EP0289432A1 - Procédé pour former à la surface d'un substrat en alliage d'aluminium une zone riche en aluminiure d'au moins un des éléments nickel, fer, cobalt - Google Patents

Procédé pour former à la surface d'un substrat en alliage d'aluminium une zone riche en aluminiure d'au moins un des éléments nickel, fer, cobalt Download PDF

Info

Publication number
EP0289432A1
EP0289432A1 EP88420105A EP88420105A EP0289432A1 EP 0289432 A1 EP0289432 A1 EP 0289432A1 EP 88420105 A EP88420105 A EP 88420105A EP 88420105 A EP88420105 A EP 88420105A EP 0289432 A1 EP0289432 A1 EP 0289432A1
Authority
EP
European Patent Office
Prior art keywords
substrate
nickel
rich
treatment
al3ni
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88420105A
Other languages
German (de)
English (en)
Inventor
Michel Badia
Clément Laviron
Guy-Michel Raynaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pechiney Recherche GIE
Original Assignee
Cegedur Societe de Transformation de lAluminium Pechiney SA
Pechiney Recherche GIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cegedur Societe de Transformation de lAluminium Pechiney SA, Pechiney Recherche GIE filed Critical Cegedur Societe de Transformation de lAluminium Pechiney SA
Publication of EP0289432A1 publication Critical patent/EP0289432A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the invention relates to a process for forming on the surface of an aluminum alloy substrate a zone rich in aluminide of at least one of the elements nickel, iron, cobalt.
  • These coatings are generally formed of several layers formed from the inside towards the outside of the part, by NiAl aluminide, Ni2Al3 aluminide and an alloy of aluminum and mischemetal.
  • Said layers are obtained either by immersing the part in a bath of heated metallic powder or in molten metal, or by spraying on the surface of the part metallic compounds capable, by a suitable heat treatment, of developing the desired compounds.
  • coated parts generally find their application in the aeronautical industry, in particular for the manufacture of reactor turbine components.
  • aluminides are used mainly as an intermediate layer ensuring the attachment of other materials.
  • aluminide itself as the ultimate coating.
  • these aluminides are endowed with remarkable properties such as high hardness, remarkable resistance to wear, to oxidation and to corrosion.
  • their elastic limit can be greatly improved by the addition of certain elements such as for example hafnium, molybdenum, zirconium. It therefore seems interesting to be able to develop these properties.
  • the Applicant proposes in the present invention a means making it possible to overcome these obstacles and, therefore, to go beyond the current methods of external supply of aluminides by developing the in situ formation of these compounds from simple elements aluminum, nickel, iron, cobalt.
  • This means is a process for forming on the surface of an aluminum alloy substrate a zone rich in aluminide of at least one of the elements nickel, iron, cobalt, characterized in that: - depositing at least one of said elements on the substrate without an intermediate sub-layer - The assembly is subjected to a diffusion heat treatment at a temperature above the starting melting temperature of at least one of the intermetallic compounds present in the substrate.
  • the process consists, not in depositing an aluminide on the substrate and then hanging it on said substrate but, in depositing a metallic element such as nickel, iron, cobalt and then transform it in situ into an aluminide using the aluminum from the substrate.
  • the deposition must be carried out directly on the substrate and not by means of sub-bonding layer which would prevent the formation of the aluminide.
  • the implementation of the method according to the invention therefore requires the use of a direct deposition method which nevertheless leads to suitable attachment which allows during the heat treatment to ensure the diffusion essential for the formation of the aluminide. .
  • the deposit is chosen at a thickness of less than 800 ⁇ m.
  • the second phase of the process according to the invention consists in subjecting the coated substrate to a heat treatment at a temperature which, for practical reasons of duration and of metal quality, does not exceed more than a few degrees the starting melting point of at least one of the intermetallic compounds present in the substrate.
  • the difference between the two temperatures is between 5 and 25 ° C because below 5 ° C there is no adhesion between the aluminide layers and the substrate and above 25 ° C, there is too much deformation of the substrate.
  • This treatment can be carried out in a conventional heat treatment oven where the coated substrate is kept for a variable period depending on the type of aluminide that one wants to form and consequently the properties that one wants to develop.
  • this duration is between 1 and 150 hours, range outside which either the thickness of the zone rich in aluminide is insignificant or changes too slowly.
  • the thickness and the composition of the aluminides formed are varied.
  • a zone rich in Al3Ni is overcome as a function of the duration of holding, first in contact with the substrate, surmounted by a zone rich in Al3Ni2 and an external zone rich in nickel. If the temperature maintenance is continued, the nickel-rich zone gradually disappears while the thicknesses of Al3Ni and Al3Ni2 vary in favor of Al3Ni. After a certain time, only the Al3Ni phase remains with a final thickness five times greater than the thickness of the initial nickel deposit.
  • the first, in contact with the aluminum substrate, consists of Al3Ni and has a thickness of 40 ⁇ m and a hardness of 700 Hv.
  • the second is above and made of Al3Ni2 with a thickness of 30 ⁇ m and a hardness of 1000 Hv.
  • Figure 1 attached shows at 200 magnification in section a micrographic view of the coating obtained at 530 ° C.
  • Example 2 The same sample was used as in Example 1 and after degreasing and depositing the same thickness of nickel, it was placed in an enclosure at 530 ° C for 15 hours.
  • the sample can be subjected to rapid cooling by water quenching without noticing any decohesion of the layer and then to an annealing heat treatment for 24 hours at 120 ° C. so as to restore the mechanical characteristics of the AA.7075 alloy in the T6 state while maintaining the intrinsic properties of the layer.
  • Figure 2 attached shows at 200 magnification in section a micrographic view of the coating obtained.
  • Example 2 The same sample was used as in Example 1, on which 100 ⁇ m of nickel was deposited.
  • a sample of AA.5086 alloy was used on which 20 ⁇ m of nickel was deposited according to the same method.
  • Example 4 The same results were obtained as in Example 4 with an AA.6061 alloy treated for 15 hours at 610 ° C, ie 15 ° C above the starting melting temperature.
  • Such coatings make it possible to improve the hardness, the resistance to wear, to oxidation and to corrosion of aluminum alloy substrates. This also makes it possible to obtain aluminum alloy parts having, with the proposed coating, an improved elastic modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

L'invention est relative à un procédé pour former à la surface d'un substrat en alliage d'aluminium une zone riche en aluminiure d'au moins un des éléments nickel, fer, cobalt.
Le procédé consiste à effectuer un dépôt électrochimique d'au moins un des éléments sur le substrat sans recourir à une couche intermédiaire puis à soumettre l'ensemble à un traitement thermique diffusion à une température supérieure à la température de fusion commençante d'au moins un des composés intermétalliques présents dans le substrat.
Il permet d'améliorer la dureté, la résistance à l'usure, à l'oxydation et à la corrosion ainsi que le module d'élasticité de substrats en alliage d'aluminium.

Description

  • L'invention est relative à un procédé pour former à la surface d'un substrat en alliage d'aluminium une zone riche en aluminiure d'au moins un des éléments nickel, fer, cobalt.
  • Il est connu de revêtir la surface de pièces en superalliages à base de nickel ou de cobalt d'aluminiure de nickel ou de cobalt afin d'améliorer leur tenue à la fatigue thermique et aux milieux sulfurés.
  • Ces revêtements sont généralement formés de plusieurs couches constituées de l'intérieur vers l'extérieur de la pièce, par de l'aluminiure NiAl, de l'aluminiure Ni₂Al₃ et un alliage d'aluminium et de mischemetal.
  • Lesdites couches sont obtenues soit en plongeant la pièce dans un bain de poudre métallique chauffée ou dans du métal fondu, soit en pulvérisant à la surface de la pièce des composés métalliques susceptibles par un traitement thermique convenable de développer les composés souhaités.
  • Ces pièces revêtues trouvent généralement leur application dans l'industrie aéronautique notamment pour la fabrication de composants de turbines de réacteur.
  • Dans le domaine des alliages d'aluminium, il est connu par le brevet US N° 3 888 746 de projeter de l'aluminiure de nickel NiAl ou Ni₃Al à la surface du trochoïde d'un moteur rotatif en alliage d'aluminium comme sous couche à un revêtement ultérieur d'acier puis de chrome. Cette couche d'aluminiure augmente la force de liaison entre l'aluminium et les couches extérieures.
    Il est également connu, par la demande de brevet allemand DE 2 545 242 dans lequel on protège les pistons ou les chemises en alliages d'aluminium contre le grippage en déposant un film de molybdène, d'améliorer l'adhérence de ce film par l'interposition d'une sous couche d'aluminiure de nickel déposée au moyen d'un chalumeau.
  • Bien que cela ne soit pas précisé, il s'agit vraisemblablement d'aluminiure de formule chimique Ni₃Al ou NiAl, les seuls actuellement disponibles dans le commerce.
  • Les documents cités montrent donc, qu'en ce qui concerne l'aluminium, les aluminiures sont utilisés principalement comme couche intermédiaire assurant l'accrochage d'autres matériaux. Mais, en aucun cas, il n'est question d'utiliser l'aluminiure lui-même comme revêtement ultime. Or, ces aluminiures sont doués de propriétés remarquables telles qu'une forte dureté, une résistance remarquable à l'usure, à l'oxydation et à la corrosion. De plus, leur limite élastique peut être fortement améliorée par l'addition de certains éléments tels que par exemple le hafnium, le molybdène, le zirconium. Il paraît donc intéressant de pourvoir mettre ces propriétés en valeur.
  • Ces documents montrent également que sur les alliages d'aluminium le revêtement est obtenu à partir d'un aluminiure ayant été fabriqué antérieurement au dépôt alors que sur les superalliages on peut, en raison de leur température de fusion élévée, développer des aluminiures in situ. D'où une possibilité d'application limitée aux aluminiures commercialisés et parmi lesquels l'Al₃Ni par exemple ne figure pas.
    En outre, le procédé de projection à chaud d'un aluminiure a pour inconvénients par rapport au procédé de formation in situ de conduire à une liaison moins bonne du revêtement avec le substrat, de créer des porosités induites et de former des couches épaisses par rapport à la granulométrie de la poudre projetée.
  • La demanderesse propose dans la présente invention un moyen permettant de s'affranchir de ces obstacles et, de ce fait, d'aller au-delà des méthodes actuelles d'apport extérieur d'aluminiures en développant la formation in situ de ces composés à partir des éléments simples aluminium, nickel, fer, cobalt.
  • Ce moyen est un procédé pour former à la surface d'un substrat en alliage d'aluminium une zone riche en aluminiure d'au moins un des éléments nickel, fer, cobalt caractérisé en ce que :
    - on effectue un dépôt d'au moins un desdits éléments sur le substrat sans sous couche intermédiaire
    - on soumet l'ensemble à un traitement thermique de diffusion à une température supérieure à la température de fusion commençante d'au moins un des composés intermétalliques présents dans le substrat.
  • Ainsi, à la différence des procédés de l'air antérieur, le procédé consiste, non pas à déposer un aluminiure sur le substrat puis à l'accrocher sur ledit substrat mais, à déposer un élément métallique tel que le nickel, le fer, le cobalt puis à le transformer in situ en aluminiure en utilisant l'aluminium du substrat.
  • Il est à noter que lors de la première phase du procédé, le dépôt doit être effectué directement sur le substrat et non par l'intermédiaire de sous couche d'accrochage qui empêcherait la formation de l'aluminiure.
  • Dans le cas de dépôts électrolytiques, il est connu que la plupart des procédés de dépôt sur un substrat aluminium d'un métal comme le nickel par exemple nécessitent, pour obtenir un bon accrochage, le passage par des sous couches telles que par exemple de bronze et/ou de cuivre obtenues en bain cyanure.
  • Ces procédés ne sont pas recommandés et on utilisera de préférence le procédé de dépôt électronchimique revendiqué dans l'US 4 492 615 et qui consiste à décaper le substrat en le soumettant à une tension positive dans une solution de chlorure de nickel, d'acide borique et d'acide fluorhydrique avant d'effectuer le dépôt.
  • Dans tous les cas, la mise en oeuvre du procédé selon l'invention oblige donc à recourir à une méthode de dépôt direct conduisant néanmoins à un accrochage convenable qui permette lors du traitement thermique d'assurer la diffusion indispensable à la formation de l'aluminiure.
  • Pour assurer une diffusion régulière et les améliorations souhaitées, le dépôt est choisi à une épaisseur inférieure à 800 µm.
  • En ce qui concerne la deuxième phase du procédé selon l'invention, elle consiste à soumettre le substrat revêtu à un traitement thermique à une température qui, pour des raisons pratiques de durée et de qualité métal, n'excède pas de plus de quelques degrés la température de fusion commençante d'au moins un des composés intermétalliques présents dans le substrat. De préférence, l'écart entre les deux températures est compris entre 5 et 25°C car en-dessous de 5°C il n'y a pas d'adhérence entre les couches d'aluminiure et le substrat et au-dessus de 25°C, il y a déformation trop importante du substrat.
  • Ce traitement peut être effectué dans un four conventionnel de traitement thermique où on maintient le substrat revêtu pendant une durée variable suivant le type d'aluminiure qu'on veut former et par suite les propriétés qu'on veut développer. De manière préférentielle, cette durée est comprise entre 1 et 150 heures, fourchette en dehors de laquelle soit l'épaisseur de la zone riche en aluminiure est insignifiante ou évolue trop lentement. Suivant la durée du maintien en température, on fait varier à la fois l'épaisseur et la composition des aluminiures formés.
  • Ainsi, dans le cas particulier des aluminiures de nickel, on obtient en fonction de la durée de maintien d'abord au contact du substrat une zone riche en Al₃Ni surmontée d'une zone riche en Al₃Ni₂ et d'une zone externe riche en nickel.
    Si on continue le maintien en température, la zone riche en nickel disparaît progressivement tandis que les épaisseurs d'Al₃Ni et d'Al₃Ni₂ varient au profit de Al₃Ni.
    Au bout d'un certain temps, seule la phase Al₃Ni subsiste avec une épaisseur finale cinq fois plus importante que l'épaisseur du dépôt initial de nickel.
  • On conçoit l'intérêt de ce procédé dans lequel, par un simple chauffage, dans des conditions telles qu'elles ne modifient pas la forme du substrat, on peut faire évoluer les propriétés du revêtement dans un domaine très étendu.
  • L'invention peut être illustrée à l'aide de cinq exemples d'applications suivants:
  • EXEMPLE 1
  • Après dégraissage selon les méthodes conventionnelles, un échantillon en alliage AA.7075 suivant les normes d'Aluminium Association, sous forme de tôle laminée (état T6) a été revêtu d'un dépôt de nickel d'une épaisseur de 20 µm selon la méthode décrite dans l'US 4 492 615.
    Cet échantillon revêtu a ensuite été placé dans une enceinte à 530°C pendant 5 heures de manière à dépasser sa température de fusion commençante qui est voisine de 520°C à l'état homogénéisé.
  • On a observé la formation de deux couches superposées homogènes et adhérentes:
    - la première, en contact avec le substrat d'aluminium, est constituée d'Al₃Ni et présente une épaisseur de 40 µm et une dureté de 700 Hv.
    - la deuxième est au-dessus et constituée d'Al₃Ni₂ avec une épaisseur de 30 µm et une dureté de 1000 Hv.
  • Un échantillon revêtu, identique au précédent, placé dans une enceinte à 510°C pendant 5 heures à conduit à la formation de couches non adhérentes.
  • La figure 1 ci-jointe montre au grossissement 200 en coupe une vue micrographique du revêtement obtenu à 530°C.
  • EXEMPLE 2
  • On a utilisé le même échantillon que dans l'exemple 1 et après dégraissage et dépôt de la même épaisseur de nickel, on l'a placé dans une enceinte à 530°C pendant 15 heures.
  • Au cours de ce traitement thermique, on a observé une diffusion conduisant à une couche homogène et adhérente d'Al₃Ni faisant 100 µm d'épaisseur et présentant une dureté de 700 Hv.
  • A la sortie de l'enceinte, on peut soumettre l'échantillon à un refroi­dissement rapide par trempe à l'eau sans constater de décohésion de la couche puis à un traitement thermique de revenu durant 24 heures à 120°C de manière à restaurer les caractéristiques mécaniques de l'alliage AA.7075 à l'état T6 tout en maintenant les propriétés intrinsèques de la couche.
  • La figure 2 ci-jointe montre au grossissement 200 en coupe une vue micrographique du revêtement obtenu.
  • EXEMPLE 3
  • On a utilisé le même échantillon que dans l'exemple 1 sur lequel on a déposé 100 µm de nickel.
  • Après un traitement thermique de 120 heures à 530°C, on a obtenu une couche homogène d'Al₃Ni de 500 µm d'épaisseur.
  • EXEMPLE 4
  • On a utilisé un échantillon en alliage AA.5086 sur lequel on a déposé 20 µm de nickel selon la même méthode.
  • On l'a ensuite placé pendant une durée de 5 heures dans une enceinte à 600°C soit 15°C de plus que la température de fusion commençante.
  • On a obtenu une couche d'Al₃Ni de 100 µm.
  • EXEMPLE 5
  • On a obtenu les mêmes résultats que dans l'exemple 4 avec un alliage AA.6061 traité pendant 15 heures à 610°C soit 15°C de plus que la température de fusion commençante.
  • De tels revêtements permettent d'améliorer la dureté, la résistance à l'usure, à l'oxydation et à la corrosion de substrats en alliage d'aluminium. Cela permet aussi d'obtenir des pièces en alliage d'aluminium présentant, avec le revêtement proposé, un module d'élasticité amélioré.

Claims (10)

1 - Procédé pour former à la surface d'un substrat en alliage d'aluminium une zone riche en aluminiure d'au moins un des éléments nickel, fer, cobalt caractérisé en ce que l'
- on effectue du dépôt d'au moins un desdits éléments sur le substrat sans sous couche intermédiaire,
- on soumet l'ensemble à un traitement thermique de diffusion pendant une durée comprise entre 1 et 150 heures à une température supérieure à la température de fusion commençante d'au moins un des composés intermétalliques présents dans le substrat.
2 - Procédé selon la revendication 1 caractérisé en ce que le dépôt est effectué par voie électrochimique.
3 - Procédé selon la revendication 2 caractérisé en ce que le substrat est décapé par voie électrolytique avant dépôt.
4 - Procédé selon la revendication 3 caractérisé en ce que dans le cas où l'élément déposé est le nickel, le substrat est décapé en le soumettant à une tension positive dans une solution de chlorure de nickel, d'acide borique et d'acide fluorhydrique.
5 - Procédé selon la revendication 1 caractérisé en ce que le dépôt à une épaisseur inférieure à 800 µm.
6 - Procédé selon la revendication 1 caractérisé en ce que lors du traitement thermique, l'écart entre la température de traitement et la température de fusion commençante est compris entre 5 et 25°C.
7 - Procédé selon la revendication 1 caractérisé en ce que le traitement thermique s'effectue par chauffage dans un four conventionnel.
8 - Procédé selon la revendication 1 caractérisé en ce que dans le cas où l'élément déposé est le nickel, la durée de traitement est réglée de manière à développer la formation au contact du substrat d'une zone riche en Al₃Ni, recouverte d'une zone riche en Al₃Ni₂ et d'une zone riche en nickel.
9 - Procédé selon la revendication 8 caractérisé en ce que la durée du traitement est prolongée, de manière à obtenir uniquement une zone riche en Al₃Ni recouverte d'une zone riche en Al₃Ni₂.
10 - Procédé selon la revendication 9 caractérisé en ce que la durée de traitement est prolongée de manière à obtenir exclusivement une zone riche en Al₃Ni.
EP88420105A 1987-03-30 1988-03-29 Procédé pour former à la surface d'un substrat en alliage d'aluminium une zone riche en aluminiure d'au moins un des éléments nickel, fer, cobalt Withdrawn EP0289432A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8704589 1987-03-30
FR8704589 1987-03-30

Publications (1)

Publication Number Publication Date
EP0289432A1 true EP0289432A1 (fr) 1988-11-02

Family

ID=9349684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88420105A Withdrawn EP0289432A1 (fr) 1987-03-30 1988-03-29 Procédé pour former à la surface d'un substrat en alliage d'aluminium une zone riche en aluminiure d'au moins un des éléments nickel, fer, cobalt

Country Status (1)

Country Link
EP (1) EP0289432A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892088A2 (fr) * 1997-07-04 1999-01-20 Nippon Platec Kabushiki Kaisha Procédé de fabrication de matériaux en aluminium avec un dépÔt électrolytique de fer
WO2005045102A2 (fr) * 2003-11-07 2005-05-19 Aluminal Oberflächentechnik Gmbh & Co. Kg Revetement de substrats
EP1533401A1 (fr) * 2003-11-14 2005-05-25 Aluminal Oberflächtentechnik GmbH & Co. KG Electroplacage de substrats suivi d'une étape de diffusion
DE19962641B4 (de) * 1999-12-23 2012-04-19 Erlus Aktiengesellschaft Verfahren zur Erzeugung einer Mikrostruktur auf einer metallischen Oberfläche und mikrostrukturierte metallische Oberfläche

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2362026A1 (de) * 1973-12-13 1975-06-26 Aluminium Werke Ag Verfahren zur oberflaechenbehandlung von werkstuecken und halbzeugen aus aluminium oder aluminiumlegierungen
EP0093681A1 (fr) * 1982-04-29 1983-11-09 Aluminium Pechiney Procédé et dispositif pour revêtir une grande longueur de métal d'une couche métallique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2362026A1 (de) * 1973-12-13 1975-06-26 Aluminium Werke Ag Verfahren zur oberflaechenbehandlung von werkstuecken und halbzeugen aus aluminium oder aluminiumlegierungen
EP0093681A1 (fr) * 1982-04-29 1983-11-09 Aluminium Pechiney Procédé et dispositif pour revêtir une grande longueur de métal d'une couche métallique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. WERNICK et al.: "The suface treatment and finishing of aluminium and its alloys", vol. 2, 4ième édition, 1972, pages 874,875, Robert Draper Ltd, Teddington, GB, 1972 *
S. WERNICK et al.: "The suface treatment and finishing of aluminium and its alloys", vol. 2, édition 4ième, pages 874,875, Robert Draper Ltd, Teddington, GB, 1972 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892088A2 (fr) * 1997-07-04 1999-01-20 Nippon Platec Kabushiki Kaisha Procédé de fabrication de matériaux en aluminium avec un dépÔt électrolytique de fer
EP0892088A3 (fr) * 1997-07-04 1999-02-03 Nippon Platec Kabushiki Kaisha Procédé de fabrication de matériaux en aluminium avec un dépôt électrolytique de fer
DE19962641B4 (de) * 1999-12-23 2012-04-19 Erlus Aktiengesellschaft Verfahren zur Erzeugung einer Mikrostruktur auf einer metallischen Oberfläche und mikrostrukturierte metallische Oberfläche
WO2005045102A2 (fr) * 2003-11-07 2005-05-19 Aluminal Oberflächentechnik Gmbh & Co. Kg Revetement de substrats
WO2005045102A3 (fr) * 2003-11-07 2006-02-16 Aluminal Oberflaechentechnik Revetement de substrats
EP1533401A1 (fr) * 2003-11-14 2005-05-25 Aluminal Oberflächtentechnik GmbH & Co. KG Electroplacage de substrats suivi d'une étape de diffusion

Similar Documents

Publication Publication Date Title
KR102327491B1 (ko) 합금 코팅강판 및 그 제조방법
CA2977173C (fr) Procede de fabrication d'une piece phosphatable a partir d'une tole revetue d'un revetement a base d'aluminium et d'un revetement de zinc
EP0370838B1 (fr) Procédé de protection de surface de pièces métalliques contre la corrosion à température élevée, et pièce traitée par ce procédé
CH661287A5 (fr) Procede de preparation par diffusion d'une couche protectrice sur des alliages a base de nickel, cobalt et fer.
CH660028A5 (fr) Procede de preparation par diffusion d'une couche protectrice sur des alliages a base de nickel, cobalt et fer.
CA2868953C (fr) Procede d'obtention d'un revetement d'aluminiure de nickel de type .beta.-nia1 sur un substrat metallique, et piece munie d'un tel revetement
US8297094B2 (en) Article for improved adhesion of fatigue-prone components
LU85453A1 (fr) Produit en acier galvanise a chaud,notamment destine a etre phosphate,et procede de preparation de ce produit
EP0289432A1 (fr) Procédé pour former à la surface d'un substrat en alliage d'aluminium une zone riche en aluminiure d'au moins un des éléments nickel, fer, cobalt
KR100286661B1 (ko) 알루미늄 용융도금 스테인레스강판의 전처리방법
JPH02125833A (ja) 溶融亜鉛メッキ浴中浸漬部材及びその製造方法
CN1208493C (zh) 铝合金镀覆钢板的镀覆方法
JP3711510B2 (ja) クロムを含む鉄系合金をメッキしたアルミニウム材料の製法とアルミニウム材料
JPS64466B2 (fr)
JP3207958B2 (ja) 複合Al合金めっき鋼板及びその製造方法
JP2000256825A (ja) 亜鉛・アルミニウム熔融浴用摺動部材
JPH05345988A (ja) チタン合金材のメッキ方法
JPS6280260A (ja) 鋼板の表面処理方法
JPH02290961A (ja) 加工性に優れた蒸着a1めっき鋼板の製造方法
JPS63101518A (ja) すべり軸受材の製造方法
JPH0196369A (ja) 耐食性,加工性および耐熱性に優れたAl合金蒸着めっき材料,及びその製造方法
CH692151A5 (fr) Procédé de dépôt d'un revêtement sur un objet, en particulier un objet d'habillage d'un mouvement horloger.
JPS63157856A (ja) 真空蒸着めつき鋼材の製造方法
BE821701A (fr) Revetements de surface anticorrosion pour objets en metaux ferreux a joint brases.
JPH02118086A (ja) 加工性、塗装性に優れた合金化溶融亜鉛めっき鋼板及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19881119

17Q First examination report despatched

Effective date: 19900302

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PECHINEY RECHERCHE (GROUPEMENT D'INTERET ECONOMIQU

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19920113