EP0289813B1 - Procédé et dispositif pour le réglage de distance d'un entraînement de position - Google Patents

Procédé et dispositif pour le réglage de distance d'un entraînement de position Download PDF

Info

Publication number
EP0289813B1
EP0289813B1 EP88105741A EP88105741A EP0289813B1 EP 0289813 B1 EP0289813 B1 EP 0289813B1 EP 88105741 A EP88105741 A EP 88105741A EP 88105741 A EP88105741 A EP 88105741A EP 0289813 B1 EP0289813 B1 EP 0289813B1
Authority
EP
European Patent Office
Prior art keywords
value
acceleration
alternative
setpoint
specified value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88105741A
Other languages
German (de)
English (en)
Other versions
EP0289813A1 (fr
Inventor
Ingemar Dipl.-Ing. Neuffer
Christian Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88105741T priority Critical patent/ATE67616T1/de
Publication of EP0289813A1 publication Critical patent/EP0289813A1/fr
Application granted granted Critical
Publication of EP0289813B1 publication Critical patent/EP0289813B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator

Definitions

  • the present invention relates to a method and a device for jerk, acceleration and speed-limited displacement control of a position drive with subordinate speed control, wherein the acceleration, speed and displacement setpoint of the position drive are guided and the jerk value is controlled as a jerk value increased difference between an acceleration setpoint and the time integral of the jerk value limited with respect to its maximum amount is formed.
  • a method is known from DE-PS 30 01 778. You can reach the desired position very quickly while observing the longest possible use of the boundary conditions determined by the limitations.
  • the object of the present invention is to improve the above-mentioned method with simple means with regard to a more flexible driving behavior.
  • the invention is intended to make it possible to preselect the speed in any way while driving, which e.g. is important for maintaining track-related creep speeds. Furthermore, there should be the possibility of realizing destination changes made while driving.
  • the position drive PA to be controlled consists of an electric motor 1, which moves the elevator car 3 of an elevator or shaft conveyor system via a rope pulley 2 coupled to it.
  • the current of the electric motor 1 is regulated by means of a current regulator 4, the output variable of which controls a converter arrangement 6 via a headset 5.
  • the actual value I A of the current regulator 4 is obtained by means of a current transformer 7 arranged in the armature circuit.
  • the current controller 4 is superimposed on a speed controller 8, the actual value V A of which consists in the output signal of a tachodynamo 9 coupled to the electric motor.
  • a speed controller 10 is superimposed on the speed controller 8, the actual value S A of which is taken from a travel sensor 11 which is acted upon by pulses which are generated by rotating a pulse disk coupled to the car.
  • the setpoint position to be approached is given to the position drive PA consisting of the elements 1-11 in the form of a setpoint setpoint S F which is guided according to certain aspects, together with setpoint values V F and A F which are also carried out for the subordinate speed or. Current controllers 8 and 4.
  • the reference variables A F , V F and S F consist in the output signals of three integrators 12, 13 and 14 arranged one behind the other. S F is used to specify the setpoint position to be approached to the position drive PA, with the setpoints V F and A F for the subordinate speed or current controller 8 or 4 is achieved that one of these values always reaches its maximum value.
  • a position setpoint S * prescribing the target position of the car is compared with the output quantity S F of the integrator 14, which forms the travel setpoint for the position drive PA, and made to coincide with the position setpoint S * by means of a non-linear control.
  • the difference ⁇ S between the travel setpoint S * corresponding to the target position and that of the integrator corresponds not only at the beginning of each travel process, but also continuously 14 output target value S F the path between the respective position of the position drive PA and the target position. This route is referred to below as the remaining route.
  • the command variable A F is formed by means of an acceleration control loop, which consists of a mixer 17, an integrator 12 and a proportional amplifier 15 with a quite large gain factor, the output signal R F corresponding to the jerk, i.e. the time differential quotient of the acceleration, for both polarities to a maximum Jerk value R max is limited.
  • the output signal A F of the integrator 12, which corresponds to the acceleration to be specified for the drive, is fed back to the input of the amplifier 15 and at the same time acts as a guided correction value for the acceleration on the current controller 4.
  • the combination of the amplifier 15 and the integrator 12 practically sets one Ramp-up controller for the acceleration setpoint A F and allows this value to be adjusted with a defined rate of change to the respective acceleration setpoint A *, the deceleration values being defined in the case of negative values of these acceleration values.
  • the acceleration setpoint A * is provided by an acceleration transmitter 16, which receives the distance-to-go signal ⁇ S, the command value V F for the speed, the command value A F for the acceleration, an arbitrarily predeterminable speed setpoint V2 *, and the limiting parameters R max for the jerk for the maximum value a bmax of the acceleration and for the maximum value a vmax of the deceleration are supplied.
  • a travel direction signal FR is provided which has different polarity for upward and downward travel, which, in conjunction with multipliers, can ensure the correct sense of action of the acceleration sensor 16 for both travel directions.
  • the size R max means the maximum permitted jerk value.
  • the position drive can be brought to predeterminable speeds V2 * without overshoot while observing the limit values for the acceleration a bmax or for the deceleration a vmax .
  • the basic idea of the method according to the invention is now to start up and, if necessary, to follow it at a constant speed under the effect of to allow the second alternative acceleration value A2 to take place, for which purpose the predeterminable speed V2 * is set to the value V max , from the point in time at which the targeted deceleration is to occur, to bring the first alternative acceleration setpoint A1 into effect and the regulation in the last part of the journey - to bring the entry into the breakpoint back under the control of the second alternative acceleration setpoint A2.
  • the first alternative acceleration setpoint is replaced when there is still a distance of four times the distance SZ mentioned above, while the replacement of the second acceleration setpoint A2 for target braking by the first acceleration setpoint A1 depends on the distance and speed in accordance with the known laws of kinematics can be done. These replacements are carried out by a selection circuit 18.
  • the given speed setpoint V2 * can be changed at any time between zero and a maximum value V * max after the start, which is important for maintaining technologically-related creeping distances when approaching or entering the target position or with speed restrictions due to the route can.
  • the position setpoint S * can also be changed as required, ie here, too, it is possible to deviate from the initially planned course of the journey while driving.
  • the travel direction signal FR is formed from the difference ⁇ S between the setpoint S * supplied by the setpoint generator 19 and the guided setpoint S F of the position drive PA, which is fed to the accelerator 16, by means of the limit value detector 17 in accordance with equation (1) is a positive signal of size 1 when driving upwards and an equally large signal of negative polarity when driving downwards.
  • equation (4a) describes a special, non-linear travel controller processing a travel difference, the output variable V1 * of which is the setpoint for a subordinate, also non-linear speed controller - equation (4b) -, which is supplied with the actual speed setpoint V F as the actual value and the acceleration limit value a v as the pilot variable.
  • the second alternative acceleration setpoint A2 is determined in accordance with equation (6), it being ensured that it does not exceed the limits for the deceleration a v and for the acceleration a b .
  • Equation (6) in turn conceals a non-linear controller which processes the difference between a speed setpoint V2 * and an actual value in the form of the guided speed value V F.
  • the speed setpoint V2 * is set to any value that can be predetermined up to V max , which means the speed to be reached by the position drive. If the first alternative acceleration setpoint A1 becomes negative, which is the case in the braking phase that follows the run-up, the speed setpoint V2 * is set to the value zero in accordance with equation (5).
  • the selection of which of the two alternative acceleration setpoints A1 and A2 acts as the setpoint A * for the acceleration control loop consisting of the amplifier 15 and the integrator 12 is made in the selection device 18 in accordance with the condition equations (7a) and (7b) depending on from the difference A1 - A2 of the two alternative acceleration values, which is evaluated with the sign of the first alternative acceleration value - formed by the signum function. It is essential that the two alternative acceleration setpoints A1 and A2 are sufficient to form this simple selection criterion and that no path or speed monitoring is required.
  • Equations (8a) and (8b) represent the conditions under which the time-linear structure of the limit values for the acceleration a b and for the deceleration a v is terminated. This termination is important for the realization of short travels. It is no longer necessary to differentiate between large and small paths, but a uniform driving strategy can always be used.
  • the two alternative acceleration values would be continuously determined, together with the decision as to which one should be used, in the order of equations (1) to (8b) Alternative acceleration setpoint brought into effect, which would connect the provision of the individual guided setpoints A F , V F and S F to be made available to the position drive PA for acceleration, speed or distance. There would then be a new calculation cycle for processing equations (1) - (8b) and provision of a new set of guided setpoints.
  • the computing cycle time T can be chosen to be very small, for example 5 msec, so that, despite the use of a computer which only works in steps, a quasi-continuous position control results.
  • the flow chart according to FIGS. 2a and 2b shows the resolution of the algorithmically described method in its individual steps.
  • the state of the relevant quantities is indicated in the rectangular function blocks, which results as a result of the states which are described by the respective upstream function blocks.
  • the diamond-shaped function blocks represent a switch function in the course of the method, in which if the condition specified in this function block is fulfilled, ie, if the question is answered in the affirmative, it proceeds in the other way, while in the other case the path marked "no" is taken.
  • the reference symbols given next to the function blocks indicate the elements of FIG. 1 with the same names.
  • the ASTOP signal is first set to the value 1.
  • the path setpoint S * corresponding to the intended stop and with the value S F corresponding to the actual path value S A of the position drive PA
  • the path control deviation ⁇ S corresponding to the travel or remaining path and the polarity of the direction of travel signal FR are formed therefrom.
  • the two alternative acceleration setpoints A1 and A2 are calculated in accordance with equations (4) - (6) and the second alternative acceleration setpoint A2 is checked to determine whether it is within the limit values for the acceleration a b or for the deceleration a v . Furthermore, it is checked whether the previous value of the ASTOP signal can remain in the next calculation cycle, ie whether the linear increase in these values should be stopped in the event that A1 has become smaller than A2.
  • the functions to be assigned to the accelerometer 16 are thus dealt with.
  • the selection of the acceleration setpoint A * to be used is followed by its processing in the input circuit of the acceleration control loop consisting of the amplifier 15 and the integrator 12 (FIG. 1).
  • C15 is the quite large gain constant of the proportional amplifier 15, the resulting value R F of the guided jerk value possibly being limited to the maximum jerk value R max .
  • the resulting value of the guided jerk R F is then integrated three times in succession and the intermediate values of the guided acceleration setpoint A F , the guided speed setpoint V F and the guided travel setpoint S F are fed to the position drive PA.
  • the query is made as to whether the path difference .DELTA.S has become zero, that is to say the predetermined stopping point has been reached, and if the answer to this question is in the negative, that is, if the path difference does not disappear, a new computing cycle begins with the last determined value of the guided path setpoint S F .
  • the functions of the elements 12-20 of FIG. 1 can be realized with a digital computer programmed according to this flow chart. In the current state of the art, it also makes sense to also reproduce the control loop elements 4, 5 and 8 to 11 with a corresponding program extension using software. Nevertheless, it can be expedient in individual cases to implement at least partial sections of the method according to the invention by means of discrete, in particular analog, components.
  • FIG. 3 shows an example with discrete components in hybrid technology, ie there are both analog and digital components.
  • the part of the system according to FIG. 3 is shown, which is located there on the left of line II.
  • the used switches which are preferably in electronic switching elements, such as FET transistors, are, unless otherwise noted, each shown in its unactuated position, provided that it can be actuated with a digital H (high) signal of positive polarity are.
  • the direction indicator 17 consists of an electronic comparator circuit known per se, which emits a constant DC voltage signal with the value +1 when the input signal is positive, ie when driving upwards, and outputs a constant signal of size -1 when the input signal is negative, ie when driving downwards. With this direction of travel signal FR, the correct sense of action of the control device according to the invention is ensured for both directions of travel.
  • the existing in the amount of the remaining distance ⁇ S of the amount generator 21 is fed to a function generator 22, which together with the direction signal, an acceleration limit value a v , the guided acceleration setpoint A F and the maximum jerk value R max forms a function which the radicand, ie the expression under the root sign of equation (4a).
  • a function can be easily implemented with the usual components of analog computing technology, such as multipliers, amplifiers and mixing elements.
  • the output signal of this function generator is fed to a square root function generator 23, from whose output signal in a mixer 24 a value corresponding to the guided speed setpoint V F is subtracted.
  • the maximum jerk The corresponding value R max is doubled in a further mixer 28 and multiplied by means of a multiplier 25 with the output signal of the mixer 24.
  • the output variable of the multiplier 25 is processed in a further square-root function generator 26 and its output variable - in a mixer 27 reduced by the acceleration limitation value a v - gives the first alternative acceleration target value A1 in accordance with equation (4b).
  • non-linear displacement controller whose output variable V1 * forms the setpoint for a subordinate, also non-linear speed controller 26, is evident from the arrangement of the elements 20 to 23, in the event that the first acceleration setpoint A1 is effective via the selection circuit 18, The acceleration controller with the setpoint A * is subordinate to this non-linear speed controller 26, as a comparison with the arrangement according to FIG. 1 shows.
  • the second alternative acceleration setpoint value A2 arises as the output signal of a further square root function generator 29, the input signal of which is multiplied by a factor of 2 by means of a multiplier 30.
  • R max multiplied difference between an arbitrarily definable speed value V2 * and the guided setpoint V F.
  • the output variable of the square root function generator 29 is limited to the acceleration limitation value a b for positive polarity and to the deceleration limitation value a v for negative polarity.
  • this predeterminable speed value V2 * is obtained from a suitable setpoint generator 32, which could easily be implemented by means of a potentiometer which is at a constant voltage.
  • the switch 31 In the event that the first alternative acceleration value A1 is greater than zero, the switch 31 assumes the position shown, while in the event that the first alternative acceleration target value becomes less than zero, the switch 31 is actuated so that the speed value V2 * the value zero is specified.
  • the second alternative acceleration setpoint A2 is selected by the selection circuit 18, the position drive under the action of a non-linear speed controller implemented by means of the function generator 29, the setpoint of which consists of the speed value V2 *.
  • the selection circuit 18 then makes the decision as to which of the two alternative acceleration setpoints A1 and A2 provided intervenes in the acceleration control loop in accordance with the conditions specified in equations (7a) and (7b). Among other things, the difference between the first and second acceleration values must be formed.
  • This difference signal A1-A2 is now also used to have the signal ASTOP output via a limit indicator 34, with which the start-up started at the start of two integrators 35 and 36 providing the acceleration limits a b and a v is interrupted.
  • the signal ASTOP is therefore an H signal with which the switch 37 is actuated, that is to say brought into its closed position. Since the output signal of the limit value indicators 38a and 38b also has an H signal at the start, the switches 39 and 40 are also actuated and the output signals of the integrators 35 and 36 begin to increase linearly starting from the value zero, this change for as long continues until either the output signals a b and a v reach the predetermined maximum values a bmax or a vmax or before the signal ASTOP has become zero. In both cases, the connection between the voltage source denoted by R max and the inputs of the integrators 35 or 36 is interrupted by opening one of the switches 37 or 39 or 40.
  • FIG. 4 shows an advantageous embodiment of the function generator 29 with its modulation limits determined by the limit values a b and a v . It must be suitable for processing input signals of both polarities.
  • a square-root function generator 41 of simpler construction is used, which only has to form the square root of a positive input variable. Its input is connected to the output of an absolute value generator 42, which is acted upon by the input variable e, which can have both polarities and which is also fed to a comparator 43, which then emits a signal of size +1 if the input variable has a positive polarity and emits a signal of size -1 if the input size e is of negative polarity.
  • this comparator 43 which acts as a polarity transmitter, is similar to that of the direction of travel transmitter 17.
  • the output signal of the polarity transmitter is capable of actuating a switch 47 via a limit indicator 44, with which switch 47 a signal corresponding to the limit value for the acceleration a b is input to the input of a minimum circuit 45 is switched through, while with a negative input signal e the output signal of the limit value detector 44 has the value zero and brings the switch 47 into the position shown in which the limit value for the delay a v reaches the input of the minimum circuit 45.
  • the other input of the minimum circuit 45 is connected to the output of the square root function generator 41.
  • the minimum circuit allows each of its two always positive input signals to pass through the smaller one, which is then combined in a multiplier 46 with the output signal of the polarity transmitter 43, thereby achieving is that the output signal A2 always gets the same polarity as the input signal e.
  • the root function shown in the block symbol 29 of FIG. 3 and running in the first and third quadrants can be realized, although only a simple function generator is used for the first quadrant.
  • FIG. 5 shows an implementation of the selection circuit 18 for the two alternatively provided acceleration setpoints A1 and A2.
  • the selection function as defined in equations (7a) and (7b), would require the use of polarity transmitters for the signal function and multipliers for linking to the difference A1 - A2 if they were to be converted directly into discrete components. According to FIG. 5, however, this selection function is achieved by avoiding multipliers with comparatively simpler components.
  • the choice between the two alternatively provided acceleration setpoints A1 and A2 is effected by the output signal of an exclusive OR gate 48.
  • the switch 49 is actuated so that the previously effective alternative acceleration setpoint A2 is replaced and the alternative acceleration setpoint A1 now takes effect as the acceleration setpoint A *. If, on the other hand, the output of the exclusive OR gate 48 carries an L (low) signal, the switch 49 is in the position shown in FIG.
  • the inputs of the exclusive OR gate are connected to the outputs of two limit value indicators 50 and 51, of which the limit value indicator 51 is acted upon by the alternative acceleration setpoint A1 and then carries an H signal if the alternative acceleration setpoint A1 is of positive polarity.
  • the travel setpoint is therefore increased as required in the individual possible stops until it corresponds to the desired destination. These incremental setpoint increases do not affect the course of the journey; this is the same as if the desired setpoint had been specified at the beginning. This gradual increase in the travel setpoint is of particular importance for driverless traction drives, such as monorails.
  • driverless traction drives such as monorails.
  • additional sections with a potential for collision such as switches or crossings, could be provided, so that the system is regularly prepared to stop in front of these danger points and only in the event that there is a safety signal for this danger point, without stopping and delaying to continue.
  • FIG. 6 shows an exemplary embodiment of a travel encoder 19 for the travel setpoint S *, with which such a step change in the setpoint can be carried out under the influence of the two alternative acceleration setpoints A1 and A2.
  • the exemplary embodiment is intended to relate to a passenger transportation system with five stops, for example five floors. Accordingly, five setpoint sources S1 to S5 are provided, the potentials of which can be successively output as setpoint S * by means of switches P1 to P5 which can be actuated by the individual stages of a shift register 53.
  • a shift register is a device in which the signal state of a cell is passed on - shifted - to the neighboring cell each time a signal arrives at the input CL. In the example shown in FIG.
  • the shift register 53 is currently in the state in which its leftmost cell carries an H signal as the output signal and has thus actuated the switch p1 assigned to it.
  • the setpoint S * therefore shows the value S1, which would correspond to the lowest floor.
  • the direction of travel signal FR is an H signal, so that the next positive pulse edge arriving at the input CL, ie a change from L to H signal, the H signal of the leftmost cell of the shift register 53 moves one cell to the right leaves, which closes switch P2 while switch P1 opens.
  • the H signal thus moves one cell further to the right on each such pulse edge arriving at the input CL, so that the setpoints S1 to S5 are output in succession as the current setpoint S *.
  • the shift register 53 is set up in such a way that the H signal of the individual cell is passed on to the neighboring cell on the left.
  • Such registers which optionally shift the information to the right or left, are known per se.
  • bistable flip-flops B1 to B5 can be set and the destinations to be traveled to can thus be saved. These selection buttons are either installed in the driver's cabin and / or stationary.
  • buttons T1 to T5 can be used to actuate the switches h1 to h5 assigned to the bistable flip-flops B1 to B5, whereby the setpoint sources S1 to S5 can be connected to a diode selection circuit.
  • S5>S4>S3>S2>S1> 0 applies to the potentials of the setpoint sources.
  • the diode selection circuit is configured either as a minimum selection circuit or as a maximum selection circuit.
  • FIG. 6 shows the switches 55 and 56 in their unactuated state, which they assume when driving downwards and the diodes connected to the cathodes are connected to the ground or reference potential via a resistor 57.
  • a maximum selection circuit is then configured which, from the travel destinations stored by means of the bistable flip-flops B1 to B5, enables the one at the input of a mixing element 58 whose setpoint potential is greatest. Conversely, when driving upwards, the direction of travel signal FR will assume the value 1 and thus operate the switches 55 and 56, whereby the diodes connected to one another with their anodes are connected to a positive DC voltage P via the resistor 57.
  • This DC voltage P has a positive potential which is greater than the largest of the setpoint potentials, S5, which corresponds to the most distant stop.
  • a minimum circuit is thus configured, which of the selected stop potentials makes the one on the line 59 connected to the mixing element 58 which has the smallest value effective.
  • the second input of the mixing element 58 is acted upon by the current setpoint signal activated by one of the switches p1 to p5.
  • the output of the mixing element 58 is linked to the direction of travel signal FR via a multiplier 60 and is connected to a limit value detector 61, the output of which acts on an AND gate 63 via an OR gate 62.
  • a second input of the AND gate 63 is connected to the first alternative acceleration setpoint A1 via a further limit indicator 64 and a third input of the AND gate 63 is acted upon by the output signal of a mixer 65 via a further limit detector 66.
  • the difference between the second and the first alternative acceleration setpoint is formed in the mixing element 65 and a small value ⁇ A, which is smaller than 1,000th of the maximum limiting value a bmax for the acceleration, is added to this difference.
  • the output of the AND gate 63 acts via an OR gate 67 on the input CL of the shift register 53.
  • a second input of the OR gate 67 can be connected to a voltage source which supplies an H signal by means of a switch 68 which can be actuated by a start signal.
  • the mode of operation of the device shown in FIG. 6 is as follows: It is assumed that the position drive is in the stop assigned to the setpoint S1 and that the fourth floor is selected as the destination by pressing the button T4. With the signal START, the switch 68 is actuated and the shift register is advanced one stage, so that the resultant closing of the switch p2 presets the position drive as the setpoint S * as the setpoint S2.
  • the direction of travel signal FR has the value 1, the switches 55 and 56 are therefore in their position, not shown, in which a minimum circuit is configured.
  • the position drive now begins to move towards the stop according to setpoint S2.
  • the stop corresponding to the setpoint S3 should also be selected by pressing the selection button T3, which initially has no further consequence for the driving behavior.
  • target braking would be initiated if the difference between the second alternative acceleration setpoint and the first alternative acceleration setpoint becomes negative if the first alternative acceleration setpoint is positive.
  • two of the three AND conditions of the AND gate 63 are fulfilled. If the third AND condition were also fulfilled at this point in time, a shift signal would be generated for the shift register 53 which increases the setpoint and consequently prevents the use of target braking.
  • the third condition which consists in an H signal of the limit value detector 61, it can thus be checked whether there is a need for a further switching, that is to say a setpoint increase, or whether the drive is to be stopped at the stopping point S2.
  • a setpoint increase while suppressing target braking whenever the smallest stored stop point is greater than the currently output setpoint S *.
  • the output signal of the mixing element 58 becomes greater than zero, which, when the limit value detector 61 moves upward, responds with an H signal at its output.
  • the target braking with respect to the stopping point S2 is suppressed by stepping on the indexing mechanism 53 and the stop S2 is passed over.
  • the output signal of the mixing element 58 has an L (low) signal.
  • the step-by-step mechanism 53 is prevented from advancing and the position drive comes to a standstill at the intended holding position S3. After a new start, this game of increasing the setpoint as required continues until the position drive at the next stored stop is brought to a standstill.
  • a maximum circuit is configured for this purpose, which in each case brings the largest of the stored setpoint potentials to the line 59 connected to the mixing element 58.
  • FIG. 7 shows a route of a monorail (H-Bru) suitable for the travel setpoint shown in FIG. 6.
  • the final stops on the route are labeled S1 and S5, with the intermediate stops S2 to S4 in between.
  • a passenger cabin designated 69 is indicated, which moves in the direction of the final stop S5.
  • junctions or switches 70 or 71 in the example shown emergency stops designated W1 or W2 are provided.
  • FIGS. 8 to 10 show typical driving diagrams for the method according to the invention. Depicted in time dependence are the guided jerk value R F , the guided speed value V F , the speed setpoint V2 *, the speed setpoint V1 * for the speed controller 25, 26 subordinate to the travel controller 22, 23 and the two alternative acceleration setpoints A1 and A2.
  • the position drive is first started up with the second alternative acceleration setpoint A2 to a speed V2 *, which may correspond to the maximum permissible speed.
  • a speed V2 * which may correspond to the maximum permissible speed.
  • the speed of the position drive PA is reduced to any intermediate value, which could also consist of a so-called creep speed.
  • the position drive is under the effect of the second alternative acceleration setpoint A2 in accordance with the condition according to equation (7b). From the time t2, the condition according to equation (7a) is fulfilled and the target braking under the effect of the first alternative acceleration setpoint begins.
  • the guided speed setpoint V F is now brought into congruence with the path controller described with equations (4a) and (4b) with the straight line designated by BP in the FIGURE and is guided along it until the time t 3.
  • the straight line BP would correspond to the so-called brake parabola in a path-speed diagram.
  • the guided speed setpoint V F becomes smaller than the value a 2nd v / 2nd R max , so that according to equation (6) the value of the second alternative acceleration setpoint begins to be released from its limitation -a vmax and the condition according to equation (7b) is fulfilled again.
  • the second alternative acceleration setpoint A2 thus replaces the previously used first alternative acceleration setpoint A1 and the acceleration of the position drive is reduced in a time-linear manner to the value zero, thus rounding off the rounded speed curve of V F until the position drive finally comes to rest at time t4. Then the displacement control deviation ⁇ S has the value zero, as well as the acceleration and the speed of the position drive. If the first alternative acceleration setpoint A1 at time t3 would not be replaced by the second alternative acceleration setpoint A2, then the position drive would have a constant deceleration at the time t3 + t e / 2nd only get to a point that is a distance SZ before the intended stop, where SZ is the value corresponds.
  • FIG. 10 shows a course of travel as it results in the variant of the stepwise setpoint adjustment described in connection with FIG. 6.
  • Sections S1 to S5 in the course of the first alternative acceleration setpoint A1, which result from the effect of these setpoints, are noted.
  • S5> S4> S3> S2> S1 applies. It can be seen that shortly before the condition according to equation (7a) is met and the first alternative acceleration setpoint is reached for the purpose of target braking, the setpoint is increased by one step so that the first alternative acceleration setpoint does not come into play and target braking does not take place. At setpoint S5, there is finally no further increase in setpoint and the first alternative acceleration setpoint A1 takes control at time t2. If, on the other hand, the setpoint increase from S1 to S2 were omitted, in principle there would be a driving course as shown in FIG. 9.
  • FIGS. 8 to 10 make it clear that travel setpoint or speed setpoint adjustments can be carried out in a rather permissive manner while driving and practically any desired driving requests can thus be implemented in a simple manner.

Landscapes

  • Automation & Control Theory (AREA)
  • Engineering & Computer Science (AREA)
  • Control Of Position Or Direction (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Stepping Motors (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Paper (AREA)
  • Threshing Machine Elements (AREA)
  • Body Structure For Vehicles (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Die Bonding (AREA)
  • Golf Clubs (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Claims (9)

  1. Procédé pour régler, d'une manière limitée du point de vue de la suraccélération, de l'accélération et de la vitesse, le déplacement d'un dispositif de positionnement avec régulation subordonnée de la vitesse, et selon lequel la commande de la valeur de consigne de l'accélération, de la vitesse et du trajet parcouru du dispositif de positionnement est réalisée moyennant une intégration triple dans le temps d'une valeur de suraccélération (RF), et la différence amplifiée entre une valeur de consigne (A*) de l'accélération et l'intégrale dans le temps de la valeur de suraccélération est formée en tant que que valeur de suraccélération dans un circuit (12,15,17) de régulation de l'accélération, la valeur absolue de la suraccélération étant limitée à une valeur maximale (Rmax), caractérisé par les étapes suivantes:
    a) en fonction du trajet résiduel (ΔS) devant être encore parcouru, on forme une première valeur alternative de consigne de l'accélération (A1), avec laquelle le dispositif de positionnement ne parvient pas, grâce à une décélération (av) constante, au-delà d'une position qui se situe à une certaine distance (SZ) en-deçà d'une valeur de consigne pouvant être prédéterminée (S*) du trajet parcouru;
    b) on forme une seconde valeur alternative de consigne de l'accélération (A2), dont le carré est proportionnel à la différence entre une valeur (V2*) pouvant être prédéterminée et une valeur de consigne pilotée (VF) de la vitesse, avec laquelle le dispositif de positionnement peut être amené, sans suroscillations, à cette vitesse (V2*) pouvant être prédéterminée;
    c) la seconde valeur alternative de consigne de l'accélération (A2) est tout d'abord activée après le démarrage, la première valeur alternative de consigne de l'accélération (1) est activée pour le déclenchement d'un freinage cible et à nouveau la seconde valeur alternative de consigne de l'accélération (A2) est activée pour le passage à la position d'arrêt respectivement prédéterminée avec la valeur de consigne (AS*) du trajet de déplacement, lorsque le dispositif de positionnement a atteint une position qui est située à une distance quadruple de la distance de déplacement déterminée (SZ), en-deçà du point d'arrêt prévu.
  2. Procédé suivant la revendication 1, caractérisé par les étapes suivantes:
    a) on accroît des valeurs limites pour l'accélération (ab) et pour la décélération (av), à partir du démarrage du dispositif de positionnement, d'une manière linéaire dans le temps depuis la valeur zéro jusqu'à leurs valeurs maximales (abmax et avmax);
    b) la première valeur alternative de consigne de l'accélération (A1) est déterminée de façon continue en fonction du trajet résiduel (ΔS), de la valeur pilotée de consigne de la vitesse (VF), de la valeur pilotée de consigne de l'accélération (AF), et du signal respectif de limitation pour la décélération (av), de la suraccélération maximale (RREF) et d'un signal de sens de déplacement (FR) (relations 4a et 4b);
    c) on détermine en permanence, en fonction de la valeur de consigne pilotée de la vitesse (VF), du signal du sens de déplacement (FR), de la vitesse pouvant être prédéterminée (V2*) et de la valeur de suraccélération maximale (Rmax), d'une seconde valeur alternative de consigne de l'accélération (A2), limitée entre les valeurs limites pour l'accélération (ab) ou pour la décélération (av) (relation 6), auquel cas la valeur de consigne pouvant être prédéterminée (V2*) de la vitesse est positionnée à la valeur zéro lorsque la première valeur alternative de consigne de l'accélération (A1) devient inférieure à zéro;
    d) indépendamment du fait que la différence, évaluée avec la polarité de la première valeur alternative de consigne de l'accélération (1), entre les première et seconde valeurs alternatives de consigne de l'accélération (A1-A2) est inférieure ou égale ou supérieure à zéro, soit la première, soit la seconde valeur alternative de consigne de l'accélération est activée en tant que valeur de consigne (A*) du circuit de régulation de l'accélération (relations 7a et 7b);
    e) l'accroissement linéaire dans le temps des valeurs limites pour l'accélération (ab) ou pour la décélération (av) est interrompu lorsque la première valeur alternative de consigne de l'accélération (A1) est inférieure à la seconde valeur alternative de consigne de l'accélération (A2) (relation 8a).
  3. Procédé suivant la revendication 1 ou 2, notamment pour des installations de transport de voyageurs, caractérisé par le fait que la valeur de consigne (S*) du trajet parcouru est en permanence prédéterminée en fonction du point d'arrêt respectivement le plus proche, et que la valeur de consigne (S*) du trajet parcouru, qui peut être prédéterminée, est accrue le cas échéant, pendant le trajet, dans le cas d'une première valeur alternative de consigne de l'accélération (A1) positive, peu avant que la différence entre la première valeur alternative de consigne de l'accélération et la seconde valeur alternative de consigne de l'accélération (A2) s'annulent.
  4. Procédé selon la revendication 3 pour des machines motrices sans conducteur, liées à une voie de déplacement, notamment en circulant sur des rails, caractérisé par le fait qu'il est prévu, comme points d'arrêt, des aiguillages, des intersections ou d'autres points de danger.
  5. Dispositif pour régler, d'une manière limitée du point de vue de la suraccélération, de l'accélération et de la vitesse, le déplacement d'un dispositif de positionnement avec régulation subordonnée de la vitesse, et selon lequel la commande de la valeur de consigne de l'accélération, de la vitesse et du trajet parcouru du dispositif de positionnement est réalisée moyennant une intégration triple dans le temps d'une valeur de suraccélération (RF), et la différence amplifiée entre une valeur de consigne (A*) de l'accélération et l'intégrale dans le temps de la valeur de suraccélération est formée en tant que que valeur de suraccélération dans un circuit (12,15,17) de régulation de l'accélération, la valeur absolue de la suraccélération étant limitée à une valeur maximale (Rmax), caractérisé par les caractéristiques suivantes:
    a) il est prévu deux intégrateurs (35,36), qui peuvent être chargés par une tension correspondant à une suraccélération maximale (Rmax) et servent à produire des valeurs limites pour l'accélération (ab) et pour la décélération (av), et dont les tensions de sortie sont accrues linéairement dans le temps, à partir du démarrage du dispositif de positionnement (PA), de la valeur zéro jusqu'aux valeurs maximales (abmax ou avmax), les tensions d'entrée des intégrateurs (35,36) pouvant être désactivées par le signal de sortie (ASTOP) d'un transmetteur de valeur limite (34), à l'entrée duquel est envoyée la différence entre les deux valeurs alternatives de consigne de l'accélération (A1-A2);
    b) pour déterminer la première valeur alternative de consigne de l'accélération (A1), qui dépend du trajet résiduel (ΔS) devant être encore parcouru, de la valeur pilotée de consigne de la vitesse (VF), de la valeur pilotée de consigne de l'accélération (AM), de la valeur respective de consigne de limitation pour la décélération (av), d'une valeur maximale de suraccélération (Rmax) et d'un signal de sens de déplacement (FR) (relations 4a et 4b), il est prévu un générateur de fonction (22), en aval duquel est branché un générateur de fonction (23) réalisant une extraction de racine carrée et dont le signal de sortie (V1*) est envoyé, ainsi qu'une valeur pilotée de consigne de la vitesse (VF), à un circuit mélangeur (24), dont le signal de sortie charge un autre générateur de fonction (26) réalisant une extraction de racine carrée;
    c) pour la détermination de la seconde valeur interactive de consigne d'accélération (A2), qui dépend de la valeur pilotée de consigne de vitesse (VF), du signal de sens de déplacement (FR) d'une vitesse pouvant être prédéterminée (V2) et de la valeur de suraccélération maximale (Rmax) (relation 6), il est prévu un troisième générateur de fonction (29) qui réalise l'extraction d'une racine carrée et dont le signal de sortie est limité aux valeurs limites respectives pour l'accélération (ab) ou pour la décélération (av);
    d) les deux valeurs alternatives de consigne d'accélération (A1,A2) sont appliquées aux entrées d'un circuit de sélection (18) qui, en fonction du fait que la différence, évaluée avec la polarité de la première valeur alternative de consigne de l'accélération (A1), entre les première et seconde valeurs alternatives de consigne de l'accélération (A1-A2) est inférieure ou égale ou supérieure à zéro, applique, soit la première (A1) ou la seconde (A2) valeur alternative de consigne de l'accélération en tant que valeur de consigne (A*) pour le circuit (12,15,17) de régulation de l'accélération (relations 7a et 7b).
  6. Dispositif selon la revendication 5 ou l'une des suivantes, caractérisé en ce que le circuit de sélection comporte un commutateur (49) qui peut être actionné par le signal de sortie d'un circuit OU-Exclusif (48), dont les entrées sont chargées respectivement par l'intermédiaire de transmetteurs de valeurs limites (50,51), par la première valeur alternative de consigne de l'accélération (A1) et par la différence (A1-A2) entre les première et seconde valeurs alternative de consigne d'accélération.
  7. Dispositif suivant la revendication 5, caractérisé par le fait que pour la formation de la seconde valeur alternative de consigne de l'accélération (A2), on utilise un générateur de fonction (41), qui extrait une racine carrée et auquel une grandeur d'entrée (e) est envoyée par l'intermédiaire d'un dispositif (42) de formation de la valeur absolue et dont la sortie est raccordée à une entrée d'un circuit de sélection de la valeur minimale (45), dont la seconde entrée est chargée, en fonction de la polarité de la grandeur d'entrée du dispositif (42) de formation de la valeur absolue, par le signal limite pour l'accélération (ab) ou par le signal limite pour la décélération (av), la polarité du signal de sortie du circuit de sélection de la valeur maximale étant amenée, au moyen d'un multiplicateur (46), à coïncider avec la polarité du signal d'entrée du dispositif de formation de la valeur absolue.
  8. Dispositif suivant l'une des revendications 5 à 7 pour accroître la valeur de consigne du trajet parcouru en fonction du point d'arrêt possible le plus proche, notamment pour des installations de transport de passagers, caractérisé par les caractéristiques suivantes:
    a) il est prévu un registre à décalage (53), que peut faire avancer le signal de sortie d'une porte ET (63) et dont les cellules actionnent des interrupteurs (p1 à p5), à l'aide desquels les différentes valeurs de consigne du trajet parcouru (S1-S5), qui correspondent aux différents points d'arrêt, peuvent être activées successivement;
    b) des valeurs sélectionnées de consigne de trajets parcourus chargent, par l'intermédiaire de touches de sélection (T1 à T5) et d'étages à bascule bistable (B1-B5), un circuit d'évaluation d'une valeur extrême;
    c) le circuit ET (63) comporte trois entrées, qui sont chargées respectivement par le signal de sortie d'un transmetteur de valeur limite, auquel cas au premier transmetteur de valeur limite (61) est envoyée la différence entre le signal de sortie du circuit de sélection de la valeur extrême et la valeur de consigne respectivement activée, et au second transmetteur de valeur limite (64) est envoyée la première valeur alternative de consigne de l'accélération (A1), tandis qu'au troisième transmetteur de valeur limite (66) est envoyée la différence, formée dans un circuit mélangeur (65), entre la seconde valeur alternative de consigne (A2) et la première valeur alternative de consigne (A1), le circuit mélangeur (65) étant chargé en outre, de façon additive, par une valeur qui est inférieure à un millième de la valeur limite maximale de l'accélération (abmax).
  9. Dispositif suivant la revendication 8, caractérisé par le fait que le circuit de sélection de la valeur extrême contient des diodes raccordées entre elles par leurs cathodes ou leurs anodes.
EP88105741A 1987-04-18 1988-04-11 Procédé et dispositif pour le réglage de distance d'un entraînement de position Expired - Lifetime EP0289813B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88105741T ATE67616T1 (de) 1987-04-18 1988-04-11 Verfahren und einrichtung zur wegregelung eines positionsantriebes.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873713271 DE3713271A1 (de) 1987-04-18 1987-04-18 Verfahren und einrichtung zur wegregelung eines positionsantriebes
DE3713271 1987-04-18

Publications (2)

Publication Number Publication Date
EP0289813A1 EP0289813A1 (fr) 1988-11-09
EP0289813B1 true EP0289813B1 (fr) 1991-09-18

Family

ID=6325953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88105741A Expired - Lifetime EP0289813B1 (fr) 1987-04-18 1988-04-11 Procédé et dispositif pour le réglage de distance d'un entraînement de position

Country Status (11)

Country Link
US (1) US4959808A (fr)
EP (1) EP0289813B1 (fr)
AT (1) ATE67616T1 (fr)
BR (1) BR8801857A (fr)
CA (1) CA1331794C (fr)
DE (2) DE3713271A1 (fr)
ES (1) ES2024577B3 (fr)
GR (1) GR3003360T3 (fr)
MX (1) MX169167B (fr)
PT (1) PT87240B (fr)
ZA (1) ZA882660B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004058756A1 (de) * 2004-12-06 2006-06-14 Siemens Ag Geschwindigkeitsüberwachungsverfahren in einem Automatisierungssystem für eine Förderanlage

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8904375U1 (fr) * 1989-04-07 1989-07-27 Tuev Bayern E.V., 8000 Muenchen, De
US5207520A (en) * 1989-10-03 1993-05-04 Seiko Epson Corp. Printer carriage acceleration control device
JP3030066B2 (ja) * 1990-08-31 2000-04-10 三菱電機株式会社 モータ制御装置
JPH05170120A (ja) * 1991-03-20 1993-07-09 Hitachi Ltd 車両のヨー運動量検出装置及びその方法、並びにこれを利用した車両の運動制御装置
ZA918868B (en) * 1991-11-08 1992-07-29 Siemens Ag Control monitoring system for a rope winding installation
DE102005010089B4 (de) 2005-03-04 2007-08-30 Siemens Ag Verfahren und Einrichtung zum Positionieren eines Elements einer Maschine
WO2007149073A1 (fr) * 2006-06-20 2007-12-27 Way Robert L Lève-bateau
US10248913B1 (en) * 2016-01-13 2019-04-02 Transit Labs Inc. Systems, devices, and methods for searching and booking ride-shared trips
EP3214032B1 (fr) * 2016-03-03 2020-04-29 Kone Corporation Contrôleur de réglage d'un frein d'ascenseur, ledit frein et ascenseur

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1756946C3 (de) * 1967-08-08 1975-11-13 Inventio Ag, Hergiswil, Nidwalden (Schweiz) Steuereinrichtung für einen Aufzug für grosse Fahrgeschwindigkeit
JPS598622B2 (ja) * 1976-05-27 1984-02-25 三菱電機株式会社 エレベ−タの速度制御装置
CH649517A5 (de) * 1979-09-27 1985-05-31 Inventio Ag Antriebssteuereinrichtung fuer einen aufzug.
JPS5665778A (en) * 1979-10-30 1981-06-03 Mitsubishi Electric Corp Generator for speed instruction of elevator
IT1146148B (it) * 1979-11-19 1986-11-12 Mitsubishi Electric Corp Dispositivo di comando di ascensori
DE3001778C2 (de) * 1980-01-18 1985-10-17 Siemens AG, 1000 Berlin und 8000 München Verfahren und Einrichtung zur Wegregelung eines Positionsantriebes
JPS6015379A (ja) * 1983-07-04 1985-01-26 株式会社日立製作所 エレベーターの制御装置
US4751984A (en) * 1985-05-03 1988-06-21 Otis Elevator Company Dynamically generated adaptive elevator velocity profile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004058756A1 (de) * 2004-12-06 2006-06-14 Siemens Ag Geschwindigkeitsüberwachungsverfahren in einem Automatisierungssystem für eine Förderanlage
US7577495B2 (en) 2004-12-06 2009-08-18 Siemens Aktiengesellschaft Speed monitoring method in an automation system for a conveyor installation

Also Published As

Publication number Publication date
DE3864891D1 (de) 1991-10-24
CA1331794C (fr) 1994-08-30
PT87240B (pt) 1993-09-30
EP0289813A1 (fr) 1988-11-09
ZA882660B (en) 1988-10-14
BR8801857A (pt) 1988-11-22
DE3713271A1 (de) 1988-11-03
MX169167B (es) 1993-06-23
US4959808A (en) 1990-09-25
GR3003360T3 (en) 1993-02-17
ATE67616T1 (de) 1991-10-15
PT87240A (pt) 1989-05-12
ES2024577B3 (es) 1992-03-01

Similar Documents

Publication Publication Date Title
DE10145915A1 (de) Verfahren und Einrichtung zur Fahrgeschwindigkeitsregelung eines Kraftfahrzeuges
DE102013213171A1 (de) Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs in einem automatisierten Fahrbetrieb
EP2250055B1 (fr) Commande d'un frein de stationnement à actionnement électrique en cas de panne d'un signal de vitesse
EP0289813B1 (fr) Procédé et dispositif pour le réglage de distance d'un entraînement de position
DE1530339A1 (de) Automatisches Regelsystem fuer Fahrzeuge
WO2006111128A1 (fr) Véhicule à moteur à fonctionnement régulé par la consommation de carburant
DE10010747A1 (de) Multifunktions-Bedienelement
EP0318660B1 (fr) Procédé et installation pour la régulation de position d'un entraînement de positionnement, en particulier pour des ascenseurs
EP0154029B1 (fr) Dispositif régulateur et méthode de la vitesse d'un véhicule, notamment d'un véhicule automobile, avec un régulateur électronique
EP3790779B1 (fr) Véhicule ferroviaire avec une commande d'entraînement
DE3001778C2 (de) Verfahren und Einrichtung zur Wegregelung eines Positionsantriebes
DE3016081C2 (de) Vorrichtung zum weggenauen Abbremsen spurgebundener Fahrzeuge
WO2010100044A1 (fr) Véhicule ferroviaire avec limiteur de puissance
EP0735963B1 (fr) Dispositif de commande d'un vehicule guide sur rails
DE4133303C2 (de) Anfahrhilfe für Deichselfahrzeuge im Mitgehbetrieb
EP0294578A1 (fr) Equipement de réglage de l'arrivée d'un ascenseur
DE2649319C3 (de) Steuervorrichtung für ein frei verfahrbares Flurförderfahrzeug
EP3235677A1 (fr) Procédé de réglable sans codeur de position d'un moteur électrique
DE1481711C (de) Geschwindigkeits-Sollwertgeber für einen drehzahlgeregelten Aufzugsantrieb
DE2711718C2 (de) Einrichtung zum Ermitteln einer zulässigen Fahrzeughöchstgeschwindigkeit
DE2312736C3 (de) Anzeigevorrichtung für eine Aufzugsgruppe
DE4337356A1 (de) Regelungsverfahren und Schaltung zur Regelung eines Elektrofahrzeuges
WO2023099260A1 (fr) Procédé et dispositif de commande longitudinale d'un véhicule
DE1481711B2 (de) Geschwfndigkefts-SoHwertgeber für einen drehzahlgeregelten Aufzugsantrieb
DE1513641A1 (de) Fahr- und Bremssteuereinrichtung mit Zielbremsung,insbesondere fuer elektrische Triebfahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19881125

17Q First examination report despatched

Effective date: 19900525

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910918

Ref country code: NL

Effective date: 19910918

REF Corresponds to:

Ref document number: 67616

Country of ref document: AT

Date of ref document: 19911015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3864891

Country of ref document: DE

Date of ref document: 19911024

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2024577

Country of ref document: ES

Kind code of ref document: B3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920429

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3003360

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19930331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930421

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930423

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930712

Year of fee payment: 6

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940430

Ref country code: CH

Effective date: 19940430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19941031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3003360

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950511

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960322

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960327

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960409

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960430

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19960430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970411

Ref country code: AT

Effective date: 19970411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970412

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980618

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050411