202, mais également des défauts de roulis, lacet, tangage et de rectitude de la glissière porte-outil 201. Pour cela, on dispose deux détecteurs de type capacitif 281, 283, espacés l'un de l'autre, dans un plan P₁ (Fig 16) passant par l'outil 207 et parallèle au plan de base de la glissière 201 et deux détecteurs de type capacitif 285, 286 situés dans un plan P₂ (Fig 15) perpendiculaire au plan P₁. Les détecteurs 285, 286 sont eux-mêmes situés dans des plans perpendiculaires aux plans P₁ et P₂ et contenant les détecteurs 281 et 283 respectivement.
  • Les quatre détecteurs 281, 283, 285, 286 solidaires de la glissière 201 mesurent les variations de proximité par rapport à deux surfaces planes de référence 282, 284 perpendiculaires entre elles et solidaires du support fixe 206. La surface plane 282 coopérant avec les détecteurs 281, 283 et la surface plane 284 coopérant avec les détecteurs 285, 286 sont constituées par des miroirs plans métallisés.
  • Les signaux délivrés par les détecteurs 281, 283, 285, 286 permettent de déterminer les défauts de la glissière 201 et, par action sur les tensions de référence des boucles d'asservissement des paliers radiaux 11, 12 de la broche porte-pièce 205 permettent de compenser en temps réel ces défauts en modifiant de façon sélective la position du rotor 50 de la broche porte-pièce. Compte tenu du fait que les détecteurs 281? 285 et 283, 286 sont situés dans des plans qui ne sont pas ceux des paliers radiaux 11, 12, contrairement au cas des détecteurs 215, 217 et 216, 218 servant à compenser les défauts de la glissière porte-broche 202, il est naturellement nécessaire de procéder, à l'aide d'un calculateur à des opérations de conversion qui élaborent dans les plans des paliers radiaux 11, 12 des signaux de compensation tendant à annuler les signaux d'erreur émis par les détecteurs 281, 283, 285 et 286. D'une manière générale, les signaux délivrés par les détecteurs 281, 283, 285 et 286 sont traités deux à deux pour déterminer la part des défauts qui revient à la translation et celle qui revient à la rotation. Les tensions de référence modifiées appliquées aux boucles d'asservissement des paliers radiaux et du palier axial visent à conserver l'axe de l'outil 207 perpendiculaire au plan tangent au point considéré de la surface à usiner.
  • Sur la figure 9, les références 230, 231 désignent respectivement le moteur électrique à courant continu d'entraînement en rotation du plateau tournant 203 et une génératrice tachymétrique. Un codeur angulaire est en outre associé au plateau tournant 203.
  • La figure 10 représente de façon symbolique une machine à usiner les surfaces complexes, de type polaire, qui comprend une broche 205 à axe horizontal pouvant être conforme à la broche 1 décrite plus haut, placée sur une glissière de 401 qui enjambe un plateau tournant 403 à axe vertical sur lequel est placée une glissière 402 d'outil 203. Un plateau support 406, par exemple en granit est désolidarisé du sol par une suspension pneumatique. La figure 10 montre encore une glissière 404 de mise à zéro. La pièce 204 est placée sur le disque porte-pièce 5 de la broche 205 comme dans le mode de réalisation des figures 7 à 9.
  • Si les déplacements du rotor 50 de la broche 205 dans ses paliers magnétiques sont programmés en fonction de la rotation du plateau tournant 403, il est possible d'obtenir sur la pièce 204 une surface aux formes particulières.
  • En particulier, si une tension de référence périodique variable est appliquée à la boucle d'asservissement du palier axial 14, l'axe du rotor de la broche 1 se déplace de façon coaxiale. La surface engendrée par le déplacement de la pièce 204 quand la glissière outil 201 est activée dépend des paramètres adoptés.
  • Ainsi, en considérant que la fréquence d'usinage est l'inverse du temps que met l'outil à parcourir le rayon de la pièce, si la fréquence de la tension de référence est inférieure à la fréquence d'usinage, on obtient des surfaces convexes ou concaves.
  • Si la fréquence de la tension de référence est inférieure à la fréquence de rotation de la broche mais supérieure à celle d'usinage, on obtient des spirales à amplitude contrôlable pouvant servir d'étalon de rugosité.
  • Si la fréquence de la tension de référence est égale ou supérieure à la fréquence de rotation de la broche, on obtient des cannelures rayonnantes.
  • De même, pour amener l'axe du rotor 50 de la broche 205 à être sécant avec l'axe du plateau 403, après un préréglage classique, il est possible d'effectuer un réglage fin en agissant sur la tension de référence des boucles d'asservissement radiales des paliers radiaux 11,12.
  • D'une façon similaire, pour placer la pointe de l'outil 207 à la hauteur de l'axe de la broche 205, dans le cas d'un usinage cartésien comme dans celui d'un usinage polaire, on utiliser avantageusement les boucles d'asservissement des paliers magnétiques radiaux 11, 12 de la broche 205.
  • Comme on l'a représenté sur la figure 10, l'outil 207 peut être placé perpendiculairement à la surface à usiner, dans une position frontale, ou au contraire être placé dans une position latérale 207ʹ.
  • Une machine du type polaire présente une structure d'ensemble plus simple qu'une structure du type cartésien et il n'est pas nécessaire d'utiliser un dispositif interférométrique de mesure comme dans le cas du mode de réalisation des figures 7 à 9. En effet, pendant l'usinage il n'est nécessaire de vérifier que la rotation, tous les autres paramètres dépendant des conditions de réglage. Une génératrice tachymétrique et un codeur angulaire associés à la plate-forme tournante 403 permettent ainsi d'assurer tout le contrôle des opérations d'usinage.
  • La figure 17 illustre un moyen de correction des défauts de rotation du plateau tournant 403. La surface sphérique 480 formée sur une pièce 408 est centrée sur l'axe 232 du plateau tournant 403 et fixée sur un support fixe. Un capteur de position 407, est placé dans l'axe de l'outil 207 et mesure les variations de proximité par rapport à la surface sphérique 480. Le signal issu du capteur 407 est traité puis envoyé dans la boucle d'asservissement du palier axial 14 de la broche 1 portant la pièce à usiner 204.
  • On notera que le dispositif de correction des défauts de rotation d'un plateau tournant est aussi applicable à une machine de type cartésien, comme on l'a représenté sur la figure 18. Dans ce cas, pour corriger les défauts de rotation du plateau tournant 203, on utilise une surface sphérique de référence 380 parfaitement centrée sur l'axe du plateau tournant et portée par un support 308 fixé sur le plateau mobile de la glissière 201. Le capteur 507 mesurant les variations de proximité par rapport à la surface sphérique de référence 380 est placé dans l'axe de l'outil 207 et le signal issu du capteur 507 est traité, puis utilisé pour modifier de façon sélective la tension de référence de la boucle d'asservissement du palier axial 14 de la broche 1 portant la pièce à usiner 204.

Claims (14)

1. Broche porte-pièce à paliers magnétiques actifs pour machine-outil de très haute précision, comprenant un corps de broche (10) monté sur une glissière (202) de guidage selon une direction prédéterminée (YʹY), un rotor de broche (50) monté à l'intérieur du corps de broche (10), un mandrin (5) solidaire du rotor de broche (50), des premier et second paliers magnétiques actifs radiaux (11, 12) de support du rotor de broche (50), commandés au moins à partir de détecteurs radiaux (17, 18, 61) de la position du rotor, une butée axiale constituée par un palier magnétique actif axial coopérant avec un disque solidaire du rotor de broche (50), et commandé à partir d'au moins un détecteur axial (62) de la position du rotor, et un moteur électrique (2) d'entraînement en rotation du rotor de broche (50), caractérisée en ce que le moteur électrique (2) est extérieur au corps de broche (10), est disposé à l'arrière du rotor de broche (50) et sensiblement en alignement avec celui-ci,en ce que le moteur extérieur (2) présente un entrefer plus réduit que l'entrefer entre les paliers magnétiques radiaux (11, 12) et le rotor de broche (50), en ce que la vitesse de rotation communiquée au rotor de broche (50) par le moteur extérieur (2), exprimée en tours/seconde, se situe en dehors de la bande passante d'asservis­sement du système de suspension magnétique (11, 12) exprimée en hertz, en ce qu'un dispositif (3) d'accouplement souple relie l'arbre de sortie (20) du moteur extérieur (2) à la partie arrière du rotor de broche (50) en assurant le filtrage des perturbations mécaniques issues du faux-rond du moteur (2), et en ce que la broche comprend en outre des moyens supplémentaires (211 à 218) de détection des mouvements de la glissière de guidage de broche (202) et des moyens de modification sélective des tensions électriques de référence des boucles d'asservissement du palier axial (14) et des paliers radiaux (11, 12) en fonction des signaux issus desdits moyens supplémentaires de détection (211 à 218), lesdits moyens supplémentaires de détection des mouvements de la glissière (202) sur laquelle est placée la broche porte-pièce (205) comprenant dans le plan d'asservissement de chaque palier radial (11, 12) deux détecteurs (216, 218; 215, 217) solidaires du corps de broche (1) qui sont placés en regard de deux surfaces planes de référence (211, 212) disposées parallèlement à la direction (YʹY) du déplacement de ladite glissière (202), lesdits détecteurs (215 à 218) délivrant des signaux électriques proportionnels aux variations de distance entre lesdits détecteurs (216, 218; 215, 217) et lesdites surfaces planes de référence (211, 212) pour commander les moyens de modification sélective en temps réel des tensions de référence des boucles d'asservissement des paliers radiaux (11, 12) de la broche porte-pièce (205) en fonction desdites variations de proximité entre les détecteurs (215 à 218) et les surfaces de référence planes (211, 212).
2. Broche porte-pièce selon la revendication 1, caractérisée en ce que la fréquence propre du système de suspension magnétique (11, 12) est de l'ordre de 50 à 80 Hz, tandis que la vitesse de rotation du rotor de broche (50) est comprise entre environ 25 et 40 tours/seconde.
3. Broche porte-pièce selon l'une des revendications 1 à 2, caractérisée en ce que le moteur extérieur (2) présente un entrefer de l'ordre de 0,1 mm tandis que l'entrefer entre les paliers magnétiques radiaux (11, 12) et le rotor de broche (50) est de l'ordre de 0,3 mm.
4. Broche porte-pièce selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'elle comprend des premier et second détecteurs radiaux (18, 61) espacés axialement et situés de part et d'autre dudit second palier magnétique radial (12) disposé au voisinage du mandrin porte-pièce (5), en ce que le second détecteur radial (61) est monté de façon amovible entre ledit second palier magnétique radial (12) et le mandrin porte-pièce (5) et en ce que dans une première phase de mise au point le second palier magnétique radial (12) est commandé par le premier détecteur radial (18) pour effectuer sur le rotor de broche (50) une opération de rectification de la piste de référence (163) du second détecteur radial (61) et dans des phases ultérieures d'usinage de pièces supportées par le mandrin porte-pièce (5), le second palier magnétique radial (12) est commandé par le second détecteur radial (61) coopérant avec ladite piste de référence (163).
5. Broche porte-pièce selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle comprend des premier et second détecteurs axiaux (19, 62), le premier détecteur axial (19) disposé à l'arrière de la broche (1) servant à la commande de la butée axiale (14) pour une opération de rectification d'une piste de référence (63) sur une face frontale (55) formée à l'avant de la broche (1), et le second détecteur axial (62) qui coopère avec ladite piste de référence (63) servant à la commande de la butée axiale (14) pour une phase ultérieure d'usinage de pièce.
6. Broche porte-pièce selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le mandrin (5) solidaire du rotor de broche est un plateau à aspiration muni d'orifices d'aspiration (54) répartis sur sa face frontale et en ce que le dispositif d'aspiration (4) associé au plateau à aspiration comprend une pompe à vide, un réservoir tampon d'aspiration (40) disposé à l'arrière du moteur électrique (2) et relié à la pompe à vide, et un conduit (51) d'aspiration prenant naissance à l'intérieur du réservoir tampon (40), s'étendant axialement à l'intérieur de l'arbre (20) du moteur (2), du dispositif d'accouplement (3) et du rotor de broche (50) pour déboucher dans une cavité (52) formée dans le mandrin porte-pièce (3) et avec laquelle sont en communication les orifices d'aspiration (54).
7. Broche porte-pièce selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le dispositif d'accouplement (3) comprend un manchon tubulaire (30) étanche en une matière telle que du caoutchouc ou un élastomère.
8. Broche porte-pièce selon la revendication 1, caractérisée en ce qu'elle comprend un mandrin (5) de type magnétique et en ce que le détecteur axial (62) de la position du rotor situé au voisinage du mandrin (5) est de type capacitif.
9. Dispositif de correction des défauts des mouvements de glissières d'une machine-outil utilisée dans un repère cartésien et comprenant des première et seconde glissières (201, 202) dont les axes de déplacement sont orientés selon deux directions perpendiculaires XXʹ et YYʹ, un plateau tournant (203) placé sur la première glissière (201), et une broche porte-pièce (205) placée sur la seconde glissière (202), et des dispositifs de mesure des déplacements des première et seconde glissières (201, 202), caractérisé en ce qu'il comprend une broche porte-pièce selon l'une quelconque des revendications 1 à 8, des moyens supplémentaires (281, 282; 211 à 218) de détection des mouvements de la première glissière (201) de guidage du plateau tournant, lesdits moyens supplémentaires de détection des mouvements de la première glissière (201) sur laquelle est placé le plateau tournant (203) comprenant un détecteur mobile (281) placé dans un plan vertical contenant l'axe de l'outil (207) et solidaire de la première glissière (201), une surface plane de référence (282) placée perpendiculairement à l'axe de la broche porte-pièce (205) et des moyens de détection des variations de l'espacement entre le détecteur (281) et la surface plane de référence (282), et les moyens de modification sélective en temps réel de la tension électrique de référence de la boucle d'asservissement du palier axial (14) étant commandés en fonction desdites variations de proximité entre ledit détecteur mobile (281) solidaire de la première glissière (201) et ladite surface de référence plane (282).
10. Dispositif selon la revendication 9, caractérisé en ce que lesdits moyens supplémentaires de détection des mouvements de la seconde glissière (202) sur laquelle est placée la broche porte-pièce (205) comprennent dans chaque plan d'asservissement d'un palier radial (11, 12) deux détecteurs (216, 218; 215, 217) solidaires du corps de broche (1) qui sont placés chacun en regard d'une surface plane de référence (211, 212) disposée parallèlement à la direction (YʹY) de déplacement de la seconde glissière (202) et perpendiculairement à l'autre surface plane de référence (212, 211) placée en regard de l'autre détecteur (218, 216; 217, 215) disposé dans le même plan d'asservissement d'un palier radial (11, 12).
11. Dispositif selon la revendication 9 ou la revendication 10, caractérisé en ce que lesdits moyens supplémentaires de détection des mouvements de la première glissière (201) sur laquelle est placé le plateau tournant (203) comprennent un premier groupe de deux détecteurs (281, 283), espacés l'un de l'autre, dans un plan P1, passant par l'outil (207) et parallèle au plan de base de la première glissière (201), et un second groupe de deux détecteurs (285, 286) situés dans un plan (P2) perpendiculaire au plan (P1), les premiers détecteurs (281, 285) et les seconds détecteurs (283, 286) des premier et second groupes de détecteurs étant disposés dans des plans (P3, P4) perpendiculaires auxdits plans (P1 et P2) et au plan de base de la première glissière (201); et des première et seconde surfaces planes de référence (282, 284) fixes perpendiculaires entre elles et à l'axe de la broche porte-pièce (205); des moyens de traitement des signaux issus des premier et second groupes de deux détecteurs (281, 283; 285, 286) et représentant les variations des espacements entre chaque détecteurs (281, 283, 285, 286) et la surface plane de référence (282 ou 284) située en regard de celui-ci, et des moyens de modification sélective en temps réel des tensions électriques de référence des boucles d'asservissement des paliers radiaux (11, 12) et du palier axial (14), commandés en fonction des signaux délivrés par lesdits moyens de traitement.
12. Dispositif selon l'une quelconque des revendications 9 à 11, caractérisé en ce qu'il comprend en outre une surface de référence (380) deforme sphérique centrée sur l'axe du plateau tournant (203) et portée par un support (308) fixé sur ladite première glissière (201), un capteur de proximité (507) placé dans l'axe de l'outil (207), des moyens de détection des variations de proximité entre le capteur (507) et la surface de référence sphérique (380) et des moyens de modification en temps réel de la tension de référence de la boucle d'asservissement du palier axial (14) de la broche porte-pièce (205) en fonction desdites variations de proximité entre le capteur (507) et la surface de référence sphérique (380).
13. Dispositif de correction des défauts de rotation du plateau tournant d'une machine outil utilisée en coordonnées polaires, comprenant une première glissière de réglage (401), qui enjambe un plateau tournant (403) à axe vertical sur lequel est placée une seconde glissière (402) de réglage d'un support d'outil (203) et une broche porte-pièce (205) placée sur la première glissière de réglage (401), caractérisé en ce qu'il comprend une broche porte-pièce (205) réalisée selon l'une quelconque des revendications 1 à 8, et en ce qu'il comprend en outre une surface de référence (480) de forme sphérique centrée sur l'axe du plateau tournant (403) et placée sur un support fixe solidaire de la table (406), un capteur de proximité (407) placé dans l'axe de l'outil (207), des moyens de détection des variations de proximité entre le capteur (407) et la surface de référence sphérique (480) et des moyens de modification en temps réel de la tension de référence de la boucle d'asservissement du palier axial (14) de la broche porte-pièce (205) en fonction desdites variations de proximité entre le capteur (407) et la surface de référence sphérique (480).
14. Dispositif selon l'une quelconque des revendications 1 à 13, caractérisé en ce que les surfaces de référence planes ou sphériques (211, 212, 282, 284, 380, 480) sont constituées par des miroirs métallisés et les capteurs de proximité (215 à 218, 281, 283, 285, 286, 507, 407) sont de type capacitif.
EP87907621A 1986-11-13 1987-11-13 Broche porte-piece a paliers magnetiques et dispositifs de mise en oeuvre de celle-ci pour machine-outil de tres haute precision Expired - Lifetime EP0290546B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8615762 1986-11-13
FR8615762A FR2606690B1 (fr) 1986-11-13 1986-11-13 Broche porte-piece a paliers magnetiques et dispositifs de mise en oeuvre de celle-ci pour machine-outil de tres haute precision

Publications (2)

Publication Number Publication Date
EP0290546A1 EP0290546A1 (fr) 1988-11-17
EP0290546B1 true EP0290546B1 (fr) 1991-03-06

Family

ID=9340752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87907621A Expired - Lifetime EP0290546B1 (fr) 1986-11-13 1987-11-13 Broche porte-piece a paliers magnetiques et dispositifs de mise en oeuvre de celle-ci pour machine-outil de tres haute precision

Country Status (6)

Country Link
US (1) US4976177A (fr)
EP (1) EP0290546B1 (fr)
JP (1) JP2549133B2 (fr)
DE (1) DE3768497D1 (fr)
FR (1) FR2606690B1 (fr)
WO (1) WO1988003458A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797287A2 (fr) * 1996-03-22 1997-09-24 Systems, Machines, Automation Components Corporation Actionneur pour mouvement de rotation et de translation

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216308A (en) * 1989-05-25 1993-06-01 Avcon-Advanced Controls Technology, Inc. Magnetic bearing structure providing radial, axial and moment load bearing support for a rotatable shaft
US5315197A (en) * 1992-04-30 1994-05-24 Avcon - Advance Controls Technology, Inc. Electromagnetic thrust bearing using passive and active magnets, for coupling a rotatable member to a stationary member
US5514924A (en) * 1992-04-30 1996-05-07 AVCON--Advanced Control Technology, Inc. Magnetic bearing providing radial and axial load support for a shaft
US5250865A (en) * 1992-04-30 1993-10-05 Avcon - Advanced Controls Technology, Inc. Electromagnetic thrust bearing for coupling a rotatable member to a stationary member
US5525848A (en) * 1992-09-25 1996-06-11 Magnetic Bearing Technologies, Inc. Magnetic bearing system including a generator
US5543673A (en) * 1993-07-27 1996-08-06 Sundstrand Corporation High performance magnetic bearing
US5739607A (en) * 1994-03-04 1998-04-14 Cincinnati Milacron Inc. Hybrid spindle bearing
JP3261602B2 (ja) * 1994-07-20 2002-03-04 光洋精工株式会社 磁気軸受スピンドル装置
JP3421904B2 (ja) * 1996-08-07 2003-06-30 光洋精工株式会社 工作機械用磁気軸受スピンドル装置
JPH10244440A (ja) * 1997-03-05 1998-09-14 Toshiba Mach Co Ltd 工作機械の主軸端変位補正装置
JP3696398B2 (ja) 1997-04-28 2005-09-14 Ntn株式会社 静圧磁気複合軸受およびスピンドル装置
JP3672416B2 (ja) 1997-06-27 2005-07-20 株式会社荏原製作所 スピン処理装置
US6390907B1 (en) * 1998-02-09 2002-05-21 Joel Kym Metzler Machine tool and machine tool spindle and workpiece mounting-apparatus and grinding process
JP4071576B2 (ja) * 2002-08-26 2008-04-02 株式会社森精機製作所 工作機械
DE102004042316B4 (de) * 2004-09-01 2008-11-20 Siemens Ag Spindellagervorrichtung
US7391128B2 (en) * 2004-12-30 2008-06-24 Rozlev Corp., Llc Wind generator system using attractive magnetic forces to reduce the load on the bearings
KR100821634B1 (ko) * 2007-02-23 2008-04-14 한국기초과학지원연구원 미세정밀 가공용 공작기계
JP2008229806A (ja) 2007-03-23 2008-10-02 Jtekt Corp 磁気軸受装置
JP2008254114A (ja) * 2007-04-04 2008-10-23 Jtekt Corp 工作機械用磁気軸受スピンドル装置
DE102007021294B4 (de) * 2007-05-07 2009-10-01 P & L Gmbh & Co. Kg Dynamisch optimierte Werkzeugmaschine mit überlagerten Antriebssystemen
KR101159054B1 (ko) * 2010-03-03 2012-06-25 주식회사 디엔엠 테크놀로지 능동형 자기 베어링
CN102494893B (zh) * 2011-12-01 2014-04-02 东华大学 一种用于纺织机锭子轴承测试的夹持装置
JP7076697B2 (ja) * 2017-11-10 2022-05-30 国立大学法人 鹿児島大学 工作機械および工作機械の制御方法
JP2019209399A (ja) * 2018-05-31 2019-12-12 国立大学法人 鹿児島大学 工作機械の主軸システム
CN112241133B (zh) * 2020-10-13 2022-07-29 江苏亚楠电子科技有限公司 一种远程控制方法、装置及设备工具箱
CN113909507A (zh) * 2021-09-16 2022-01-11 扬州市久盈精密主轴有限公司 一种新型数控主轴
CN115319612A (zh) * 2022-10-13 2022-11-11 徐州欧润泵业有限公司 一种水泵叶轮打磨设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090896A (en) * 1954-10-29 1963-05-21 Nat Res Dev Plural motor apparatus for controlling the movement of an object
US2924768A (en) * 1956-08-27 1960-02-09 Inductosyn Corp Machine tool control with compensation for non-linear guide ways
US3618432A (en) * 1969-03-17 1971-11-09 Wescal Ind Inc Vibration-free lathe
US4114960A (en) * 1973-01-18 1978-09-19 Societe Europeenne De Propulsion Radial displacement detector device for a magnetic bearing
US4180946A (en) * 1975-10-02 1980-01-01 Maurice Brunet Tool holding spindle assembly particularly for a grinding machine
FR2326270A1 (fr) * 1975-10-02 1977-04-29 Europ Propulsion Montage de broche porte-outil, notamment pour rectifieuse
DE2656469A1 (de) * 1976-12-09 1978-06-15 Licentia Gmbh Radiales aktives magnetisches lager
JPS5765416A (en) * 1980-10-09 1982-04-21 Seiko Instr & Electronics Ltd Control circuit system for magnetic bearing
JPS5797916A (en) * 1980-12-08 1982-06-17 Nippon Seiko Kk Controlled magnetic bearing
JPS57189750A (en) * 1981-05-19 1982-11-22 Yaskawa Electric Mfg Co Ltd Nc machine tool provided with sliding error correction capacity
JPS5937322A (ja) * 1982-08-23 1984-02-29 Yaskawa Electric Mfg Co Ltd 磁気軸受装置の制御装置
JPS60245443A (ja) * 1984-05-18 1985-12-05 Ntn Toyo Bearing Co Ltd 制御式ラジアル磁気軸受装置
JPS62193704A (ja) * 1986-02-20 1987-08-25 Hitachi Ltd 超精密旋盤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797287A2 (fr) * 1996-03-22 1997-09-24 Systems, Machines, Automation Components Corporation Actionneur pour mouvement de rotation et de translation
EP0797287A3 (fr) * 1996-03-22 1997-11-19 Systems, Machines, Automation Components Corporation Actionneur pour mouvement de rotation et de translation

Also Published As

Publication number Publication date
FR2606690B1 (fr) 1994-06-03
JPH01501298A (ja) 1989-05-11
WO1988003458A1 (fr) 1988-05-19
FR2606690A1 (fr) 1988-05-20
US4976177A (en) 1990-12-11
DE3768497D1 (de) 1991-04-11
EP0290546A1 (fr) 1988-11-17
JP2549133B2 (ja) 1996-10-30

Similar Documents

Publication Publication Date Title
EP0290546B1 (fr) Broche porte-piece a paliers magnetiques et dispositifs de mise en oeuvre de celle-ci pour machine-outil de tres haute precision
EP0289575B1 (fr) Procede d'usinage ultra-precis applique a l'execution de surfaces atypiques de revolution et aux usinages asservis
EP0362449A1 (fr) Machine d'usinage par abrasion ultrasonore
EP0210080B1 (fr) Procédé et installation d'usinage d'une pièce creuse par fraisage le long d'un tracé prédéterminé
EP0784757B1 (fr) Procede de fabrication d'un palier a rainures dynamique au moyen d'un outil d'elimination de metal et unite de stockage de donnees dotee de ce palier
EP0336838B1 (fr) Procédé et dispositif de polissage d'un composant optique
KR20190122148A (ko) 가공 장치
FR2564360A1 (fr) Machine d'usinage double face et dispositif de transmission de courant et de fluide entre une structure tournante et une structure non tournante
CH645292A5 (fr) Dispositif de positionnement de precision.
CN108214118A (zh) 刀具磨床
EP0022569A1 (fr) Dispositif de commande d'un chariot déplaçable radialement sur un plateau rotatif, notamment d'un chariot porte-outil d'une machine-outil
BE897090A (fr) Machine pour usiner des surfaces courbes
FR2921577A1 (fr) Procede de fabrication d'une machine outil a mouvement orbital, machine-outil obtenue selon le procede et procede d'usinage
FR2918652A1 (fr) Dispositif rotatif de transfert et d'indexation d'objets metalliques, comportant des moyens d'entrainement sans contact.
EP3837074B1 (fr) Dispositif de percage orbital
EP1641091B1 (fr) Procède permettant d'usiner in situ la surface périphérique d'une pièce rotative, et dispositif permettant de mettre en oeuvre ledit procède
CN217914516U (zh) 一种超精密纳米机床
FR2579745A1 (fr) Procede et dispositif de mesure des dimensions d'un corps de revolution et leurs applications
US7757373B2 (en) Method and tool head for machining optically active surfaces, particularly surfaces of progressive spectacle lenses, which are symmetrical in pairs
JPH09222119A (ja) 回転軸受装置及びこれを用いた回転駆動方法
EP0569283B1 (fr) Outilage d'équilibrage dynamique de porte-outils et procédé d'équilibrage
CN115026679A (zh) 一种超精密纳米机床
JPS61173853A (ja) 曲面創成研削装置
Horiuchi et al. Flatness and surface roughness of diamond-turned surface
FR2850050A1 (fr) Procede de meulage d'une lentille ophtalmique et machine de meulage associee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI SE

17P Request for examination filed

Effective date: 19881107

17Q First examination report despatched

Effective date: 19900515

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI SE

REF Corresponds to:

Ref document number: 3768497

Country of ref document: DE

Date of ref document: 19910411

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: RIAM.NE IN TERMINE MIN.LE 15.2.92;DR. ING. A. RACH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87907621.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011018

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011106

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011115

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011128

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051113