EP0285624A1 - Verfahren zur reduzierung von temperatureinflüssen auf koordinatenmessgeräte - Google Patents

Verfahren zur reduzierung von temperatureinflüssen auf koordinatenmessgeräte

Info

Publication number
EP0285624A1
EP0285624A1 EP19870906177 EP87906177A EP0285624A1 EP 0285624 A1 EP0285624 A1 EP 0285624A1 EP 19870906177 EP19870906177 EP 19870906177 EP 87906177 A EP87906177 A EP 87906177A EP 0285624 A1 EP0285624 A1 EP 0285624A1
Authority
EP
European Patent Office
Prior art keywords
temperature
coordinate measuring
measuring machine
correction data
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19870906177
Other languages
German (de)
English (en)
French (fr)
Inventor
Karl-Hermann Breyer
Rainer Ohnheiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG filed Critical Carl Zeiss AG
Publication of EP0285624A1 publication Critical patent/EP0285624A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature

Definitions

  • the measuring accuracy of a coordinate measuring machine is very strongly influenced by the ambient temperature and the temporal and spatial temperature gradient in the area of the machine.
  • Coordinate measuring machines are therefore mainly used in measuring rooms that are air-conditioned to a constant reference temperature of 20 ° C and in which the temporal and spatial temperature gradients are maintained at less than 0.5 ° C per hour or 0.5 ° C above the measuring range of the machine are. If the coordinate measuring machine has a device for arithmetically correcting its guiding errors, the correction data created during machine acceptance also apply only under the above-mentioned conditions.
  • the correction data sets (KT) required for the correction of the guide error are determined at several different temperatures (T 1 ... T n ) and stored in the computer of the coordinate measuring machine,
  • the coordinate measuring machine is surrounded by a heat-insulating encapsulation and air is blown into the encapsulation
  • the temperature is measured at a representative point and is used to select the current correction data set (T E ).
  • the heat-insulating encapsulation significantly reduces convection, heat conduction and heat radiation and thus also the change in temperature gradients in the machine.
  • a sufficiently high air throughput through the encapsulation and defined entry and exit points for the blown-in air mean that the existing temperature gradients only depend on the temperature T at a representative point and not on other, not measurable ambient conditions. This is the prerequisite for a reproducible dependency of the systematic machine errors on the measured temperature and allows correction data sets for different temperatures to be set up and used in the subsequent measuring operation.
  • the representative location the temperature of which is decisive for the selection of the correct correction data record, depends on the design of the coordinate measuring machine used and is determined experimentally for the machine type, for example. Alternatively, it is possible to measure the temperature of the air blown in at the air inlet point and then make a delayed selection based on this temperature value.
  • Fig. 1 is a perspective view of the
  • FIG. 2 is a block diagram to illustrate the processing of measured values in the computer of the coordinate measuring machine from FIG. 1;
  • 3 is an exemplary representation of a part of the data fields used for the measured value correction.
  • the coordinate measuring machine (1) shown in Fig. 1 is set up within a rectangular cabin (2), the side walls, floor and ceiling of which are made of heat-insulating material. On the front there is a sliding window (7) through which the workpieces can be fed and the measuring process can be observed.
  • a blower (3) is located above the cabin (2). This fan sucks in ambient air through a nozzle (4) and blows this air into the cabin, where it exits through the fins (6) at a defined point.
  • a temperature sensor (5) at a representative point on the coordinate measuring machine (1) is used to measure the temperature T E.
  • the temperature of the sucked-in air is changed step by step, for example between 18 ° C and 26 ° C, in steps of 2 ° C and kept constant at the respective value with the help of an upstream air conditioning device that is only required.
  • the temperature is measured using the temperature sensor (5) on the coordinate measuring machine.
  • the systematic machine errors are determined for each preset temperature, ie the translational and rotatori see guide errors of the three measuring axes x, y and z according to known measuring methods.
  • the data obtained in this way are stored in the memory (9) of the computer of the coordinate measuring machine designated by (4) in FIG. 2 for correcting the measurement results.
  • the blower (3) draws in the non-air-conditioned ambient air through the nozzle (4).
  • the thermal sensor (5) measures the temperature on the coordinate measuring machine and passes this measured value T E on to the computer (4) of the coordinate measuring machine.
  • the computer (4) selects the associated data record KT E from the data field stored in the memory (9) and corrects the coordinate measured values x, y and z taken from the scales (11, 12, 13) of the measuring machine (1) .
  • the corrected measured values x ', y', z ' are then shown on the display (10) of the computer.
  • the temperature at the measuring point lies between two temperatures for which correction data sets are stored, then a data set formed by interpolation from the adjacent correction data sets is expediently used by the computer.
  • the measuring point itself, to which the temperature sensor (5) is attached, was determined experimentally and corresponds in its time behavior, with which it follows temperature changes in the environment, to the time behavior which the supporting parts and guides relevant for the machine geometry have.
  • the method described above can also be combined with a correction method for the error which arises due to different scale temperature and the temperature of the workpiece to be measured, if this is described in the earlier application P 36 20 118.9 procedure and additionally determines the temperatures of the workpiece to be measured on the coordinate measuring machine and the scales of the coordinate measuring machine and uses them to correct the coordinate measured values to a level applicable to a fixed reference temperature of, for example, 20 ° C.
  • the combination of both correction methods is even particularly advantageous for production-related use of the coordinate measuring machine, since usually both error influences, undefined ambient temperatures and an undefined workpiece temperature, occur simultaneously.
  • the temperature sensors Tx, y, z necessary for carrying out the method described in the earlier application are attached to the scales (11, 12 and 13) of the coordinate measuring machine in FIG. 1.
  • the temperature of the workpiece or its deviation from the reference temperature is expediently determined, as explained in P 36 20 118.9, by means of a length measurement on a reference body (gauge block) of a defined length, which has passed through the manufacturing process together with the workpiece and has therefore assumed its temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
EP19870906177 1986-09-19 1987-09-03 Verfahren zur reduzierung von temperatureinflüssen auf koordinatenmessgeräte Withdrawn EP0285624A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3631825 1986-09-19
DE19863631825 DE3631825A1 (de) 1986-09-19 1986-09-19 Verfahren zur reduzierung von temperatureinfluessen auf koordinatenmessgeraete

Publications (1)

Publication Number Publication Date
EP0285624A1 true EP0285624A1 (de) 1988-10-12

Family

ID=6309875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870906177 Withdrawn EP0285624A1 (de) 1986-09-19 1987-09-03 Verfahren zur reduzierung von temperatureinflüssen auf koordinatenmessgeräte

Country Status (4)

Country Link
EP (1) EP0285624A1 (ja)
JP (1) JPH01500853A (ja)
DE (1) DE3631825A1 (ja)
WO (1) WO1988002096A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8813875U1 (de) * 1988-11-05 1988-12-22 Fa. Carl Zeiss, 7920 Heidenheim Taster für Koordinatenmeßgeräte
US5179786A (en) * 1991-04-22 1993-01-19 Shelton Russell S Measuring apparatus with temperature control
US5426861A (en) * 1993-04-19 1995-06-27 Advanced Metrological Development Method and apparatus for inspecting parts for dimensional accuracy outside a laboratory environment
DE4436782B4 (de) * 1993-10-21 2006-05-04 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zur Vermessung von Prüflingen auf einem Koordinatenmeßgerät
EP0969264A3 (de) * 1998-05-06 2001-06-13 Dr. Johannes Heidenhain GmbH Flächiger Sensor, Anordnung des flächigen Sensors und Verfahren zur Kompensation thermischer Verformungen
JP3633788B2 (ja) * 1998-07-13 2005-03-30 株式会社ミツトヨ 測定装置
DE10138138A1 (de) 2001-08-09 2003-02-20 Zeiss Carl Korrektur des Temperaturfehlers bei einer Messung mit einem Koordinatenmessgerät
DE102004003864A1 (de) * 2004-01-26 2005-08-11 Carl Zeiss Industrielle Messtechnik Gmbh Meßsystem zum geometrischen Vermessen eines Werkstückes
DE202010012063U1 (de) * 2010-09-01 2011-12-06 Hermann Eiblmeier Messvorrichtung zum Vermessen eines Werkstücks
DE102013001250A1 (de) 2013-01-25 2014-08-14 Harry Schilling Verfahren zur Korrektur von physikalischen Effekten bei bildgebenden Verfahren
CN109855583B (zh) * 2018-11-16 2021-06-25 中国航发西安动力控制科技有限公司 三坐标测量机测量不确定度的确定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125812A (en) * 1981-01-30 1982-08-05 Mitsutoyo Mfg Co Ltd Measuring method of three-dimensional measuring machine and reference for this method
DE3325387C2 (de) * 1983-07-14 1985-05-15 Daimler-Benz Ag, 7000 Stuttgart Prüfnormal zur Überprüfung von Längenmeßgeräten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8802096A1 *

Also Published As

Publication number Publication date
DE3631825A1 (de) 1988-03-31
JPH01500853A (ja) 1989-03-23
WO1988002096A1 (en) 1988-03-24

Similar Documents

Publication Publication Date Title
DE69020033T2 (de) Apparat für das Messen dreidimensionaler gekrümmter Formen.
DE69132335T2 (de) Verfahren und Vorrichtung zum Erlangen von zerstörungsfreien Messungen an Objekten mit regelmässigen Formen
EP3240994B1 (de) Erfassung von geometrischen abweichungen einer bewegungsführung bei einem koordinatenmessgerät oder einer werkzeugmaschine
EP0285624A1 (de) Verfahren zur reduzierung von temperatureinflüssen auf koordinatenmessgeräte
DE69028076T2 (de) Messrobotersystem
DE102018200240B4 (de) Robotersteuerungsvorrichtung
DE102016116523B4 (de) Vibrationsanalysevorrichtung, die einen Zyklus der Werkzeugvibration in Bezug zum Werkstück berechnet
DE19653569C2 (de) Verfahren zur automatisierten Führung eines Richtprozesses
DE19846597A1 (de) Verfahren zum Bestimmen der Meßunsicherheit einer Koordinatenmeßmaschine
DE69835038T2 (de) Rechnergestuetzte kraftfahrzeug richtanordnung
WO2018096120A1 (de) Verfahren und anordnung zur abstandsmessung
DE3620118A1 (de) Verfahren zur bestimmung bzw. korrektur des temperaturfehlers bei laengenmessungen
DE69112162T2 (de) Verfahren und Vorrichtung zum Berechnen der thermischen Sensibilität.
DE3900836A1 (de) Verfahren zur messung der steuerquerschnittsflaeche einer duese
DE69123527T2 (de) Verfahren und Vorrichtung zum Berechnen der vorhergesagten mittleren thermischen Sensibilität
CH680950A5 (ja)
DE10343667B4 (de) Verfahren und System zur Detektion von Heissschmelzklebstoffen
DE3518155A1 (de) Verfahren zur herstellung einer kunststoffolie mit geringer dickentoleranz
DE69626617T2 (de) Verfahren und Temperaturfühlerstruktur zur Elimination von Strahlungsfehlern
DE69112161T2 (de) Verfahren und Vorrichtung zum Berechnen der Wärmeempfindlichkeit.
DE102005044411B4 (de) Fahrerbelastungsmessverfahren und -vorrichtung für ein von Lageänderungen begleitetes Motorrad
WO2023094565A1 (de) Druckvorrichtung und additive fertigungsverfahren mit automatischer positionskalibrierung
EP4413341A1 (de) Verfahren zur erfassung des konvektiven wärmeübergangskoeffizienten und der dicke einer grenzschicht
DE19735975C2 (de) Verfahren zur rechnerischen Vibrationsunterdrückung bei Koordinatenmeßgeräten sowie Koordinatenmeßgerät zur Durchführung des Verfahrens
DE102021102619A1 (de) Steuereinheit und steuerungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900417