EP0284609B1 - Trägerförmiges bauelement - Google Patents

Trägerförmiges bauelement Download PDF

Info

Publication number
EP0284609B1
EP0284609B1 EP19870900098 EP87900098A EP0284609B1 EP 0284609 B1 EP0284609 B1 EP 0284609B1 EP 19870900098 EP19870900098 EP 19870900098 EP 87900098 A EP87900098 A EP 87900098A EP 0284609 B1 EP0284609 B1 EP 0284609B1
Authority
EP
European Patent Office
Prior art keywords
structural element
tension
element according
articulated
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870900098
Other languages
English (en)
French (fr)
Other versions
EP0284609A1 (de
Inventor
Friederike Wimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0284609A1 publication Critical patent/EP0284609A1/de
Application granted granted Critical
Publication of EP0284609B1 publication Critical patent/EP0284609B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/20Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members
    • E04C3/26Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing

Definitions

  • the invention relates to a carrier-shaped component with a tensile reinforcement, which is arranged so as to be longitudinally displaceable between anchoring devices connected to the component, at least one anchoring device being provided which has at least one force transmission element which acts on the component in the region of the tensile zone.
  • the constant beam cross-section has so far always been dimensioned according to the maximum torque that occurs only at one point in the overall length of the beam.
  • the cross section of the component has so far only been stressed and used economically at this point within the scope of the permissible standard, while the other areas along the beam length have an uneconomical cross section, since the load, for example in the case of parallel beams, is lower there.
  • a carrier-shaped component of the type mentioned is already known from DE-AS 22 06 140 in the form of a so-called composite carrier with pretension.
  • a tension reinforcement is provided which is freely parallel to the girder and which opens into anchor plates, to which a rigid flange is attached as a force transmission element, which is supported on the lowest profile section of the girder and to achieve the desired prestress on the girder in its pressure area is attached.
  • the bending deformation of a composite girder can generally be reduced, but it does not satisfy the need for a more effective utilization of the girder profile over its length in order to achieve a considerable reduction in the profile cross-sectional dimensions and, accordingly, to achieve a higher degree of utilization or greater economy.
  • the invention has for its object to provide a carrier-shaped component of the type mentioned, in which the maximum bending moment is significantly reduced under load.
  • this object is achieved in that the longitudinally displaceable pulling movement is arranged in the pulling zone of the profile of the component and consists of at least two pulling elements, and in that each force transmission element is designed as an articulated lever which is articulated at the ends of two pulling elements facing each other.
  • the invention makes available a support-shaped component in which not only the bending stiffness is increased, but also a reduction and equalization of the bending moments is achieved at the same time.
  • a support-shaped component in which not only the bending stiffness is increased, but also a reduction and equalization of the bending moments is achieved at the same time.
  • the equalization of the moments achievable according to the invention can be explained in the following way. If bending moments occur in a component cross-section, there is an expansion in the tensile region and a compression of the fibers in the pressure region, the length of the carrier-shaped component not changing in the zero line.
  • the invention is based on the fact that different stresses result in materials with different modulus of elasticity with the same elongation and uses this by arranging an eccentric tension member with different modulus of elasticity in order to introduce an eccentric force in the area of the tensile zone of the component. This prevents the elastic change in length in the tension area and creates a torque reduction or torque reversal at the critical points.
  • the outer maximum bending moment is divided into several sections of the component, which results in a more uniform stress on the component length and the inner divided maximum bending moments are correspondingly reduced with the result that with lower resistance moments or smaller cross sections of the component can be worked.
  • the sum of the divided inner maximum bending moments corresponds to the outer maximum bending moment.
  • the tensile forces resulting from the external maximum bending moment are in the tensile reinforcement within the component is introduced into the tensile zone in the opposite direction by articulated levers as compressive forces, a tensile reinforcement divided over the length of the component into several longitudinally displaceable tensile elements being provided for this force deflection.
  • the tensile reinforcement is divided into tension elements by means of articulated levers, which are each articulated at the ends of two tension elements facing each other.
  • the tensile zone is advantageously divided into statically separate sections, with a change in the force ratio taking place in each anchoring device, and counteracting the tensile stresses load-dependent compressive stresses which reduce the maximum bending moment.
  • each power diverting box has at least two crossed articulated levers which are articulatedly connected to a traction element at their crossing point, each articulately engage the power diverting box at one end and are each articulated at the other end to the other traction element.
  • the carrier-shaped component there are a total of three different anchoring devices which engage in the area of the tension zone, namely one at the end of the carrier-carrier-shaped Component provided end anchoring device, an anchoring device designed as a force deflection box and finally a profile anchoring device in the profile course itself, which is integrated at a distance from the force deflection box and from the end of the carrier-shaped component and via which forces can be introduced into the carrier-shaped component by a tension element.
  • the carrier-shaped component is provided with at least two different anchoring devices, the respective arrangements being made in accordance with the corresponding requirements in such a way that there is a significant reduction in the maximum torque and favorable profile utilization. For example, by arranging a force deflection box in the vicinity of the storage area of a component, deformation with the associated changes in length in the support area can be advantageously avoided, which has particular importance for the design and durability of component storage.
  • the component 10 consists of a reinforced concrete beam which has a constant cross section over its entire length 1 tot .
  • the component 10 is supported at its ends on schematically illustrated supports 11 and 12 and has an end anchoring device 13 or 14 at its profile ends.
  • a tensile reinforcement 15 is integrated into the profile of the component 10 in its zone, which is connected to the end anchoring devices 13 and 14 is attached.
  • the tensile reinforcement 15 also includes a shorter tie rod 16, a force deflection box 19, a longer tie rod 17, a force deflection box 20 and a shorter tie rod 18.
  • the tie rods 16, 17 and 18 are each arranged longitudinally displaceably in assigned cladding tubes 21, 22 and 23.
  • the cladding tubes 21, 22 and 23 are in turn firmly integrated into the component 10 during its manufacture.
  • This also applies to the power deflection boxes 19 and 20, which are optionally installed in the component in a fixed manner by additional anchoring measures, such as, for example, welded end plates or rod profiles.
  • the distance 11 is between the Endverankanss worn 13 and the right end of Kraftumlenkdose ges 19 in the illustrated embodiment, 1/4
  • the distance 12 is 1 tot / 2 and the distance corresponds to the distance 11 13.
  • the respective distances can be selected according to the respective load requirements.
  • the structure of the power deflecting boxes 19 and 20 corresponds, for example, to the force deflecting boxes shown in FIGS. 13 and 14 and 15, with an articulated lever transmission ratio of 1: 1 being selected for the force deflecting box 19.
  • an articulated lever transmission ratio of 1: 2 is selected for the power deflection box 20.
  • This articulated lever ratio results in each case from the length of the lever arms between the articulation points of the tie rods 16 and 18 on the respective articulated lever and the drawbar 17 and from the articulated arm between the articulation of the drawbar 17 and the articulation of the articulated lever on the housing of the power deflection box 19 and 20, as will be explained later.
  • FIG. 2 shows a bending moment curve for a load case with a central point load P, see FIG. 1, which results for the design of the component 10 shown in FIG. 1.
  • the difference to a moment representation with constant load consists only in the fact that instead of a triangular distribution, there is a parabolic distribution of moments.
  • the dashed triangle line in FIG. 2 represents the torque curve in the case of a component with a constant cross section that is not additionally reinforced.
  • the maximum bending moment Mb max lies at the point at which the point load is introduced into the carrier-shaped component 10.
  • the areas shown in broken lines show a changed bending moment curve which results in the illustrated embodiment of a component 10 according to the invention.
  • the tensile forces prevailing under load are opposed to compressive forces which result from different elastic changes in length between the tension zone of the component 10 and the additionally attached tie rods via the articulated levers , which reverse the length changes in their direction and thus reduce or cancel the expansion dimension of the component tensile zone, which results in a neutral position depending on the load.
  • the prerequisite here is that the tension rods always have a smaller elastic change in length of the cross-sectional fiber than the tension zone of the component. This can be done, for example, by selecting the tie rods with a lower ⁇ perm. Than the tensile zone of the component.
  • a support-shaped component according to the invention for example as a flexible support on two supports, as a continuous support with application in the traction area, as a cantilever support, as supports and in each case made of wood, metal and reinforced concrete.
  • the one in the right half of FIG. 2 compared to the left half 2 different torque curve results from the selected articulated lever transmission ratio of 1: 2 and is particularly advantageous for reducing the pretensioning forces in the area of the support 12.
  • the torque reversal achieved and more uniform torque distribution over the length of the component 10 while achieving a significantly reduced maximum bending moment M ′ b max can be clearly seen in FIG. 2.
  • a carrier-shaped component with a triple load-bearing capacity can be achieved in an economically justifiable manner.
  • the construction height can be reduced or the span increased by a factor of 1.73 with the same load. From an economic point of view, this leads to cost savings of up to 60%.
  • FIG. 3 A further exemplary embodiment of a component 25 is shown schematically in FIG. 3.
  • the same parts as in Figure 1 are given the same reference numerals.
  • the tensile reinforcement here consists of a short tie rod 26 and a long tie rod 27, which are articulated in a force deflection box 19 with an articulated lever in a gear ratio of 1: 1.
  • the associated cladding tubes for the tie rods 26 and 27 are not shown.
  • the tie rods 26 and 27 are attached to end anchoring devices 13 and 14, respectively.
  • Figures 5 and 6 show the formation of a carrier-shaped Component 30 as a cantilevered carrier, which is fastened in a wall 31 and for which the resulting torque curve from a point load P at the opposite end is shown in FIG. 6.
  • the component 30 consists of a rectangular support profile 32, in the tension zone of which is located in the upper region in FIG. 5, a tension reinforcement 33 is provided, which is composed of an end anchoring device 34, a tension rod 35, which is arranged in a sheath tube 36, a force deflection box with an articulated lever transmission ratio of 1: 1, a tie rod 38 with an associated cladding tube 39 and a profile anchoring device 40.
  • the effective length 11, the tie rod 35, the length 12 between the start of the power deflection box 37 and the profile anchoring device 40 and the length 13 between the profile anchoring device 40 and the end of the carrier profile 32 are in the illustrated embodiment 1/3 of the total length 1 tot .
  • FIG. 7 shows a further exemplary embodiment of a carrier-shaped component 45 according to the invention, the same parts again being provided with the same reference symbols.
  • the tensile reinforcement 46 is composed from left to right of an end anchoring device 13, a first tie rod 47 with the length 1 1, a force deflection box 51, a second tie rod 48 and a profile anchoring device 52.
  • the profile of the support-shaped component 45 is the Tension reinforcement 46 also seen from left to right with a profile anchoring device 53, a third tie rod 49, a force deflection box 54, a fourth tie rod 50 and an end anchoring device 14.
  • the power deflection boxes 51 and 54 have a joint lever transmission ratio of 1: 1.
  • the tie rods 48 and 49 each pass through the profile anchoring devices 53 and 52 in cladding tubes, not shown.
  • the tie rods 47 and 50 are also longitudinally displaceable in cladding tubes, not shown.
  • the distance 11 of the Kraftumlenkdose 51 from the end anchoring device 13 is greater than the distance 1 3 of the Kraftumlenkdose 54 from the end anchoring device 14, while the distances 121 and 122 of the respective Kraftumlenkdosen to the associated profile anchoring devices 52 and 53 are of equal length.
  • the arrangement made advantageously makes it possible to produce components 45 according to the invention which manage with weakly dimensioned force deflection boxes. Furthermore, end forces in the support area can be produced in a favorable manner, which are divided according to the respective needs. The achievable slight change in shape of the entire component 45 under load is also favorable.
  • a further exemplary embodiment of a component 56 according to the invention is shown schematically in FIG. 9, the associated resulting bending moment curve being shown hatched in FIG. 10.
  • the component 56 in turn has a rectangular support profile 55 which rests on supports 11 and 12 at its ends.
  • the tensile reinforcement 58 is composed of a profile anchoring device 59, a short tie rod 60, a power deflection box 61 with an articulated lever transmission ratio of 2: 1, a long tie rod 62, a power deflection box 63 with an articulated lever transmission ratio of 2: 1, a short tie rod 64 and a profile anchoring device 65.
  • the component 56 has an anchoring with torque reversal beginning on both sides in the field area.
  • FIG. 11 schematically shows the structure of the force deflection box 19 from FIG. 1.
  • the force deflection box 19 consists of a square or rectangular housing 70, in which in FIG. 11 the tie rod 16 leading to the end anchoring device 13 engages, which engages in the housing on one profile 71 extending at right angles to the pull rod 16 is fastened.
  • the profile 71 in turn extends almost over the entire width of the power deflection box 19 and has at its ends joints 72 and 73, on which corresponding intermediate levers 74 and 75 are articulated in mutually parallel planes, which in turn are pivotable with 76 and 77 in parallel planes with each other arranged articulated levers 78 and 79 are connected.
  • the articulated levers 78 and 79 cross each other and are connected at their respective other ends to a swivel joint 80 and 81 fixed to the housing.
  • the pull rod 17 enters the housing 70 from the opposite direction to the pull rod 16 and engages with a flange-like projection 82 on the articulated levers 78 and 79 in the region of the intersection thereof.
  • the already mentioned transmission ratio of the articulated levers 78 and 79 is defined by the distance of the lever arm between the articulation 81 and the point of application of the projection 82 in the intersection area of the levers and the lever arm between the first-mentioned intersection point and the articulation 77.
  • FIG. 12 schematically shows a modified force deflection box 85, in which a rectangular housing 86 differs from that in FIG.
  • Fig. 11 shown embodiment, articulated between the intermediate levers 74 and 75, two crossed further intermediate articulated levers 90 and 91, which have a rotatable connection at their crossing point.
  • the intermediate articulated levers 90 and 91 are connected at their other ends with pivot joints 92 and 93 to the articulated levers 78 and 79, which, in contrast to the embodiment in FIG. 11, have a common articulation 87 at their point of intersection and are at their opposite ends by means of pivot-slide joints Support 88 or 89 on the wall of the housing 86 through which the pull rod 17 articulated on the joint 78 enters.
  • the transmission ratio for the intermediate articulated levers 90 and 91 is 1: 1 and for the articulated levers 78 and 79 2: 3.
  • the structure of the articulated levers is similar to that of a double pair of scissors, the advantage being achieved that in the event of a change in length or a path 1 of the drawbar 17 a path of 51 is reached on the pull rod 16 due to the configuration.
  • FIGS. 13 and 14 show a further exemplary embodiment of a force deflection box 100 which is particularly suitable for use in concrete-encased components, but equally well for steel beams with a double-T cross-section, rectangular cross-section, wooden beams etc., i.e. beams that do not or do not completely encased in concrete, can be used.
  • the force deflection box 100 designed as an anchoring device consists of a box-shaped housing which is encapsulated in the assembled state and firmly anchored in the carrier-shaped component.
  • the pull rod 16 engages in the housing 101 from the left and the pull rod 17 from the right, each of which is surrounded by cladding tubes 21 and 22 in such a way that their longitudinal displacement is ensured in each case.
  • the cuboid housing 101 has a bottom 102, four side walls 103, 104 and a cover 105 that can be placed on it, which is removed in the illustration according to FIG. 13. Which are parallel to the tension elements 16 and 17 extending side walls 104 are provided with grooves 106 into which first lever arms 107 of two levers 108 engage in a pivotable manner to a limited extent.
  • the housing 101 is either attached to the component or, in the case of a concrete component, cast into it, so that the grooves 106 form support-fixed abutments for the pivotable engagement of the lever arms 107 to form a pivot joint similar to the joints 80, 81 in FIG. 11.
  • Each prong of the fork piece 109 serves as a bearing for an axis 110 of one of the two two-armed levers 108.
  • the respective first lever arm 111 of the two levers 108 which has the same length as the lever arm 107, engages in a circumferential groove 112 of the other pull rod 16.
  • the sleeve-like circumferential groove is delimited by threaded nuts, not shown, which are screwed at a distance from one another on a threaded section of the pull rod 16 located in the housing 101, the threaded nut on the end forming the end flange 113.
  • FIG. 15 shows a schematic illustration of a further embodiment of a force deflection box 115, which consists of a cube or a cuboid housing 116.
  • the force deflection box 115 represents a modification of the force deflection boxes shown schematically in FIGS. 11 and 12, comparable components bearing identical reference numerals.
  • the articulated levers 78 and 79 have a swivel joint at their crossing point, to which the tie rod 17 is articulated at the same time.
  • the articulated levers 78 and 79 are supported directly via the rotary and sliding joints 88 and 89 as in the exemplary embodiment according to FIG From the housing wall facing the tie rod 17.
  • the joints 88 and 89 are designed as cylindrical rollers which are accommodated with play on the articulated levers 78 and 79 in corresponding recesses.
  • the transmission ratio of the articulated levers 78 and 79 is 1: 1, the articulated levers and the intermediate articulated levers each moving in parallel planes to one another.
  • cross-sectional profile is limited, for example in the case of a so-called wood glue girder, and larger loads are to be applied, there is also the possibility of leading a transverse yoke from the universal joint point 78 through recesses to be provided laterally in the housing and the pull rod 17 through two outside the To replace profile-running tie rods with a correspondingly reduced cross-section for half the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

  • Die Erfindung betrifft ein trägerförmiges Bauelement mit einer Zugbewehrung, die zwischen mit dem Bauelement verbundenen Verankerungseinrichtungen längsverschieblich angeordnet ist, wobei wenigstens eine Verankerungseinrichtung vorgesehen ist, die wenigstens ein Kraftübertragungselement aufweist, das an das Bauelement im Bereich der Zugzone angreift.
  • Bei einem auf Biegung beanspruchten Bauelement, wie beispielsweise einem Stahlbetonträger, erfolgt bisher die Dimensionierung des konstanten Trägerquerschnitts stets nach dem Maximalmoment, das nur an einer Stelle der Gesamtlänge des Trägers auftritt. Hierdurch wird bisher der Querschnitt des Bauelements nur an dieser Stelle im Rahmen der zulässigen Norm beansprucht und wirtschaftlich ausgenützt, während die anderen Bereiche längs der Trägerlänge einen unwirtschaftlichen Querschnitt aufweisen, da die Belastung, beispielsweise bei Parallelträgern, dort geringer ist.
  • Ein trägerförmiges Bauelement der eingangs genannten Art ist bereits aus der DE-AS 22 06 140 in der Ausbildung als sogenannter Verbundträger mit Vorspannung bekannt. Bei diesem Verbundträger ist eine frei parallel zu dem Träger angeordnete Zugbewehrung vorgesehen, die in Ankerplatten münden, an denen ein starrer Flansch als Kraftübertragungselement befestigt ist, der sich an dem untersten Profilabschnitt des Trägers abstützt und zur Erzielung der gewünschten Vorspannung an dem Träger in dessen Druckbereich befestigt ist. Mit dieser vorbekannten Konstruktion läßt sich zwar allgemein die Biegeverformung eines Verbundträgers verringern, jedoch nicht das Bedürfnis nach einer effektiveren Ausnutzung des Trägerprofils über dessen Länge befriedigen, um eine erhebliche Reduzierung der Profilquerschnittsabmessungen und damit entsprechend einen höheren Ausnutzungsgrad bzw. eine größere Wirtschaftlichkeit zu erzielen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein trägerförmiges Bauelement der eingangs genannten Art zu schaffen, bei dem das maximale Biegemoment bei Belastung erheblich reduziert wird.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die längsverschiebliche Zugbewegung in der Zugzone des Profils des Bauelements angeordnet ist und aus wenigstens zwei Zugelementen besteht, und daß jedes Kraftübertragungselement als Gelenkhebel ausgebildet ist, der an den jeweils zueinander weisenden Enden zweier Zugelement angelenkt ist.
  • Bevorzugte Merkmale, die die Erfindung vorteilhaft weiterbilden, sind in den nachgeordneten Patentansprüchen enthalten.
  • In vorteilhafter Weise wird durch die Erfindung ein trägerförmiges Bauelement verfügbar gemacht, bei dem nicht nur die Biegesteifigkeit erhöht, sondern gleichzeitig auch eine Verringerung und Vergleichmäßigung der Biegemomente erzielt wird. Hieraus resultiert technisch eine bis zu dreifache Tragfähigkeit, wirtschaftlich eine Profileinsparung bis zu 60% und konstruktiv eine Verminderung der Konstruktionshöhe bzw. Vergrößerung der Spannweite bei gleicher Lastannahme bis zu 1,73 fach. Damit ergeben sich besonders günstige Anwendungsmöglichkeiten für Brücken, Träger und Platten aus Stahlbeton, Metall und Holz, insbesondere beim Holzleimbau.
  • Die gemäß der Erfindung erzielbare Vergleichmäßigung der Momente läßt sich in der folgenden Weise erläutern. Wenn in einem Bauelementquerschnitt Biegemomente auftreten, ergibt sich im Zugbereich eine Dehnung und im Druckbereich eine Stauchung der Fasern, wobei sich die Länge des trägerförmigen Bauelements in der Nullinie nicht ändert. Die Erfindung geht von der Tatsache aus, daß sich bei Materialien mit verschiedenem Elastizitätsmodul bei gleicher Dehnung verschiedene Spannungen ergeben und nutzt diese durch Anordnung eines exzentrischen Zuggliedes mit unterschiedlichem Elastizitätsmodul aus, um im Bereich der Zugzone des Bauelements eine außermittige Kraft einzuleiten. Man verhindert hierdurch die elastische Längenänderung im Zugbereich und schafft an den kritischen Stellen eine Momentenreduzierung bzw. eine Momentenumkehrung. Nimmt man diese Momentenumkehrung mehrfach auf der Länge des Bauelements vor, wird das äußere Maximalbiegemoment auf mehrere Abschnitte des Bauelementes aufgeteilt, wodurch sich eine gleichmäßigere Beanspruchung der Bauelementlänge ergibt und sich die inneren aufgeteilten Maximalbiegemomente entsprechend gleichmäßig mit der Folge verringern, daß mit geringeren Widerstandmomenten bzw. geringeren Querschnitten des Bauelements gearbeitet werden kann. Die Summe der aufgeteilten inneren Maximalbiegemomente entspricht dem äußeren Maximalbiegemoment.
  • Bei dem erfindungsgemäßen trägerförmigen Bauelement werden die aus dem äußeren Maximalbiegemoment resultierenden Zugkräfte in der Zugbewehrung innerhalb des Bauelements durch Gelenkhebel richtungsverkehrt als Druckkräfte in die Zugzone eingebracht, wobei für diese Kraftumlenkung ein über die Länge des Bauelements in mehrere längsverschiebliche Zugelemente unterteilte Zugbewehrung vorgesehen ist. Die Unterteilung der Zugbewehrung in Zugelemente erfolgt mittels Gelenkhebel, die jeweils an den zueinanderweisenden Enden zweier Zugelemente angelenkt sind. Dadurch wird die Zugzone vorteilhaft in statisch voneinander getrennte Abschnitte unterteilt, wobei in jeder Verankerungseinrichtung eine Veränderung des Kräfteverhältnisses stattfindet, und den Zugbeanspruchungen lastabhängige Druckbeanspruchungen entgegenwirken, die das maximale Biegemoment verringern.
  • Vorzugsweise sind die Gelenkhebel aufweisenden Verankerungseinrichtungen als Kraftumlenkdose ausgebildet und vom Auflagebereich des Bauelements beabstandet angeordnet, wobei sich die verwendete Anzahl von Kraftumlenkdosen und deren Verteilung über die Länge des Bauelementes nach den jeweiligen Anforderungen und Gegebenheiten richtet. Gemäß einer bevorzugten Weiterbildung der Erfindung besitzt jede Kraftumlenkdose wenigstens zwei gekreuzte Gelenkhebel, die gelenkig in ihrem Kreuzungspunkt mit einem Zugelement verbunden sind, jeweils mit einem Ende gelenkig an die Kraftumlenkdose angreifen und jeweils mit ihrem anderen Ende an dem anderen Zugelement angelenkt sind. Hierdurch und durch weiterhin mögliche Hebelarmbemessungen und daraus resultierenden Übersetzungsverhältnissen lassen sich bereits bei kleinen Dehnungswegen durch Ausnutzung des Kraftverstärkungsprinzips große Druckkräfte in die Zugzone einleiten, die zu einer gewünschten Vergleichmäßigung der Momentbelastung bei Vorsehen von mehreren Kraftumlenkdosen beitragen.
  • Bei dem erfindungsgemäßen trägerförmigen Bauelement gibt es insgesamt drei verschiedene Verankerungseinrichtungen, die im Bereich der Zugzone angreifen, nämlich eine am Ende des trägerträgerförmigen Bauelements vorgesehene Endverankerungseinrichtung, eine als Kraftumlenkdose ausgebildete Verankerungseinrichtung und schließlich eine Profilverankerungseinrichtung im Profilverlauf selbst, die beabstandet von der Kraftumlenkdose und von dem Ende des trägerförmigen Bauelements in dieses integriert ist und über die von einem Zugelement Kräfte in das trägerförmige Bauelement eingeleitet werden können. Gemäß bevorzugter Weiterbildungen der Erfindung ist das trägerförmige Bauelement mit wenigstens zwei unterschiedlichen Verankerungseinrichtungen versehen, wobei die jeweiligen Anordnungen den entsprechenden Anforderungen gemäß so getroffen sind, daß sich eine deutliche Verringerung des maximalen Moments und eine günstige Profilauslastung ergibt. Beispielsweise kann durch Anordnung einer Kraftumlenkdose in der Nähe des Lagerungsbereichs eines Bauelements in vorteilhafter Weise eine Verformung mit den damit verbundenen Längenänderungen im Auflagebereich vermieden werden, was besondere Bedeutung für die Auslegung und Haltbarkeit von Bauelementlagerungen nach sich zieht.
  • Weitere Einzelheiten, Merkmale und Vorteile sind dem anschließenden Beschreibungsteil zu entnehmen, in dem die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert wird. Es zeigen:
    • Figur 1 eine schematische Darstellung eines trägerförmigen Bauelements mit konstantem Querschnitt, das an seinen Enden gelagert ist und bei dem eine Zugbewehrung mit zwei Kraftumlenkdosen vorgesehen ist, die an den Enden des Bauelements an Verankerungseinrichtungen angreift;
    • Figur 2 einen Biegemomentverlauf für das trägerförmige Bauelement gemäß Fig. 1 bei einem Lastfall mit mittiger Punktlast;
    • Figur 3 ein anderes Ausführungsbeispiel eines trägerförmigen Bauelements mit einer Kraftumlenkdose und zwei endseitigen Verankerungseinrichtungen;
    • Figur 4 einen Biegemomentverlauf für das Bauelement gemäß Fig.3 bei einem Lastfall mit mittiger Punktlast;
    • Figur 5 ein Ausführungsbeispiel eines trägerförmigen einseitig eingespannten Bauelements mit einer endseitigen Verankerungseinrichtung, einer Kraftumlenkdose und einer im Profil des Bauelements vorgesehenen Verankerungseinrichtung;
    • Figur 6 einen Biegemomentverlauf für das in Fig. 5 dargestellte Bauelement bei einem Lastfall mit Punktlast am äußeren freien Ende;
    • Figur 7 ein Ausführungsbeispiel eines trägerförmigen Bauelements mit zwei Endverankerungseinrichtungen, zwei Kraftumlenkdosen und zwei Profilverankerungseinrichtungen, wobei zwei parallel verlaufende Zugelemente vorgesehen sind;
    • Figur 8 einen Biegemomentverlauf für das Bauelement gemäß Fig.7 bei einem Lastfall mit mittiger Punktlast;
    • Figur 9 ein Ausführungsbeispiel eines trägerförmigen Bauelements mit zwei Kraftumlenkdosen und zwei Profilverankerungseinrichtungen;
    • Figur 10 ein Biegemomentverlauf für das in Fig. 9 dargestellte Bauelement bei einem Lastfall mit mittiger Punktlast;
    • Figur 11 eine schematische Darstellung einer Kraftumlenkdose ohne gemeinsame gelenkige Verbindung von Gelenkhebeln;
    • Figur 12 eine schematische Darstellung einer Kraftumlenkdose mit gemeinsamer gelenkiger Verbindung von Gelenkelementen und zusätzlichen gekreuzten Gelenkelementen;
    • Figur 13 eine Draufsicht auf ein Ausführungsbeispiel einer Kraftumlenkdose mit teilweise weggeschnittenen Teilen;
    • Figur 14 einen Schnitt entlang der Schnittlinie XIV-XIV in Fig. 13; und
    • Figur 15 ein weiteres Ausführungsbeispiel einer Kraftumlenkdose.
  • In Fig. 1 ist ein erstes Ausführungsbeispiel eines trägerförmigen Bauelements 10 dargestellt. Das Bauelement 10 besteht aus einem Stahlbetonträger, der über seine gesamte Länge 1ges einen konstanten Querschnitt aufweist. Das Bauelement 10 ist an seinen Enden auf schematisch dargestellten Auflagern 11 und 12 gelagert und besitzt an seinen Profilenden jeweils eine Endverankerungseinrichtung 13 bzw. 14. In das Profil des Bauelements 10 ist in dessen Zone eine Zugbewehrung 15 integriert, die an den Endverankerungseinrichtungen 13 und 14 befestigt ist. Zu der Zugbewehrung 15 gehören ferner eine kürzere Zugstange 16, eine Kraftumlenkdose 19, eine längere Zugstange 17, eine Kraftumlenkdose 20 sowie eine kürzere Zugstange 18.
  • Die Zugstangen 16, 17 und 18 sind jeweils in zugeordneten Hüllrohren 21, 22 und 23 längs verschiebbar angeordnet. Die Hüllrohre 21, 22 und 23 sind ihrerseits fest in das Bauelement 10 bei dessen Herstellung integriert. Dies gilt auch für die Kraftumlenkdosen 19 und 20, die gegebenenfalls durch zusätzliche Verankerungsmaßnahmen, wie beispielsweise angeschweißte Stirnplatten oder Stangenprofile, in dem Bauelement ortsfest eingebaut sind. In Fig. 1 beträgt der Abstand 1₁ zwischen der Endverankerungseinrichtung 13 und dem rechten Ende der Kraftumlenkdose 19 bei dem dargestellten Ausführungsbeispiel 1ges /4, der Abstand 1₂ ist 1ges /2 und der Abstand 1₃ entspricht dem Abstand 1₁. Die jeweiligen Abstände lassen sich den jeweiligen Belastungsanforderungen entsprechend wählen.
  • Der Aufbau der Kraftumlenkdosen 19 und 20 entspricht beispielsweise dem in den Figuren 13 und 14 bzw. 15 dargestellten Kraftumlenkdosen, wobei bei der Kraftumlenkdose 19 ein Gelenkhebelübersetzungsverhältnis von 1: 1 gewählt ist. Bei der Kraftumlenkdose 20 ist demgegenüber ein Gelenkhebelübersetzungsverhältnis von 1: 2 gewählt. Dieses Gelenkhebelverhältnis ergibt sich jeweils aus der Länge der Hebelarme zwischen den Anlenkungspunkten der Zugstangen 16 bzw. 18 an dem jeweiligen Gelenkhebel und der Zugstange 17 sowie aus dem Gelenkarm zwischen der Anlenkung der Zugstange 17 und der Anlenkung des Gelenkhebels am Gehäuse der Kraftumlenkdose 19 bzw. 20, wie noch später erläutert wird.
  • Zur Herstellung des Bauelements 10 werden handelsübliche gerade Spannstangen als Zugstangen 16, 17 und 18 in entsprechenden Hüllrohren 21, 22 und 23 angeordnet, mit den entsprechenden Kraftumlenkdosen 19 und 20 verbunden und gemeinsam mit diesen in die Trägerform einbetoniert, ohne daß eine Verbindung der Zugstangen mit den Endverankerungseinrichtungen 13 und 14 hergestellt wird, die ebenfalls einbetoniert werden. Nach Erreichen der geforderten Betonfestigkeit wird jeweils am Trägerende eine auf der herausragenden Zugstange 16 bzw. 18 befindliche Schraubenmutter mittels eines Drehmomentschlüssels so verschraubt, bis die erforderliche Spannkraft erreicht wird. Dabei ist es aufgrund der erfindungsgemäßen Ausbildung des Bauelements 10 möglich, die erforderliche Vorspannung mit lediglich etwa 33% der gesamten Vorspannkraft zu erreichen, so daß diese Vorspannung von Hand vorgenommen werden kann. Demgegenüber war bisher für die Herstellung von vorgespannten Stahlbetonträgern entweder eine kapitalintensive Vorspannanlage mit aufwendiger Bedienung erforderlich, oder die T-Träger wurden im Auflagenbereich bis zum vollen Rechteckquerschnitt (verstärkt) ausgeführt, weil dies zur Aufnahme der gesamten Vorspannkraft erforderlich war, oder Spannkabel wurden parabelförmig eingelegt und mußten nachher aus dem Hohlraum des Hüllrohres unter gleichzeitigem maschinellen Vorspannen der Spannkabel mit Mörtel ausgepreßt werden.
  • In Fig. 2 ist für einen Lastfall mit einer mittigen Punktlast P vergleiche Fig. 1, ein Biegemomentverlauf dargestellt, der sich für die in Fig. 1 dargestellte Ausbildung des Bauelements 10 ergibt. Der Unterschied zu einer Momentendarstellung mit Gleichlast besteht lediglich darin, daß statt einer dreieckförmigen eine parabelförmige Momentenverteilung vorliegt. Die gestrichelte Dreieckslinie in Fig. 2 stellt den Momentenverlauf bei einem nicht zusatzarmierten Bauelement mit einem konstanten Querschnitt dar. Das maximale Biegemoment Mbmax liegt an der Stelle, an der die Punktlast in das trägerförmige Bauelement 10 eingeleitet wird. Die gestrichelt dargestellten Bereiche zeigen einen geänderten Biegemomentverlauf, der sich bei dem dargestellten Ausführungsbeispiel eines erfindungsgemäßen Bauelements 10 ergibt. Von den Kraftumlenkdosen 19 und 20 sowie von den Endverankerungseinrichtungen 13 und 14, an denen die Zugelemente angreifen, werden den bei Belastung herrschenden Zugkräften Druckkräfte entgegengesetzt, die sich aufgrund unterschiedlicher elastischer Längenänderung zwischen der Zugzone des Bauelements 10 und der zusätzlich angebrachten Zugstangen über die Gelenkhebel ergeben, welche die Längenänderungen in ihrer Richtung umkehren und damit das Dehnmaß der Bauelementzugzone verringern bzw. Aufheben, wodurch sich lastabhängig eine neutrale Lage ergibt. Voraussetzung ist dabei, daß die Zugstangen stets eine geringere elastische Längenänderung der Querschnittsfaser aufweisen als die Zugzone des Bauelements. Dies kann beispielsweise dadurch geschehen, daß die Zugstangen mit einem niedrigeren σzul. gewählt werden als die Zugzone des Bauelements. Bei gleichem Elastizitätsmodul ergeben sich dann unterschiedliche Längenänderungen 1. Dasselbe kann bei unterschiedlichen Baumaterialien durch verschiedene Elastizitätsmodule erreicht werden, z.B. Holz und Stahl oder Beton und Stahl. Dadurch ergeben sich vielfältige Anwendungsmöglichkeiten für ein erfindungsgemäßes trägerförmiges Bauelement, beispielsweise als Biegeträger auf zwei Stützen, als Durchlaufträger mit Anwendung jeweils im Zugbereich, als Kragträger, als Stützen und jeweils in der Ausbildung aus Holz, Metall und Stahlbeton.
  • Der in der rechten Hälfte der Fig. 2 gegenüber der linken Hälfte der Fig. 2 unterschiedliche Momentenverlauf resultiert aus dem gewählten Gelenkhebelübersetzungsverhältnis von 1: 2 und ist insbesondere vorteilhaft zur Verringerung der Vorspannkräfte im Bereich des Auflagers 12. Die erreichte Momentenumkehr und gleichmäßigere Momentenverteilung über die Länge des Bauelements 10 unter Erzielung eines deutlich verringerten maximalen Biegemoments M′bmax läßt sich in Fig. 2 deutlich erkennen. Technisch läßt sich mit der erfindungsgemäßen Konzeption in wirtschaftlich vertretbarer Weise ein trägerförmiges Bauelement mit einer dreifachen Tragfähigkeit erreichen. Konstruktiv ist bei gleicher Belastung eine Verminderung der Konstruktionshöhe bzw. Vergrößerung der Spannweite bis zum Faktor 1,73 möglich. Dies führt unter wirtschaftlichen Gesichtspunkten zu einer Kosteneinsparung bis zu 60%.
  • In Fig. 3 ist ein weiteres Ausführungsbeispiel eines Bauelements 25 schematisiert dargestellt. Gleiche Teile wie bei Figur 1 sind mit denselben Bezugszeichen versehen. Die Zugbewehrung besteht hier aus einer kurzen Zugstange 26 und einer langen Zugstange 27, die in einer Kraftumlenkdose 19 mit einem Gelenkhebel im Übersetzungsverhältnis von 1: 1 aneinander angelenkt sind. Die zugehörigen Hüllrohre für die Zugstangen 26 und 27 sind nicht dargestellt. Endseitig sind die Zugstangen 26 und 27 an Endverankerungseinrichtungen 13 bzw. 14 befestigt.
  • Der zugehörige resultierende Momentenverlauf ergibt sich aus der schematischen Darstellung von Fig. 4. Mit dem trägerförmigen Bauelement 25 läßt sich eine zweifache Tragfähigkeit beispielsweise bei Leimbindern mit Rechteckquerschnitt erreichen. Da nur eine Kraftumlenkdose vorgesehen ist, stellt diese Ausbildungsform eine besonders wirtschaftliche Lösung eines derartigen trägerförmigen Bauelements dar.
  • Die Figuren 5 und 6 zeigen die Ausbildung eines trägerförmigen Bauelements 30 als auskragenden Träger, der in einer Wand 31 befestigt ist und für den der resultierende Momentenverlauf aus einer Punktlast P am gegenüberliegenden Ende in Fig. 6 dargestellt ist.
  • Das Bauelement 30 besteht aus einem rechteckförmigen Trägerprofil 32, in dessen in Fig. 5 im oberen Bereich liegenden Zugzone eine Zugbewehrung 33 vorgesehen ist, die sich zusammensetzt aus einer Endverankerungseinrichtung 34, einer Zugstange 35, die in einem Hüllrohr 36 längsverschiebbar angeordnet ist, einer Kraftumlenkdose mit einem Gelenkhebelübersetzungsverhältnis von 1: 1, einer Zugstange 38 mit einem zugeordneten Hüllrohr 39 sowie einer Profilverankerungseinrichtung 40. Die wirksame Länge 1₁, der Zugstange 35, die Länge 1₂ zwischen dem Beginn der Kraftumlenkdose 37 und der Profilverankerungseinrichtung 40 sowie die Länge 1₃ zwischen der Profilverankerungseinrichtung 40 und dem Ende des Trägerprofils 32 betragen bei dem dargestellten Ausführungsbeispiel jeweils 1/3 der Gesamtlänge 1ges. Auch für diese Ausbildungsform gelten die oben erwähnten Vorzüge des erfindungsgemäßen Bauelements in entsprechender Weise.
  • Fig. 7 zeigt ein weiteres Ausführungsbeispiel eines erfindungemäßen trägerförmigen Bauelements 45, wobei wiederum gleiche Teile mit denselben Bezugszeichen versehen sind. Die Zugbewehrung 46 setzt sich von links nach rechts zusammen aus einer Endverankerungseinrichtung 13, einer ersten Zugstange 47 mit der Länge 1₁, einer Kraftumlenkdose 51, einer zweiten Zugstange 48 und einer Profilverankerungseinrichtung 52. Parallel zu dieser Anordnung ist in dem Profil des trägerförmigen Bauelements 45 die Zugbewehrung 46 weiterhin von links nach-rechts gesehen mit einer Profilverankerungseinrichtung 53, einer dritten Zugstange 49, einer Kraftumlenkdose 54, einer vierten Zugstange 50 sowie einer Endverankerungseinrichtung 14 gebildet. Die Kraftumlenkdosen 51 und 54 weisen ein Gelenkhebelübersetzungsverhältnis von 1: 1 auf.
  • Die Zugstangen 48 und 49 durchtreten jeweils die Profilverankerungseinrichtungen 53 bzw. 52 in nicht dargestellten Hüllrohren. Auch die Zugstangen 47 und 50 sind längsverschiebbar in nicht dargestellten Hüllrohren untergebracht. Der Abstand 1₁ der Kraftumlenkdose 51 von der Endverankerungseinrichtung 13 ist größer als der Abstand 13 der Kraftumlenkdose 54 von der Endverankerungseinrichtung 14, während die Abstände 1₂₁ und 1₂₂ der jeweiligen Kraftumlenkdosen zu den zugehörigen Profilverankerungseinrichtungen 52 bzw. 53 gleichlang sind. Durch die getroffene Anordnung lassen sich vorteilhaft erfindungsgemäße Bauelemente 45 herstellen, die mit schwächer dimensionierten Kraftumlenkdosen auskommen. Weiterhin lassen sich in günstiger Weise Endkräfte im Auflagerbereich herstellen, die entsprechend den jeweiligen Bedürfnissen aufgeteilt sind. Günstig ist ferner die erzielbare geringe Formveränderung des gesamten Bauelements 45 bei Belastung.
  • Fig. 8 zeigt schraffiert die zugehörige resultierende Momentenverteilung über das Bauelement 45 bei Belastung in der Mitte des Bauelements 45 durch eine punktförmige Kraft P, während gestrichelt zum Vergleich der dreieckförmige Biegemomentverlauf bei gleicher Belastung und fehlender Zugbewehrung dargestellt ist.
  • Ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Bauelements 56 zeigt schematisch Fig. 9, wobei in Fig. 10 wiederum der zugehörige resultierende Biegemomentverlauf schraffiert wiedergegeben ist. Das Bauelement 56 besitzt wiederum ein rechteckförmiges Trägerprofil 55, das an seinen Enden auf Auflagern 11 und 12 aufliegt. Die Zugbewehrung 58 setzt sich zusammen aus einer Profilverankerungseinrichtung 59, einer kurzen Zugstange 60, einer Kraftumlenkdose 61 mit einem Gelenkhebelübersetzungsverhältnis von 2: 1, einer langen Zugstange 62, einer Kraftumlenkdose 63 mit einem Gelenkhebelübersetzungsverhältnis von 2: 1, einer kurzen Zugstange 64 und einer Profilverankerungseinrichtung 65.
  • Im Gegensatz zu den bisher dargestellten Ausführungsbeispielen weist das Bauelement 56 eine an beiden Seiten im Feldbereich beginnende Verankerung mit Momentenumkehr auf.
  • Figur 11 zeigt schematisch den Aufbau der Kraftumlenkdose 19 von Fig. 1. Die Kraftumlenkdose 19 besteht aus einem quadratischen oder rechteckigen Gehäuse 70, in das in Fig. 11 von links die zu der Endverankerungseinrichtung 13 führende Zugstange 16 eingreift, die in dem Gehäuse an einem sich rechtwinklig zu der Zugstange 16 erstreckenden Profil 71 befestigt ist. Das Profil 71 erstreckt sich seinerseits nahezu über die gesamte Breite der Kraftumlenkdose 19 und besitzt an seinen Enden Gelenke 72 und 73, an denen in zueinander parallelen Ebenen entsprechende Zwischenhebel 74 und 75 angelenkt sind, welche ihrerseits über Schwenkgelenke 76 und 77 mit in parallelen Ebenen zueinander angeordneten Gelenkhebeln 78 und 79 verbunden sind. Die Gelenkhebel 78 und 79 kreuzen einander und sind an ihrem jeweils anderen Ende mit einem gehäusefesten Schwenkgelenk 80 bzw. 81 verbunden. Die Zugstange 17 tritt in das Gehäuse 70 von der entgegengesetzten Richtung zu der Zugstange 16 ein und greift mit einer flanschartigen Anformung 82 an die Gelenkhebel 78 und 79 im Bereich des Kreuzungspunktes derselben an. Das bereits erwähnte Übersetzungsverhältnis der Gelenkhebel 78 bzw. 79 ist definiert durch den Abstand des Hebelarmes zwischen dem Gelenk 81 und der Angriffsstelle der Anformung 82 im Kreuzungsbereich der Hebel sowie dem Hebelarm zwischen dem erstgenannten Kreuzungspunkt und dem Gelenk 77.
  • Bei einem Gelenkhebelübersetzungsverhältnis von 1: 1 ergibt sich bei der Kraftumlenkdose 19 für eine Längenänderung 1 der Zugstange 17 aufgrund der scherenartigen Konstruktion der Gelenkhebel 78 und 79 eine Längenänderung von 21.
  • Figur 12 zeigt schematisch eine modifizierte Kraftumlenkdose 85, bei der in einem rechteckigen Gehäuse 86 abweichend von dem in.
  • Fig. 11 dargestellten Ausführungsbeispiel zwischen den Zwischenhebeln 74 und 75 zwei gekreuzte weitere Zwischengelenhebel 90 und 91 angelenkt sind, die in ihrem Kreuzungspunkt eine drehbare Verbindung haben. Die Zwischengelenkhebel 90 und 91 sind an ihren anderen Enden mit Schwengelenken 92 und 93 an den Gelenhebeln 78 und 79 angeschlossen, die abweichend von der Ausbildung in Fig. 11 ein gemeinsames Gelenk 87 in ihrem Kreuzungspunkt besitzen und sich mit ihren gegenüberliegenden Enden mittels Schwenk-Schubgelenken 88 bzw. 89 an der Wand des Gehäuses 86 abstützen, durch die die an dem Gelenk 78 angelenkte Zugstange 17 eintritt. Das Übersetzungsverhältnis beträgt bei den Zwischengelenkhebeln 90 und 91 1: 1 und bei den Gelenkhebeln 78 und 79 2: 3. Der Aufbau der Gelenkhebel ähnelt dem einer Doppelschere, wobei der Vorteil erzielt wird, daß bei einer Längenänderung bzw. bei einem Weg 1 der Zugstange 17 aufgrund der Konfiguration ein Weg von 51 an der Zugstange 16 erreicht wird.
  • In den Figuren 13 und 14 ist ein weiteres Ausführungsbeispiel einer Kraftumlenkdose 100 dargestellt, das sich insbesondere zur Verwendung in betonumhüllten Bauteilen eignet, ebensogut jedoch für Stahlträger mit Doppel-T-Querschnitt, rechteckigem querschnitt, Holzträger usw., also Träger, die nicht oder nicht vollständig von Beton umhüllt werden, verwendet werden kann.
  • Die als Verankerungseinrichtung ausgebildete Kraftumlenkdose 100 besteht aus einem dosenförmigen Gehäuse, das im zusammengebauten Zustand abgekapselt und im trägerförmigen Bauelement fest verankert ist. In das Gehäuse 101 greift in Fig. 13 von links die Zugstange 16 und von rechts die Zugstange 17 ein, die jeweils von Hüllrohren 21 bzw. 22 so umschlossen sind, daß in jedem Fall deren Längsverschiebung sichergestellt ist. Das quaderförmige Gehäuse 101 weist einen Boden 102, vier Seitenwände 103, 104 sowie einen aufsetzbaren Deckel 105 auf, der in der Darstellung nach Fig. 13 abgenommen ist. Die sich parallel zu den Zugelementen 16 und 17 erstreckenden Seitenwände 104 sind mit Nuten 106 versehen, in die erste Hebelarme 107 zweier Hebel 108 begrenzt schwenkbar eingreifen.
  • Das Gehäuse 101 ist entweder am Bauelement befestigt oder im Fall eines Betonbauteiles in dieses eingegossen, so daß die Nuten 106 trägerfeste Widerlager für den schwenkbaren Eingriff der Hebelarme 107 zur Bildung eines Schwenkgelenks ähnlich den Gelenken 80, 81 in Fig. 11 bilden.
  • Ein Endabschnitt der Zugstange 17, der sich innerhalb des Gehäuses 101 befindet, ist mit einem Gewinde versehen, auf das ein Gabelstück 109 aufgeschraubt ist. Jede Zinke des Gabelstücks 109 dient als Lager für eine Achse 110 eines der beiden zweiarmigen Hebel 108. Der jeweils erste Hebelarm 111 der beiden Hebel 108, der die gleiche Länge hat wie der Hebelarm 107, greift in eine Umfangsnut 112 der anderen Zugstange 16 ein. Die muffenartige Umfangsnut ist durch nicht dargestellte Gewindemuttern begrenzt, die mit Abstand zueinander auf einem in dem Gehäuse 101 befïndlichen Gewindeabschnitt der Zugstange 16 aufgeschraubt sind, wobei die endseitige Gewindemutter den Endflansch 113 bildet.
  • Figur 15 zeigt eine schematische Darstellung einer weiteren Ausbildungsform einer Kraftumlenkdose 115, die aus einem würfeloder einem quaderförmigen Gehäuse 116 besteht. Die Kraftumlenkdose 115 stellt eine Modifikation der in den Figuren 11 und 12 schematisch dargestellten Kraftumlenkdosen dar, wobei vergleichbare Bauteile identische Bezugszeichen tragen. Abweichend von dem in Figur 11 dargestellten Ausführungsbeispiel weisen die Gelenkhebel 78 und 79 in ihrem Kreuzungspunkt ein Schwenkgelenk auf, an dem gleichzeitig die Zugstange 17 angelenkt ist. Außerdem stützen sich die Gelenkhebel 78 und 79 über Dreh- und Schubgelenke 88 und 89 wie beim Ausführungsbeispiel gemäß Fig. 12 unmittelbar an der Gehäusewand ab, die der Zugstange 17 zugewandt ist. Die Gelenke 88 und 89 sind als Zylinderrollen ausgebildet, die an den Gelenkhebeln 78 und 79 in formentsprechenden Ausnehmungen mit Spiel aufgenommen sind. Das Übersetzungsverhältnis der Gelenkhebel 78 und 79 beträgt 1: 1, wobei sich die Gelenkhebel und die Zwischengelenkhebel jeweils in parallelen Ebenen zueinander bewegen.
  • Falls das Querschnittsprofil begrenzt ist, beispielsweise bei einem sogenannnten Holzleimbinder, und größere Belastungen aufgebracht werden sollen, besteht auch die Möglichkeit, von dem Kreuzgelenkpunkt 78 ein querverlaufendes Joch durch seitlich in dem Gehäuse vorzusehende Aussparungen nach außen zu führen und die Zugstange 17 durch zwei außerhalb des Profils verlaufende Zugstangen mit entsprechend für die halbe Last verringertem Querschnitt zu ersetzen.

Claims (16)

1. Trägerförmiges Bauelement (10, 25, 30, 45, 56) mit einer Zugbewehrung (15, 33, 46, 58), die zwischen Verankerungseinrichtungen (13, 14) längsverschieblich angeordnet ist, welche mit dem Bauelement (10, 25, 30, 45, 56) verbunden sind, wobei wenigstens eine Verankerungseinrichtung (13, 14) vorgesehen ist, die wenigstens ein Kraftübertragungselment aufweist, das an das Bauelement (10, 25, 30, 45, 56) im Bereich der Zugzone angreift, dadurch gekennzeichnet, daß die längsverschiebliche Zugbewehrung (15, 33, 46, 58) in der Zugzone des Profils des Bauelements (10, 25, 30, 45, 56) angeordnet ist und aus wenigstens zwei Zugelementen (16, 17, 18, 26, 27, 35, 38, 47 _ 50, 60, 62, 64) besteht, und daß jedes Kraftübertragungselement als Gelenkhebel (78, 79, 108) ausgebildet ist, der an den jeweils zueinanderweisenden Enden zweier Zugelemente (16, 17, 18, 26, 27, 35, 38, 47 _ 50, 60, 62, 64) angelenkt ist.
2. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß wenigstens ein Gelenkhebel (78, 79, 108) in einer als Kraftumlenkdose (19, 20, 37, 51, 54, 61, 63, 85, 100, 115) ausgebildeten und vom Auflagerbereich (11, 12) des Bauelements (10, 25, 30, 45, 56) beabstandeten Verankerungseinrichtung vorgesehen ist.
3. Bauelement nach Anspruch 2, dadurch gekennzeichnet, daß jede Kraftumlenkdose (19, 20, 37, 51, 54, 61, 63, 85, 100, 115) zwei gekreuzte Gelenkhebel (78, 79) aufweist, die an ihrem Kreuzungspunkt gelenkig mit einem Zugelement (17, 27, 35, 48, 49, 62) verbunden sind, jeweils mit einem Ende gelenkig (80, 81, 88, 89, 106, 107) an die Kraftumlenkdose (19, 20, 37, 51, 54, 61, 63, 85, 100, 115) und jeweils mit ihrem anderen Ende an dem anderen Zugelement (16, 18, 26, 38, 47, 50, 60, 64) angelenkt sind.
4. Bauelement nach Anspruch 3, dadurch gekennzeichnet, daß die Anlenkung der Enden der Gelenkhebel (78, 79) an dem anderen Zugelement (16) über wenigstens zwei Zwischenhebel (74, 75) vorgesehen ist.
5. Bauelement nach Anspruch 4, dadurch gekennzeichnet, daß zwischen den Gelenkhebeln (78, 79) und den Zwischenhebeln (74, 75) wenigstens zwei gekreuzte Zwischengelenkhebel (90, 91) vorgesehen sind.
6. Bauelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß bei den Gelenkhebeln (78, 79) der Hebelarm zwischen dem Kreuzungspunkt (82, 87) und dem Angriffsende an der Kraftumlenkdose gleich dem oder kleiner als der Hebelarm zwischen dem Kreuzungspunkt (82, 87) und ihrem anderen Ende ist.
7. Bauelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß jedes in dem Bauelement vorgesehene Zugelement (16, 17, 18, 26, 27, 35, 38, 47 _ 50, 60, 62, 64) längsverschieblich in einem Hüllrohr (21, 22, 23, 33, 39) angeordnet ist.
8. Bauelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zwei miteinander verbundene Zugelemente (16, 17, 18, 26, 27, 35, 38, 47 _ 50, 60, 62, 64) unterschiedliche Länge besitzen, wobei das kürzere Zugelement mit einer im Bereich der Zugzone des Bauelements (10, 25, 30, 45) angreifenden Endverankerungseinrichtung (13, 14) im Auflagerbereich (11, 12) des Bauelements verbunden ist.
9. Bauelement nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß zwei miteinander verbundene Zugelemente (35, 38, 47 _ 50, 60, 62, 64) unterschiedliche Länge besitzen, wobei eines der Zugelemente (38, 48, 49, 60, 64) mit einer im Bereich der Zugzone des Bauelements angreifenden Profilverankerungseinrichtung (40, 52, 53, 59, 65) verbunden ist.
10. Bauelement nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß das Bauelement (10, 56) zwei Kraftumlenkdosen (19, 20, 61, 63) aufweist, die über ein gemeinsames längeres Zugelement (17, 62) miteinander verbunden und von dem jeweiligen Ende des Bauelements beabstandet angeordnet sind.
11. Bauelement nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß zwei miteinander verbundene Zugelemente (47, 48, 49, 50) unterschiedliche Länge besitzen und daß das Bauelement (45) zwei Kraftumlenkdosen (51, 54) aufweist, wobei die jeweils längeren Zugelemente (48, 49) parallel zueinander verlaufen und mit einer im Bereich der Zugzone des Bauelements (45) angreifenden Profilverankerungseinrichtung (52, 53) verbunden sind, welche von einer Kraftumlenkdose gesehen jeweils vor der gegenüberliegenden Kraftumlenkdose angeordnet sind.
12. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Zugbewehrung (15, 33, 46) im Auflagerbereich (11, 12) des Bauelementes (10, 25, 30, 45) endverankert ist und daß jeder Hebel (78, 79, 108) auf dem Ende seines Zugelements (17, 27, 35, 48, 49, 62) drehbar gelagert ist und sein zweiter Arm (111) mit dem Ende des anschließenden Zugelements (16, 18, 26, 38, 47, 50, 60, 64) beweglich verbunden ist.
13. Bauelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Ende des ersten von zwei zueinanderweisenden Zugelementen gabelförmig ausgebildet ist und das Gabelstück (109) das Ende des anderen Zugelements (16) einfaßt, wobei auf jeder Zinke des Gabelstücks (109) ein Hebel (108) drehbar gelagert ist und die zueinanderweisenden zweiten Arme (111) der beiden Hebel (108) gemeinsam an einen Endflansch (113) des anderen Zugelements (16) angreifen.
14. Bauelement nach Anspruch 13, dadurch gekennzeichnet, daß die Enden der beiden Zugelemente (16, 17) mit Gewinden versehen sind, wobei einerseits das Gabelstück (109) und andererseits eine Umfangsnut (112) bildende Gewindemuttern aufgeschraubt sind.
15. Bauelement nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die Zugelemente (16, 17) innerhalb in Beton eingebetteter Hüllrohre (21, 22) längsverschieblich angeordnet sind und an dosenartige Verankerungseinrichtungen (100) anschließen, deren parallel zu den Zugelementen verlaufende Seitenwände (104) mit Nuten (106) versehen sind, in die die ersten Hebelarme (107) eingreifen.
16. Bauelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Zugelemente (16, 18, 26, 35, 47, 50) als Zugstangen ausgebildet sind, die wenigstens im Bereich von Endverankerungseinrichtungen (13, 14, 34) mit einem Gewinde vesehen sind, wobei mittels einer aufschraubbaren Gewindemutter eine Vorspannkraft einleitbar ist.
EP19870900098 1985-12-05 1986-12-03 Trägerförmiges bauelement Expired - Lifetime EP0284609B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT3529/85 1985-12-05
AT352985 1985-12-05

Publications (2)

Publication Number Publication Date
EP0284609A1 EP0284609A1 (de) 1988-10-05
EP0284609B1 true EP0284609B1 (de) 1991-03-27

Family

ID=3551783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870900098 Expired - Lifetime EP0284609B1 (de) 1985-12-05 1986-12-03 Trägerförmiges bauelement

Country Status (4)

Country Link
EP (1) EP0284609B1 (de)
JP (1) JPS63502765A (de)
AU (1) AU6847087A (de)
WO (1) WO1987003637A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380637B1 (ko) * 1999-05-10 2003-04-16 주식회사 인터컨스텍 교량의 내하력이 조정되는 프리스트레스트 콘크리트 거더및 이를 이용한 교량의 내하력 조정방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343808A (en) * 1963-08-16 1967-09-26 Howlett Machine Works Concrete prestressing apparatus
FR1414245A (fr) * 1964-11-03 1965-10-15 Dispositif d'ancrage automatique et instantané des fils d'acier devant être soumis aux précontraintes ou autres
GB1373061A (en) * 1971-03-05 1974-11-06 Raaber N Reinforced girder
DE2206140C3 (de) * 1972-02-09 1978-06-29 Preflex-Verbundtraeger Gmbh, 6270 Idstein Verbundträger

Also Published As

Publication number Publication date
AU6847087A (en) 1987-06-30
EP0284609A1 (de) 1988-10-05
WO1987003637A1 (en) 1987-06-18
JPS63502765A (ja) 1988-10-13

Similar Documents

Publication Publication Date Title
DE3837774C1 (de)
DE69200158T2 (de) Verfahren und Vorrichtung zur Druckaufnahmeverstärkung von Beton und derart verstärkte Betonbauwerte.
EP0469337B1 (de) Stahl-Beton-Verbundbauteil
EP1795667A2 (de) Bewehrungselement für Tragwerke aus Stahlbeton, Spannbeton oder dergleichen
EP0284609B1 (de) Trägerförmiges bauelement
DE2124433A1 (de) Muffenverbindung fur gerippte Beweh rungstahle
DE2633668C2 (de) Längsverschiebliche Verbindung zweier hintereinanderliegender balkenförmiger Bauwerksteile, insbesondere Brückenträger
DD215518A5 (de) Ausleger fuer hebezeuge, insbesondere hebebuehnen, bagger oder dergleichen
DE19627342A1 (de) Bauelement zur Wärmedämmung
DE2148164A1 (de) Verbesserungen an Einrichtungen zum Erzeugen einer Vorspannung an der Armierung von Konstruktionselementen
DE29707378U1 (de) Thermisch isolierendes Bauelement
AT158230B (de) Balken aus druckfestem Material zur Aufnahme von Zugkräften, insbesondere für Tragdecken.
EP0947640A2 (de) Bewehrung mit hochfestem Verbund
AT411699B (de) Bauwerk mit wandungen, die mit beton aufgebaut sind und schalung für ein bauwerk
DE3218134A1 (de) Verfahren und vorrichtung zur herstellung von auf biegung beanspruchten bauelementen aus holz
DE102016121713A1 (de) Segmentbrücke
DE975351C (de) Bauwerksteil aus Beton mit beschraenkter Vorspannung
AT360722B (de) Bewehrungselement fuer einen auf biegung beanspruchten bauteil aus stahlbeton
DE2444675A1 (de) Verfahren zur vorlaeufigen befestigung vorgefertigter bauteile, insbesondere vorgefertigter brueckenbauteile, und fertigbauteil zur durchfuehrung eines solchen verfahrens
DE840758C (de) Verfahren zur Herstellung von Balken aus vorgespanntem Beton
DE19611200A1 (de) Bewehrungsanordnung für Porenbeton-Bauteile
EP4339383A1 (de) Verbindungsanordnung zur kraftübertragenden anbindung eines ersten kraftaufnehmenden bauwerksteils an ein zweites kraftaufnehmendes bauwerksteil und bauwerk
DE1409794C (de) Fahrbahndecke aus Beton
DE3833202A1 (de) Balkenartiges tragglied aus spannbeton
DE29615019U1 (de) Vorrichtung zur konzentrierten Krafteinleitung in Beton

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19891121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910327

Ref country code: NL

Effective date: 19910327

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910327

Ref country code: GB

Effective date: 19910327

Ref country code: BE

Effective date: 19910327

REF Corresponds to:

Ref document number: 62048

Country of ref document: AT

Date of ref document: 19910415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3678448

Country of ref document: DE

Date of ref document: 19910502

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910816

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19911231

Ref country code: LI

Effective date: 19911231

Ref country code: CH

Effective date: 19911231

Ref country code: AT

Effective date: 19911231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: AUV

Free format text: DAS OBENGENANNTE PATENT IST, MANGELS BEZAHLUNG DER 6. JAHRESGEBUEHR, GELOESCHT WORDEN.

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921223

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901