EP0288350B1 - Pont constitué d'un tablier et de moyens pour le supporter notamment pont haubané de grande portée, et son procédé de construction - Google Patents
Pont constitué d'un tablier et de moyens pour le supporter notamment pont haubané de grande portée, et son procédé de construction Download PDFInfo
- Publication number
- EP0288350B1 EP0288350B1 EP19880400740 EP88400740A EP0288350B1 EP 0288350 B1 EP0288350 B1 EP 0288350B1 EP 19880400740 EP19880400740 EP 19880400740 EP 88400740 A EP88400740 A EP 88400740A EP 0288350 B1 EP0288350 B1 EP 0288350B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- diagonals
- chord
- bridge
- bridge according
- deck
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 11
- 238000010276 construction Methods 0.000 title description 7
- 239000004567 concrete Substances 0.000 claims description 33
- 230000002787 reinforcement Effects 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 16
- 239000000725 suspension Substances 0.000 claims description 15
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 238000007688 edging Methods 0.000 claims 4
- 238000004873 anchoring Methods 0.000 claims 2
- 241001481828 Glyptocephalus cynoglossus Species 0.000 claims 1
- 230000000717 retained effect Effects 0.000 claims 1
- 238000005304 joining Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011513 prestressed concrete Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 241000920340 Pion Species 0.000 description 2
- 244000245420 ail Species 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 230000002311 subsequent effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D11/00—Suspension or cable-stayed bridges
- E01D11/04—Cable-stayed bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/14—Towers; Anchors ; Connection of cables to bridge parts; Saddle supports
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2/00—Bridges characterised by the cross-section of their bearing spanning structure
- E01D2/04—Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
- E01D21/10—Cantilevered erection
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/20—Concrete, stone or stone-like material
- E01D2101/24—Concrete
- E01D2101/26—Concrete reinforced
- E01D2101/268—Composite concrete-metal
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/20—Concrete, stone or stone-like material
- E01D2101/24—Concrete
- E01D2101/26—Concrete reinforced
- E01D2101/28—Concrete reinforced prestressed
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/20—Concrete, stone or stone-like material
- E01D2101/24—Concrete
- E01D2101/26—Concrete reinforced
- E01D2101/28—Concrete reinforced prestressed
- E01D2101/285—Composite prestressed concrete-metal
Definitions
- the present invention relates to a new bridge structure consisting of an apron and means for supporting this apron, and in particular to a new cable-stayed bridge structure of large span, as well as to a method of constructing such a bridge.
- suspension bridges In the current state of the art, the crossing of large spans uses either suspension bridges or cable-stayed bridges.
- Suspension bridges are economically justified for exceptional spans, but their flexibility poses problems for traffic, especially rail, and for aeroelastic stability.
- Cable-stayed bridges for their part, do not exhibit the wind sensitivity of suspension bridges, particularly if the deck is constructed of concrete, a material which gives the structure sufficient weight and great rigidity. The weight, however, limits the spans, so that beyond the field of application of concrete cable-stayed bridges, decks with a mixed steel / concrete structure or entirely metallic decks have been used.
- Lattice structures can also be used, because they make it possible to economically obtain great bending and torsional rigidity, while ensuring maximum transparency with respect to the wind.
- document FR-A-1237124 had described a truss bridge bridge structure made up of tubular members, namely two upper longitudinal members and one lower longitudinal member, connected together by members, called diagonal members, oblique to the times with respect to the vertical and the direction of the bridge.
- the connection between the diagonals and the longitudinal members is obtained by assembled half-shells, including the longitudinal member and receiving the end of the diagonals.
- the members can be stiffened by longitudinal prestressing cables and filled with possibly prestressed concrete.
- the object of the invention is to overcome all the drawbacks mentioned above, by proposing a new structure which is both light, rigid, and easy to produce, therefore economical.
- spatial lattice is meant a structure made up of elements which can be compared to parts in plane or in line segments and linked together, this structure not being included in a plane.
- nodes the junction points of plane parts and / or line segments.
- the parts of the members which are subjected to significant tensile forces are prestressed by means which are specific to each of said members.
- the deck that has just been described can be integrated into bridges of various designs.
- a cable-stayed bridge is preferred, and in this case provision is made for the means for supporting the deck to be constituted by guy wires connecting support masts to nodes of the space trellis formed by the junction points. diagonals with the upper chord.
- the bridge comprises at least two continuous lower members, and an equal number of spatial trusses comprising diagonals whose axes converge on the axis of a lower member, said members being interconnected by a bracing, these spatial trusses each including a part of the upper chord, and advantageously, that this bridge comprises two lower chords and two spatial trusses and in that the means for supporting the deck consist of guy lines connecting the nodes of the spatial trusses which are located in the axial plane of the bridge to support masts.
- the means for supporting the deck consist of guy wires connecting support masts to nodes of the spatial trellis formed by the points of junction of the diagonals with the lower member.
- the invention can also be applied to bridges with much smaller spans, and not guyed.
- the means for supporting the deck consist of transverse supports on which the upper frame rests, and additional prestressing frames are provided which follow a polygonal path connecting two successive transverse supports passing through reference points located on the lower member, and, advantageously, said additional prestressing reinforcements are not in the axial plane of the bridge.
- folded sheet gussets comprising two wings which are each in a longitudinal plane containing the axis of diagonals which are fixed on it, the gusset being fixed on the lower chord so that the fold axis of the gusset wings coincides with the longitudinal axis of the lower chord.
- the lower member is also made for the lower member to be formed from successive sections assembled, and at least some of the gussets are fixed to the points of assembly of successive sections.
- gussets comprising a lower wing situated in a longitudinal plane containing the axis of the diagonals which are fixed on him, and an upper wing which is fixed on the upper chord, so that the fold axis of the wings of the gusset is in the median plane of the upper chord.
- the upper chord may also be made for the upper chord to constitute a concrete slab reinforced by continuous metal sections and prestressing reinforcements arranged perpendicularly to these metal sections.
- the upper chord of the structure forming a pavement slab or carrying railway traffic is made of reinforced or prestressed concrete; the lower chord can be either in reinforced or prestressed concrete, or in a mixed steel / concrete structure, or entirely metallic. It is advantageous to use a metal tube filled with concrete, the characteristics of which are described further on.
- the lower and upper members are interconnected by a series of diagonals located in two oblique planes forming an isosceles triangle in the cross section.
- the two edges of the upper slab have the anchors of the suspension shrouds at regular intervals, at the point of intersection of the diagonals mentioned above.
- the invention further provides an original construction method, adapted to the bridge structure which has just been described.
- a suspension guy wire is also fixed on said new link.
- the bridge according to the invention comprises an apron 1 consisting of a series of triangular spatial elements suspended from guy lines 2, at regularly spaced points. These shrouds are fixed towards the top of the support masts 3. For the sake of clarity, the central span is shown with only eight elements suspended by three shrouds on either side of the key. In long-span bridges, the spacing of the stays is variable from 10 to 20 m and the number of stays in the central half-span can reach 20 to 25.
- the cross section of the deck 1 shown in Figure 3 is an isosceles triangle consisting of an upper slab (or chord) 4, a lower chord 5 and diagonals 6, without intermediate supports of the upper slab 4 between the two banks of the bridge.
- the plan view of FIG. 4 also shows that the planes of the diagonals are cut into all identical triangles, the vertices of which are alternately located on the edges of the upper slab 4 and on the lower central member 5.
- the lower member 5 the details of which are given in FIG. 6, is broken down, for the production of the structure, into sections of equal length separated by joints allowing rapid assembly during construction.
- the assembly between successive sections of the lower member is made by flanges 10 placed opposite one another and joined longitudinally by high-strength bolts 11.
- the end flanges of each section further include a gusset 12 folded according to the plane of the oblique diagonals allowing assembly by welding of these with the lower main chord.
- the flanges finally include and as necessary the anchors of the external prestress of the lower chord.
- the axis of folding of the gusset 12 coincides with the axis of the tube 7.
- At least some of the sections of the tube are filled with concrete.
- the tube filling concrete if it exists, can be used before or after assembling the frame in the structure. In both cases, it is advantageous to compress the filling concrete inside its metallic envelope to combat the subsequent effects of shrinkage and improve the relative adhesion of the two materials. Contrary to works using a composite metal tube / concrete filling member where the variations in force and consequently the adhesion stresses occur continuously along the member, in the object of the invention, such variations in force appear only at the right of the connecting nodes with the diagonals, in an area where the arrangements used make it impossible for relative sliding of the concrete and the tube. For this purpose, stiffeners or connectors 13 are provided in the vicinity of the flange.
- an injection device 14 is provided in the joint between two successive sections, to ensure perfect transmission of the longitudinal forces in the filling concrete .
- the essential element of the assembly is a gusset 15 in folded sheet, the upper part of which coincides with the suspension plane of the shrouds 2, and the lower part is located in the plane of the oblique diagonals 6.
- the shroud is fixed there by known means such as yokes 16 and axis 17 or, depending the variant shown in Figure 13, by a splitting of the gusset allowing the fixing of the lower anchor of the stay.
- the diagonals are easily linked to the gusset by welding along a slot made in the tube.
- the fold edge 18 of the gusset is located in the mean plane 19 of the floor slab.
- the gusset also carries the anchors 20, 21 of the frames 22, 23 of the diagonal 6 and of the upper slab 4.
- the transmission of all the forces is thus carried out along a direct path, eliminating any welding or any assembly working at tearing which always presents a potential risk.
- the continuous gussets provided ensure an interpenetration of the members and the diagonals to achieve the direct path of the forces mentioned above.
- the proposed arrangements ensure direct transfer of all the loads and complete continuity of all the efforts of the shrouds, the two members and the diagonals.
- the shrouds 2 pass through the upper chord 4 through guides 26 designed to dampen the vibrations of the system, and are anchored in the lower chord, at the location of the nodes of the spatial trellis formed by the junction of the diagonals with the lower chord.
- FIG. 19 there are two parallel lower members 5, and two spatial trusses each consisting of a lower member, of one half of the upper member 4 which is above this lower member, and of diagonals 6 which connect each lower member to the upper member half which corresponds to it.
- a bracing 27 connects the two lower members 5 and stiffens the assembly by ensuring the continuity of the external contour and the stability of the cross section, and the torsional rigidity of the deck.
- the floor slab itself is made up of a mixed structure comprising continuous metal sections and concrete placed between them, the materials being joined together by a prestress orthogonal to the direction of the sections.
- the confinement conferred on the concrete of the slab by the metal profiles allows the minimum thickness of the slab to be reduced to 0.10 m without the risk of puncturing under the concentrated loads of vehicles.
- the method according to the invention can be extended to making non-guyed spans.
- Figures 22 and 23 describe the construction of a typical span in elevation and cross-section respectively.
- the longitudinal bending strength is imparted in the members by prestressing reinforcements such as 23 in the upper member and 9 in the lower member, supplemented as necessary by external prestressing members 30 of polygonal outline and overlapping at right supports constituted by crosspieces 31 carried by piles 32 and adjacent to diagonal junctions 6 at the upper frame 4.
- prestressing reinforcements 30 connect points 33 located on the crosspieces 31 near their ends, this is that is to say in the vicinity of nodes of the spatial lattice formed by the junction of the diagonals to the upper chord, passing through deflection points 34 which are other nodes of the spatial lattice, constituted by the junction of the diagonals to the lower chord .
- the resistance to cutting forces is supplemented by a prestressing of the diagonals such as 22, according to an embodiment identical to that which has been described for a guyed structure.
- the devices of the invention allow a remarkably simple embodiment, shown schematically in FIGS. 24 to 27.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bridges Or Land Bridges (AREA)
- Body Structure For Vehicles (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
- Load-Engaging Elements For Cranes (AREA)
- Road Paving Structures (AREA)
- Floor Finish (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88400740T ATE67256T1 (de) | 1987-03-27 | 1988-03-25 | Bruecke, bestehend aus einem deck und dessen traegern, insbesondere schraegseilbruecke und verfahren zu ihrer herstellung. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8704338 | 1987-03-27 | ||
FR8704338A FR2612963B1 (fr) | 1987-03-27 | 1987-03-27 | Pont constitue d'un tablier et de moyens pour le supporter, notamment pont haubane de grande portee et son procede de construction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0288350A1 EP0288350A1 (fr) | 1988-10-26 |
EP0288350B1 true EP0288350B1 (fr) | 1991-09-11 |
Family
ID=9349520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19880400740 Expired - Lifetime EP0288350B1 (fr) | 1987-03-27 | 1988-03-25 | Pont constitué d'un tablier et de moyens pour le supporter notamment pont haubané de grande portée, et son procédé de construction |
Country Status (11)
Country | Link |
---|---|
US (1) | US4993094A (pt) |
EP (1) | EP0288350B1 (pt) |
JP (1) | JPH0733644B2 (pt) |
AT (1) | ATE67256T1 (pt) |
CA (1) | CA1292600C (pt) |
DE (1) | DE3864726D1 (pt) |
ES (1) | ES2026263T3 (pt) |
FR (1) | FR2612963B1 (pt) |
GR (1) | GR3003029T3 (pt) |
PT (1) | PT87107A (pt) |
WO (1) | WO1988007604A1 (pt) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2626910B1 (fr) * | 1988-02-05 | 1990-06-29 | Muller Jean | Dispositif d'accrochage d'un hauban sur un tablier en beton d'un pont, et pont equipe de tels dispositifs |
FR2626909A1 (fr) * | 1988-02-05 | 1989-08-11 | Muller Jean | Pont haubane et son procede de construction |
FR2629111B1 (fr) * | 1988-03-25 | 1990-11-30 | Muller Jean | Tablier pour pont de grande longueur |
FR2661433B1 (fr) * | 1990-04-26 | 1994-06-03 | Scerer | Dalle de chaussee d'un pont, notamment de grande portee. |
US5680664A (en) * | 1993-05-01 | 1997-10-28 | Maunsell Structural Plastics Ltd. | Bridge structure |
DE19510582C2 (de) * | 1995-03-23 | 1998-07-16 | Krupp Foerdertechnik Gmbh | Aus Einzelteilen zusammensetzbare verlegbare Brücke |
US6070533A (en) | 1995-08-02 | 2000-06-06 | Pugin; Andre O. | Elevated cableway system |
DE69727842T2 (de) * | 1997-12-05 | 2004-07-22 | Aerobus International, Inc., Houston | Erhöhte Seilbahn |
CA2427152A1 (en) * | 2003-04-29 | 2004-10-29 | Mamdouh M. El-Badry | Corrosion-free bridge system |
US7708497B2 (en) * | 2006-10-25 | 2010-05-04 | Waterfront Construction, Inc. | Floating platform and method of constructing the same |
US8297017B2 (en) * | 2008-05-14 | 2012-10-30 | Plattforms, Inc. | Precast composite structural floor system |
US8161691B2 (en) | 2008-05-14 | 2012-04-24 | Plattforms, Inc. | Precast composite structural floor system |
US8453406B2 (en) | 2010-05-04 | 2013-06-04 | Plattforms, Inc. | Precast composite structural girder and floor system |
US8381485B2 (en) | 2010-05-04 | 2013-02-26 | Plattforms, Inc. | Precast composite structural floor system |
KR101029165B1 (ko) * | 2010-12-30 | 2011-04-12 | 한우물중공업(주) | 교량용 하이브리드 거더 |
CN102644241B (zh) * | 2012-04-05 | 2014-07-30 | 广东省长大公路工程有限公司 | 斜拉桥的空间曲面索塔 |
US9422680B2 (en) | 2014-04-14 | 2016-08-23 | Guido FURLANETTO | Deck |
CN104947588B (zh) * | 2015-07-06 | 2016-09-21 | 清华大学 | 钢管混凝土-组合梁斜拉桥桥面体系及其施工方法 |
KR101794683B1 (ko) * | 2015-10-21 | 2017-11-07 | 한국철도기술연구원 | 프리캐스트 바닥판과 충전강관 트러스 거더의 조립을 이용한 교량의 런칭시공방법 |
AT520386B1 (de) * | 2017-08-24 | 2019-10-15 | Univ Wien Tech | Verfahren zur Herstellung einer integralen Brücke und integrale Brücke |
US11926977B2 (en) * | 2017-11-21 | 2024-03-12 | Allied Steel | Bridge truss system |
CN108374338B (zh) * | 2018-04-04 | 2023-08-29 | 中铁第四勘察设计院集团有限公司 | 一种无下横梁的斜拉桥或悬索桥桥塔 |
CN109610291B (zh) * | 2018-12-26 | 2024-04-02 | 中国船舶重工集团应急预警与救援装备股份有限公司 | 一种大跨度柔性增强应急桥及其平推架设方法 |
CN113235442B (zh) * | 2021-05-20 | 2022-05-31 | 广西路桥工程集团有限公司 | 一种自带预压组件的新型装配式0#块施工托架 |
CN113235443B (zh) * | 2021-05-20 | 2022-05-31 | 广西路桥工程集团有限公司 | 一种装配式0#块施工托架的预压施工方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1237124A (fr) * | 1958-07-23 | 1960-07-29 | Perfectionnements apportés aux ouvrages ou ensembles du genre de ceux comportant des membrures de grande section | |
DE1152436B (de) * | 1961-05-13 | 1963-08-08 | Beteiligungs & Patentverw Gmbh | Isotroper Tragkoerper fuer den Brueckenbau od. dgl. |
US3712010A (en) * | 1970-08-17 | 1973-01-23 | Univ Iowa State Res Found | Prestressed metal and concrete composite structure |
DE2413815C2 (de) * | 1974-03-22 | 1975-09-04 | Dyckerhoff & Widmann Ag, 8000 Muenchen | Verfahren zum Herstellen einer Schrägseilbrücke im abschnittsweisen freien Vorbau |
US4161088A (en) * | 1977-11-11 | 1979-07-17 | Gugliotta Paul F | Pipe-and-ball truss array |
US4489659A (en) * | 1979-01-10 | 1984-12-25 | Hitachi, Ltd. | Truss-type girder for supporting a movable body |
US4282619A (en) * | 1979-11-16 | 1981-08-11 | Havens Steel Company | Truss structure |
FR2494741A1 (fr) * | 1980-11-25 | 1982-05-28 | Bouygues Sa | Structure precontrainte en beton comprenant deux plaques reliees par un treillis, procede pour la fabriquer, elements pour la mise en oeuvre du procede et application a la construction d'un element de tablier de pont, de couverture ou de plancher |
DE3132398C2 (de) * | 1981-08-17 | 1985-05-09 | Dyckerhoff & Widmann AG, 8000 München | Versteifungsträger für eine Schrägseilbrücke |
FR2526062A1 (fr) * | 1982-04-28 | 1983-11-04 | Ministere Transports | Procede de construction de pont a poutrelles enrobees et precontrainte transversale, et poutrelles pour la mise en oeuvre du procede |
US4543008A (en) * | 1982-10-29 | 1985-09-24 | Conoco Inc. | Stiffening for complex tubular joints |
FR2556377B1 (fr) * | 1983-12-07 | 1986-10-24 | Bouygues Sa | Treillis de pont, travee de pont comportant de tels treillis et procede pour construire la travee |
FR2564871B1 (fr) * | 1984-05-25 | 1986-08-29 | Travaux Publics Indl Entrepris | Poutre a membrures de beton precontraint et ame d'acier |
FR2576053B1 (fr) * | 1985-01-16 | 1988-04-15 | Campenon Bernard Sa Francaise | Poutre en treillis, notamment pour realiser un pont |
DK153507C (da) * | 1986-01-23 | 1988-12-19 | Kjeld Thomsen | Fremgangsmaade ved samling af i tvaersnit cirkulaere gitterstaenger af staal samt et beslag til brug ved udoevelse af fremgangsmaaden |
-
1987
- 1987-03-27 FR FR8704338A patent/FR2612963B1/fr not_active Expired - Lifetime
-
1988
- 1988-03-24 CA CA000562339A patent/CA1292600C/fr not_active Expired - Lifetime
- 1988-03-25 WO PCT/FR1988/000157 patent/WO1988007604A1/fr unknown
- 1988-03-25 ES ES198888400740T patent/ES2026263T3/es not_active Expired - Lifetime
- 1988-03-25 EP EP19880400740 patent/EP0288350B1/fr not_active Expired - Lifetime
- 1988-03-25 US US07/297,865 patent/US4993094A/en not_active Expired - Fee Related
- 1988-03-25 DE DE8888400740T patent/DE3864726D1/de not_active Expired - Lifetime
- 1988-03-25 JP JP63503057A patent/JPH0733644B2/ja not_active Expired - Lifetime
- 1988-03-25 AT AT88400740T patent/ATE67256T1/de not_active IP Right Cessation
- 1988-03-28 PT PT87107A patent/PT87107A/pt unknown
-
1991
- 1991-10-30 GR GR91400986T patent/GR3003029T3/el unknown
Also Published As
Publication number | Publication date |
---|---|
US4993094A (en) | 1991-02-19 |
JPH0733644B2 (ja) | 1995-04-12 |
ATE67256T1 (de) | 1991-09-15 |
DE3864726D1 (de) | 1991-10-17 |
GR3003029T3 (en) | 1993-02-17 |
WO1988007604A1 (fr) | 1988-10-06 |
FR2612963B1 (fr) | 1991-07-26 |
CA1292600C (fr) | 1991-12-03 |
EP0288350A1 (fr) | 1988-10-26 |
FR2612963A1 (fr) | 1988-09-30 |
JPH01502921A (ja) | 1989-10-05 |
PT87107A (pt) | 1989-03-30 |
ES2026263T3 (es) | 1992-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0288350B1 (fr) | Pont constitué d'un tablier et de moyens pour le supporter notamment pont haubané de grande portée, et son procédé de construction | |
EP0340051B1 (fr) | Tablier pour pont de grande longueur | |
EP0053965B1 (fr) | Structure précontrainte en béton, procédé pour la fabriquer et éléments pour la mise en oeuvre du procédé | |
EP0637647B1 (fr) | Elément de structure pour réaliser une structure allongée mixte à section transversale du type en caisson, procédé pour la mise en oeuvre de cet élément, et structure allongée réalisée par la mise en oeuvre de ce procédé | |
FR2637930A1 (fr) | Procede pour la realisation de structure metallique notamment pour la couverture | |
EP0202256B1 (fr) | PROCéDé DE CONSTRUCTION D'UNE STRUCTURE COUVERTE | |
FR2661434A1 (fr) | Pont comprenant un tablier et au moins deux pylones, et son procede de construction. | |
EP0329517B1 (fr) | Pont haubanné et son procédé de construction | |
EP0425364B1 (fr) | Station sur une ligne ferroviaire ou autre située sur un viaduc | |
EP1660725B1 (fr) | Pont metallique et son procede de realisation | |
EP0454575A1 (fr) | Dalle de chaussée d'un pont, notamment de grande portée | |
FR2631998A1 (fr) | Poutre armee avec element de precontrainte a l'interieur de celle-ci | |
EP2107175A1 (fr) | Structure métallique de grande portée et son procédé de montage | |
FR2547844A1 (fr) | Ponts a structure porteuse reticulee en profiles ou tubes d'acier | |
FR2667885A1 (fr) | Procede de construction d'un pont haubane forme d'un assemblage de voussoirs. | |
FR2693492A1 (fr) | Pont haubanné et son procédé de réalisation. | |
FR2704253A1 (fr) | Procédé de construction de bâtiments à ossature de béton armé. | |
BE505566A (pt) | ||
EP0242238A1 (fr) | Structures en béton armé et en acier, notamment pour réaliser des poutres et, en particulier, des poutres à usage de pannes ou des poutres à grande portée | |
WO1993003228A1 (fr) | Perfectionnements apportes aux ponts a haubans et leur procede de construction | |
JPH10280327A (ja) | 高所橋梁の架設工法 | |
EP0953684B1 (fr) | Poutre en treillis et pont comportant une telle poutre | |
FR2544760A1 (fr) | Ponts a structure porteuse reticulee en profiles ou tubes d'acier | |
BE518674A (pt) | ||
FR2735160A1 (fr) | Procede pour augmenter la portee d'un pont. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19890208 |
|
17Q | First examination report despatched |
Effective date: 19900430 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 67256 Country of ref document: AT Date of ref document: 19910915 Kind code of ref document: T |
|
DIN2 | Information on inventor provided after grant (deleted) | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SOCIETE CENTRALE D'ETUDES ET DE REALISATIONS ROUTI |
|
RIN2 | Information on inventor provided after grant (corrected) |
Free format text: MULLER, JEAN |
|
REF | Corresponds to: |
Ref document number: 3864726 Country of ref document: DE Date of ref document: 19911017 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
BECN | Be: change of holder's name |
Effective date: 19910911 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: SOCIETE CENTRALE D'ETUDES ET DE REALISATIONS ROUTI |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2026263 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3003029 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19940131 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19940221 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940223 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19940316 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940317 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940318 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19940329 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19940331 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940413 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19940430 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940524 Year of fee payment: 7 |
|
EPTA | Lu: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 88400740.2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950325 Ref country code: GB Effective date: 19950325 Ref country code: AT Effective date: 19950325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19950331 Ref country code: CH Effective date: 19950331 Ref country code: BE Effective date: 19950331 |
|
BERE | Be: lapsed |
Owner name: SOC. CENTRALE D'ETUDES ET DE REALISATIONS ROUTIERE Effective date: 19950331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19950930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19951001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19951130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL Ref country code: GR Ref legal event code: MM2A Free format text: 3003029 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19951001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19951201 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88400740.2 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19990301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050325 |