EP0284050A2 - Tintenstrahlaufzeichnungsverfahren - Google Patents
Tintenstrahlaufzeichnungsverfahren Download PDFInfo
- Publication number
- EP0284050A2 EP0284050A2 EP88104666A EP88104666A EP0284050A2 EP 0284050 A2 EP0284050 A2 EP 0284050A2 EP 88104666 A EP88104666 A EP 88104666A EP 88104666 A EP88104666 A EP 88104666A EP 0284050 A2 EP0284050 A2 EP 0284050A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- ink
- inks
- recording
- recording medium
- retaining layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 230000008569 process Effects 0.000 title claims abstract description 32
- 239000000976 ink Substances 0.000 claims abstract description 218
- 239000000758 substrate Substances 0.000 claims description 25
- 239000000975 dye Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 17
- 239000003086 colorant Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 230000007935 neutral effect Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 238000001454 recorded image Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 238000001035 drying Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 7
- -1 polytetrafluoroethylene Polymers 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 229920001477 hydrophilic polymer Polymers 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000005846 sugar alcohols Polymers 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 235000019646 color tone Nutrition 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 3
- 239000000982 direct dye Substances 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000978776 Senegalia senegal Species 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 2
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001023 inorganic pigment Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 230000002522 swelling effect Effects 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- 229920003176 water-insoluble polymer Polymers 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- IHZXTIBMKNSJCJ-UHFFFAOYSA-N 3-{[(4-{[4-(dimethylamino)phenyl](4-{ethyl[(3-sulfophenyl)methyl]amino}phenyl)methylidene}cyclohexa-2,5-dien-1-ylidene)(ethyl)azaniumyl]methyl}benzene-1-sulfonate Chemical compound C=1C=C(C(=C2C=CC(C=C2)=[N+](C)C)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 IHZXTIBMKNSJCJ-UHFFFAOYSA-N 0.000 description 1
- AVERNFJXXRIVQN-XSDYUOFFSA-N 5-[(4-ethoxyphenyl)diazenyl]-2-[(e)-2-[4-[(4-ethoxyphenyl)diazenyl]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C1=CC(OCC)=CC=C1N=NC(C=C1S(O)(=O)=O)=CC=C1\C=C\C1=CC=C(N=NC=2C=CC(OCC)=CC=2)C=C1S(O)(=O)=O AVERNFJXXRIVQN-XSDYUOFFSA-N 0.000 description 1
- STOOUUMSJPLRNI-UHFFFAOYSA-N 5-amino-4-hydroxy-3-[[4-[4-[(4-hydroxyphenyl)diazenyl]phenyl]phenyl]diazenyl]-6-[(4-nitrophenyl)diazenyl]naphthalene-2,7-disulfonic acid Chemical compound OS(=O)(=O)C1=CC2=CC(S(O)(=O)=O)=C(N=NC=3C=CC(=CC=3)C=3C=CC(=CC=3)N=NC=3C=CC(O)=CC=3)C(O)=C2C(N)=C1N=NC1=CC=C([N+]([O-])=O)C=C1 STOOUUMSJPLRNI-UHFFFAOYSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920002160 Celluloid Polymers 0.000 description 1
- HMEKVHWROSNWPD-UHFFFAOYSA-N Erioglaucine A Chemical compound [NH4+].[NH4+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 HMEKVHWROSNWPD-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229920009204 Methacrylate-butadiene-styrene Polymers 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- GRPFBMKYXAYEJM-UHFFFAOYSA-M [4-[(2-chlorophenyl)-[4-(dimethylamino)phenyl]methylidene]cyclohexa-2,5-dien-1-ylidene]-dimethylazanium;chloride Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C(=CC=CC=1)Cl)=C1C=CC(=[N+](C)C)C=C1 GRPFBMKYXAYEJM-UHFFFAOYSA-M 0.000 description 1
- CQPFMGBJSMSXLP-UHFFFAOYSA-M acid orange 7 Chemical compound [Na+].OC1=CC=C2C=CC=CC2=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 CQPFMGBJSMSXLP-UHFFFAOYSA-M 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- WXLFIFHRGFOVCD-UHFFFAOYSA-L azophloxine Chemical compound [Na+].[Na+].OC1=C2C(NC(=O)C)=CC(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=C1N=NC1=CC=CC=C1 WXLFIFHRGFOVCD-UHFFFAOYSA-L 0.000 description 1
- VJDDAARZIFHSQY-UHFFFAOYSA-N basic black 2 Chemical compound [Cl-].C=1C2=[N+](C=3C=CC=CC=3)C3=CC(N(CC)CC)=CC=C3N=C2C=CC=1NN=C1C=CC(=O)C=C1 VJDDAARZIFHSQY-UHFFFAOYSA-N 0.000 description 1
- 239000000981 basic dye Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000012709 brilliant black BN Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- IWWWBRIIGAXLCJ-BGABXYSRSA-N chembl1185241 Chemical compound C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC IWWWBRIIGAXLCJ-BGABXYSRSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 235000019642 color hue Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- HZBTZQVWJPRVDN-UHFFFAOYSA-J copper;disodium;5-[[4-[4-[[2,6-dioxido-3-[(2-oxido-5-sulfonatophenyl)diazenyl]phenyl]diazenyl]phenyl]phenyl]diazenyl]-2-oxidobenzoate;hydron Chemical compound [H+].[H+].[Na+].[Na+].[Cu+2].C1=C([O-])C(C(=O)[O-])=CC(N=NC=2C=CC(=CC=2)C=2C=CC(=CC=2)N=NC=2C(=C(N=NC=3C(=CC=C(C=3)S([O-])(=O)=O)[O-])C=CC=2[O-])[O-])=C1 HZBTZQVWJPRVDN-UHFFFAOYSA-J 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- UZZFFIUHUDOYPS-UHFFFAOYSA-L disodium 4-amino-3,6-bis[[4-[(2,4-diaminophenyl)diazenyl]phenyl]diazenyl]-5-oxido-7-sulfonaphthalene-2-sulfonate Chemical compound [Na+].[Na+].Nc1ccc(N=Nc2ccc(cc2)N=Nc2c(N)c3c(O)c(N=Nc4ccc(cc4)N=Nc4ccc(N)cc4N)c(cc3cc2S([O-])(=O)=O)S([O-])(=O)=O)c(N)c1 UZZFFIUHUDOYPS-UHFFFAOYSA-L 0.000 description 1
- AOMZHDJXSYHPKS-UHFFFAOYSA-L disodium 4-amino-5-hydroxy-3-[(4-nitrophenyl)diazenyl]-6-phenyldiazenylnaphthalene-2,7-disulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC2=CC(S([O-])(=O)=O)=C(N=NC=3C=CC=CC=3)C(O)=C2C(N)=C1N=NC1=CC=C([N+]([O-])=O)C=C1 AOMZHDJXSYHPKS-UHFFFAOYSA-L 0.000 description 1
- YCMOBGSVZYLYBZ-UHFFFAOYSA-L disodium 5-[[4-[4-[(2-amino-8-hydroxy-6-sulfonatonaphthalen-1-yl)diazenyl]phenyl]phenyl]diazenyl]-2-hydroxybenzoate Chemical compound NC1=CC=C2C=C(C=C(O)C2=C1N=NC1=CC=C(C=C1)C1=CC=C(C=C1)N=NC1=CC=C(O)C(=C1)C(=O)O[Na])S(=O)(=O)O[Na] YCMOBGSVZYLYBZ-UHFFFAOYSA-L 0.000 description 1
- OOYIOIOOWUGAHD-UHFFFAOYSA-L disodium;2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C([O-])C(Br)=C1OC1=C(Br)C([O-])=C(Br)C=C21 OOYIOIOOWUGAHD-UHFFFAOYSA-L 0.000 description 1
- FPVGTPBMTFTMRT-UHFFFAOYSA-L disodium;2-amino-5-[(4-sulfonatophenyl)diazenyl]benzenesulfonate Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(N)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 FPVGTPBMTFTMRT-UHFFFAOYSA-L 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000019233 fast yellow AB Nutrition 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000002864 food coloring agent Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 238000007757 hot melt coating Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- JQZWHMOVSQRYRN-UHFFFAOYSA-M n-(2-chloroethyl)-n-ethyl-3-methyl-4-[2-(1,3,3-trimethylindol-1-ium-2-yl)ethenyl]aniline;chloride Chemical compound [Cl-].CC1=CC(N(CCCl)CC)=CC=C1C=CC1=[N+](C)C2=CC=CC=C2C1(C)C JQZWHMOVSQRYRN-UHFFFAOYSA-M 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000985 reactive dye Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- BQHRKYUXVHKLLZ-UHFFFAOYSA-M sodium 7-amino-2-[[4-[(4-aminophenyl)diazenyl]-2-methoxy-5-methylphenyl]diazenyl]-3-sulfonaphthalen-1-olate Chemical compound [Na+].COc1cc(N=Nc2ccc(N)cc2)c(C)cc1N=Nc1c(O)c2cc(N)ccc2cc1S([O-])(=O)=O BQHRKYUXVHKLLZ-UHFFFAOYSA-M 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- UDTJJVCMRRCRDB-UHFFFAOYSA-M sodium;4-(3-methyl-5-oxo-4-phenyldiazenyl-4h-pyrazol-1-yl)benzenesulfonate Chemical compound [Na+].CC1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1N=NC1=CC=CC=C1 UDTJJVCMRRCRDB-UHFFFAOYSA-M 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- GMMAPXRGRVJYJY-UHFFFAOYSA-J tetrasodium 4-acetamido-5-hydroxy-6-[[7-sulfonato-4-[(4-sulfonatophenyl)diazenyl]naphthalen-1-yl]diazenyl]naphthalene-1,7-disulfonate Chemical compound [Na+].[Na+].[Na+].[Na+].OC1=C2C(NC(=O)C)=CC=C(S([O-])(=O)=O)C2=CC(S([O-])(=O)=O)=C1N=NC(C1=CC(=CC=C11)S([O-])(=O)=O)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 GMMAPXRGRVJYJY-UHFFFAOYSA-J 0.000 description 1
- MPCYPRXRVWZKGF-UHFFFAOYSA-J tetrasodium 5-amino-3-[[4-[4-[(8-amino-1-hydroxy-3,6-disulfonatonaphthalen-2-yl)diazenyl]phenyl]phenyl]diazenyl]-4-hydroxynaphthalene-2,7-disulfonate Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(N=NC3=CC=C(C=C3)C3=CC=C(C=C3)N=NC3=C(C=C4C=C(C=C(C4=C3O)N)S([O-])(=O)=O)S([O-])(=O)=O)=C(O)C2=C1N MPCYPRXRVWZKGF-UHFFFAOYSA-J 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 1
- 229950006389 thiodiglycol Drugs 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical class OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
- VRVDFJOCCWSFLI-UHFFFAOYSA-K trisodium 3-[[4-[(6-anilino-1-hydroxy-3-sulfonatonaphthalen-2-yl)diazenyl]-5-methoxy-2-methylphenyl]diazenyl]naphthalene-1,5-disulfonate Chemical compound [Na+].[Na+].[Na+].COc1cc(N=Nc2cc(c3cccc(c3c2)S([O-])(=O)=O)S([O-])(=O)=O)c(C)cc1N=Nc1c(O)c2ccc(Nc3ccccc3)cc2cc1S([O-])(=O)=O VRVDFJOCCWSFLI-UHFFFAOYSA-K 0.000 description 1
- KQWRFGNYXOGTEG-UHFFFAOYSA-K trisodium 5-[[2-methoxy-4-[3-methoxy-4-[(1-oxido-4-sulfonaphthalen-2-yl)diazenyl]phenyl]phenyl]diazenyl]-6-oxido-7-sulfonaphthalene-2-sulfonate Chemical compound COC1=C(C=CC(=C1)C2=CC(=C(C=C2)N=NC3=C4C=CC(=CC4=CC(=C3[O-])S(=O)(=O)O)S(=O)(=O)[O-])OC)N=NC5=C(C6=CC=CC=C6C(=C5)S(=O)(=O)O)[O-].[Na+].[Na+].[Na+] KQWRFGNYXOGTEG-UHFFFAOYSA-K 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/506—Intermediate layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/508—Supports
Definitions
- the present invention relates to an ink-jet recording process. More particularly, it is concerned with an ink-jet recording process for obtaining a color image of high image quality with a high recording density, by use of a plurality of inks of different hues.
- the recording is carried out by forming ink droplets according to various ink-ejection methods as exemplified by an electrostatic attraction method, a method in which mechanical vibration or displacement is applied to ink by use of a piezoelectric element, a method in which the pressure generated by heating ink and forcing it to foam is utilized, and so forth; and flying the droplets so that a part or the whole of them is adhered on a recording medium such as paper.
- electrostatic attraction method a method in which mechanical vibration or displacement is applied to ink by use of a piezoelectric element
- a method in which the pressure generated by heating ink and forcing it to foam is utilized, and so forth
- flying the droplets so that a part or the whole of them is adhered on a recording medium such as paper.
- inks for ink-jet recording those chiefly comprised of water are used in view of safety and recording performance, and polyhydric alcohols are often added thereto to prevent nozzle clogging and improve ejection stability.
- C cyan
- M magenta
- Y yellow
- Bk black
- the recording medium used for forming color images thereon by the above ink-jet systems may include, in the first place, ordinary paper such as wood free paper and bond paper, coated paper comprising a support having on its surface a porous ink-absorptive layer as typified by ink-jet paper (Japanese Patent Laid-open Publication No. 214989/1985), etc.
- the recorded images are viewed from the ink-applying surface (the surface on which inks are applied), they are constituted in the manner that recording agents may remain on the surface of the ink-absorptive layer as much as possible, thus having the disadvantage that the durability such as water resistance and abrasion resistance and storage stability of images are inferior and the disadvantage that a recorded image cannot have satisfactory gloss.
- a recording medium disclosed, for example, in Japanese Patent Laid-open Publication No. 136480/1983 and Japanese Patent Laid-open Publication No. 136481/1983.
- This recording medium comprises a support provided thereon with an ink receiving layer chiefly comprised of a pigment having a refractive index of 1.58 or less, where the images formed are viewed from the support side.
- difficulties in the various performances such as water resistance at the image-viewing surface (the surface from which images are viewed) are sufficiently settled.
- the ink-receiving layer is chiefly comprised of the pigment and contiguously laminated on a transparent support, a greater part of the inks having reached to the support is veiled by the pigment even if the pigment has a refractive index of 1.58 or less, making it impossible to sufficiently enhance the image density at the image-viewing surface.
- recording mediums have come to be demanded which are greatly superior to the conventional ones in all of the recording performances such as ink absorbing property, color-developing property for dyes, light-resistance of recorded images, resolution, color performance, recorded image density, storage stability, and gloss.
- the present inventors have made researches to provide such recording mediums as stated above, and, as a result have ever proposed a recording medium having a specific constitution such that it comprises a liquid-permeable ink-transporting layer and an ink-retaining layer and the ink-applying surface and the image-viewing surface are in an obverse and reverse relationship (EP 227 245 A2).
- the ink droplets ejected from one ink-jet nozzle in one time are controlled to be in a small quantity, the inks tend to stagnate in the ink-transporting layer particularly at the unicolored producing area and therefore the inks may reach to the ink-retaining layer only in a little quantity. This causes the problems such that there can be obtained no image with uniform color-forming performance, high density and high resolution.
- an object of the present invention is to provide an ink jet recording process for readily obtaining a color image of high image quality with a superior image density, uniform color-forming performance and resolution, with high recording density, relating to an ink-jet recording process comprising applying ink droplets from the ink-retaining layer side of a recording medium having at least an ink-transporting layer and an ink-retaining layer to form on the ink-retaining layer an image that can be viewed from the ink-retaining layer side.
- an ink-jet recording process comprising applying inks to a recording medium having at least an ink-transporting layer and an ink retaining layer, from the ink-transporting layer side of said recording medium, and thereby forming with a plurality of ink dots a unicolored area observable from the ink-retaining layer side, the dots being formed respectively by application of at least two ink droplets in superposition.
- an ink-jet recording process comprising applying inks to a recording medium having at least an ink-transporting layer and an ink retaining layer, from the ink-transporting layer side of said recording medium, and thereby forming with a plurality of ink dots in a density of 200 ⁇ 200 DPI (dots per inch) or more a unicolored area observable from the ink-retaining layer side, the dots being formed respectively by application of at least two ink droplets in superposition.
- an ink jet recording process comprising applying inks to a recording medium having at least an ink-transporting layer and an ink-retaining layer from the ink-transporting layer side of said recording medium, and thereby forming with a plurality of ink dots a unicolored area and a mixedly colored area which are observable from the ink-retaining layer side, the dots being formed respectively by applicatlon of at least two ink droplets in superposition.
- each of plural ink dots which form images may be formed by applying at least two ink droplets in superposition, whereby the quantity of the inks reaching to the ink-retaining layer can be made uniform as a whole and moreover the inks applied can be made to sufficiently reach up to the ink-retaining layer even when the ink droplets ejected from one ink-jet nozzle in one time are in a small quantity, thus solving the above problems with great ease.
- color images are formed at a recording density of as high as 200 ⁇ 200 DPI (dots per inch) or more in length direction and in breadth direction each, preferably from 200 ⁇ 200 to 600 ⁇ 600 DPI, and moreover with a plurality of inks having different hues, using a recording medium of the type in which images are not viewed from the ink-applying surface, and the ink-applying surface and the image-viewing surface are different, and having at least an ink-transporting layer and an ink-retaining layer.
- DPI dots per inch
- the ink droplets applied at a particular site of the recording medium are not applied each in an always constant quantity, and a plurality of inks having different hues are superposed to form the respective dots, according to image signals and, in a neutral tint area, depending on desired neutral tints. Therefore the number of ink droplets applied is different in each dot. Moreover, the ink droplets ejected from one ink-jet nozzle in one time are in a small quantity for carrying out the recording with a high density as much as 200 ⁇ 200 DPI or more.
- the ink-transporting property and the ink absorption ability of the ink-transporting layer and the ink-retaining layer, respectively, vary at every site, causing the problems that some parts bear small quantity of ink droplets applied so that the inks may not sufficiently reach to the ink-retaining layer, that the desired neutral tints are not produced, and so forth, resulting in unsatisfactory color-forming performance, uniformity and resolution of images.
- the respective dots are formed by applying a plurality of ink droplets in superposition when unicolored areas and neutral tint (mixedly colored) areas are formed with a plurality of ink dots on the ink-retaining layer by the inks applied from the ink-transporting layer side.
- the number of the ink droplets applied in superposition to form the respective dots amounts to at least two, approximating to the number of the ink droplets applied in maximum, which is four.
- the inks that tend to stagnate in the ink-transporting layer because of the small quantity of inks to be applied can be sufficiently forwarded to the ink-retaining layer and also, in respect of insufficiency in dot shapes, the dot shapes are improved.
- the recording medium used in the present invention is constituted of a substrate as a support, an ink-retaining layer formed on said substrate and on which inks or dyes are substantially absorbed and captured to form colors, and an ink-transporting layer formed on the ink-retaining layer and which has liquid-permeability to inks, transports the inks applied, to the ink-retaining layer and is not substantially dyed in itself by the dyes.
- the substrate is not necessarily required if the ink-transporting layer or ink-retaining layer also have the function as a substrate.
- any conventionally known materials can be used as the substrate used in the above recording medium, specifically including plastic films or sheets made of polyester resin, diacetate resin, triacetate resin, polystyrene resin, polyethylene resin, polycarbonate resin, polymethacrylate resin, cellophane, celluloid, polyvinyl chloride resin, polyvinylidene chloride resin, polysulfone resin, polyimide resin or the like, or glass sheet, etc.
- the thickness of these substrates but, in general, it may range from 1 ⁇ m to 5,000 ⁇ m, preferably from 3 ⁇ m to 1,000 ⁇ m, more preferably from 5 ⁇ m to 500 ⁇ m.
- any processing may also be applied to the substrates to be used. For example, it is possible to apply a desired pattern, appropriate gloss or a silky pattern on the substrates. It is also possible to select as the substrate those having water resistance, abrasion resistance, blocking resistance or the like to impart the water resistance, abrasion resistance, blocking resistance or the like to the image-viewing surface of the recording medium.
- the ink-transporting layer constituting the recording medium used in the present invention is required at least to have liquid-permeability.
- the liquid-permeability mentioned in the present invention refers to a property of rapidly passing inks and causing substantially no dyeing in the ink-transporting layer by the dyes contained in inks.
- a preferred embodiment for improving the liquid-permeability of the ink-transporting layer is to have the porous structure wherein cracks or through-holes are present inside the ink-transporting layer.
- the ink-transporting layer may preferably have light diffusibility.
- the ink-transporting layer satisfying the above properties may have any constitution so long as it has the above properties, but may preferably be chiefly constituted of particles free from being dyed by the dyes, and a binder.
- Such particles may be any particles so long as they may substantially not be dyed by the dyes or the like contained in inks.
- particularly suitable particles in the recording medium used in the present invention include organic particles of highly hydrophobic thermoplastic resins, thermosetting resins or the like, as exemplified by powders of resins such as polystyrene, polymethacrylate, polymethyl methacrylate, elastomers, an ethylene/vinyl acetate copolymer, a styrene/acrylate copolymer, polyester, polyacrylate, polyvinyl ether, polyamide, polyolefin, polyimide, guanamine resins, SBR, NBR, MBS, polytetrafluoroethylene, urea, polyvinyl chloride, polyacrylamide and chloroprene, and at least one of emulsions or suspensions of any of these is used as desired.
- white inorganic pigments for the purpose of increasing the whiteness of the ink-transporting layer, there may be also added white inorganic pigments to the extent that the ink-permeability of the ink-transporting layer may not be impaired, as exemplified by talc, calcium carbonate, calcium sulfate, magnesium hydroxide, basic magnesium carbonate, alumina, synthetic silica, calcium silicate, diatomaceous earth, aluminum hydroxide, clay, barium sulfate, titanium oxide, zinc oxide, zinc sulfide, satin white, silicon oxide, lithopone, etc.
- talc calcium carbonate, calcium sulfate, magnesium hydroxide, basic magnesium carbonate, alumina, synthetic silica, calcium silicate, diatomaceous earth, aluminum hydroxide, clay, barium sulfate, titanium oxide, zinc oxide, zinc sulfide, satin white, silicon oxide, lithopone, etc.
- the binder to be used is a material having the function of binding the above particles each other and/or the particles and ink-retaining layer, and may preferably be free from being dyed by the dyes like the above particles.
- Materials preferred as the binder include any of conventionally known materials as they can be used so long as they have the above functions, and, for example, there can be used as desired, one or more of resins such as polyvinyl alcohol, acrylic resins, a styrene/acrylate copolymer, polyvinyl acetate, an ethylene/vinyl acetate copolymer, starch, polyvinyl butyral, gelatin, casein, ionomers, gum arabic, carboxymethyl cellulose, polyvinyl pyrrolidone, polyacrylamide, polyurethane, melamine resins, epoxy resins, styrene-butadiene rubber, urea resins, phenol resins, ⁇ -olefin resins, chloroprene, and
- various additives as exemplified by surface active agents, penetrants, fluorescent dyes, coloring dyes, etc. may optionally be further added to the ink-transporting layer.
- an excessively large proportion for the binder may make less the cracks or through-holes in the ink-transporting layer, resulting in a decrease in ink absorption effect.
- an excessively large proportion for the particles may cause insufficient binding between particles and particles or the ink-retaining layer and particles, resulting in insufficiency in the strength of the ink-transporting layer and making it impossible to form the ink-transporting layer.
- the thickness of the ink-transporting layer depends on the quantity of ink droplets, but may range from 1 to 300 ⁇ m, preferably from 2 to 200 ⁇ m, and more preferably from 3 to 80 ⁇ m.
- the ink-retaining layer which is non-porous and capable of substantially capture inks or dyes to produce colors, is a layer to absorb and capture the dyes in inks having passed through the ink-transporting layer, and retain them substantially permanently.
- the ink-retaining layer is required to have stronger absorptivity than the ink-transporting layer. This is because if the absorptivity of the ink-retaining layer is weaker than the absorptivity of the ink-transporting layer, the inks applied on the surface of the ink-transporting layer may stagnate in the ink-transporting layer when they pass through the ink-transporting layer and the lead of inks reach the ink-retaining layer, following that the inks penetrate and diffuse too much at the interface between the ink-transporting layer and ink-retaining layer in the lateral direction inside the ink-transporting layer. As a result, the resolution of recorded images is lowered, which prevents formation of recorded images of high quality.
- the ink-retaining layer may preferably be light-transmissive.
- the ink-retaining layer satisfying the above requirements may preferably be constituted of light-transmissive resins capable of adsorbing the dyes and/or light-transmissive resins having solubility and swelling property to inks.
- the ink-retaining layer may preferably be constituted of resins having adsorptivity to the above dyes, as exemplified by water-soluble or hydrophilic polymers having the swelling property to the water-based ink.
- the materials constituting the ink-retaining layer so long as they have the functions of absorbing and capturing inks, can form a non-porous layer, and are light-transmissive.
- the thickness of the ink-retaining layer may be satisfactory if it is enough to absorb and capture ink, and it depends on the quantity of ink droplets. It, however, may range from 1 to 70 ⁇ m, preferably 2 to 50 ⁇ m, and more preferably from 3 to 20 ⁇ m.
- the materials constituting the ink-retaining layer may be any materials so long as they can absorb water-based inks and retain the dyes contained in inks, but may preferably be prepared from water-soluble or hydrophilic polymers considering that inks are mainly water-based inks.
- Such water-soluble or hydrophilic polymers may include, for example, natural resins such as albumin, gelatin, casein, starch, cationic starch, gum arabic and sodium alginate; synthetic resins such as carboxymethyl cellulose, hydroxyethyl cellulose, polyamide, polyacrylamide, polyethyleneimine, polyvinyl pyrrolidone, quaternized polyvinylpyrrolidone, polyvinyl pyridinium halide, melamine resins, phenol resins, alkyd resins, polyurethane, polyvinyl alcohol, ionically modified polyvinyl alcohol, polyester and sodium polyacrylate; preferably, hydrophilic polymers made water-insoluble by cross-linking of any of these polymers, hydrophilic and water insoluble polymer complexes comprising two or more polymers and hydrophilic and water-insoluble polymers having hydrophilic segments; etc.
- various additives as exemplified by surface
- Methods of forming the ink-retaining layer and the ink-transporting layer on the substrate may preferably include a method in which any of the materials set out in the above as preferred examples are dissolved or dispersed in a suitable solvent to prepare a coating solution, and the resulting coating solution is applied on the substrate by a known coating process such as roll coating, rod bar coating, spray coating or air knife coating, followed immediately by drying, or alternatively a method in which any of the above materials are coated on the substrate by hot melt coating, or a sheet is separately formed from any of the above materials in advance and the resulting sheet is laminated on the substrate.
- a known coating process such as roll coating, rod bar coating, spray coating or air knife coating
- the ink-retaining layer When the ink-retaining layer is provided on the substrate, it is preferred to strengthen the adhesion between the substrate and the ink-retaining layer by forming, for example. an anchor coat layer, to eliminate gap therebetween.
- Presence of a gap between the substrate and ink-retaining layer may cause irregular reflection on the recorded-image-viewing surface to substantially lower the image optical density, undesirably.
- the inks to be applied for the formation of images on the specific recording medium as described above may be those known by themselves, as exemplified by water-soluble dyes typified by direct dyes, acidic dyes, basic dyes, reactive dyes, food colors, etc., which are particularly suited as inks for the ink jet system.
- Those preferred as giving images that may satisfy the fixing performance, color-forming performance, sharpness, stability light-resistance and other required performances when used in combination with the above recording medium may preferably include, for example, direct dyes such as: C.I. Direct Black 17, 19, 32, 51, 71, 108, 146; C.I.
- C.I. Basic Black 2 C.I. Basic Blue 1, 3, 5, 7, 9, 24, 25, 26, 28, 29; C.I. Basic Red 1, 2, 9, 12, 13, 14, 37; C.I. Basic Violet 7, 14, 27; C.I. Food Black 1, 2; etc.
- dyes are those particularly preferable for the inks applicable in the recording process of the present invention, and the dyes for use in the inks used in the present invention are by no means limited to these.
- Such water-soluble dyes are used generally in the proportion of about 0.1 to 20 % by weight in conventional inks, and may be used also in the same proportion in the present invention.
- the solvent suitable for use in the inks used in the present invention is water or a mixed solvent of water with a water-soluble organic solvent.
- Particularly suited is a mixed solvent of water with a water-soluble organic solvent, containing as a water-soluble organic solvent a polyhydric alcohol having the effect of preventing the drying of inks.
- the water preferred is not to use the ordinary water containing various ions but to use deionized water.
- the water-soluble organic solvent used by mixing it with water may include, for example, alkyl alcohols having 1 to 4 carbon atoms such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol and isobutyl alcohol; amides such as dimethylformamide and dimethylacetamide; ketones or ketoalcohols such as acetone and diacetone alcohol; ethers such as tetrahydrofuran and dioxane; polyalkylene glycols such as polyethylene glycol and polypropylene glycol; alkylene glycols comprising an alkylene group having 2 to 6 carbon atoms, such as ethylene glycol, propylene glycol, butylene glycol, triethylene glycol, 1,2,6-hexanetriol, thiodiglycol, hexylene glycol and diethylene glycol; glycerol; lower alkyl
- the above water soluble organic solvents may be contained in the inks generally in an amount of from 0 to 95 % by weight, preferably from 10 to 80 % by weight, and more preferably from 20 to 50 % by weight, based on the total weight of inks.
- the inks used in the present invention may optionally also contain surface active agents, viscosity modifiers, surface tension modifiers, etc.
- ink-jet systems employed in the present invention are described, for example, in IEEE Transactions on Industry Applications, Vol. JA-13, No. 1, March 1977, and Nikkei Electronics, the April 19, 1976 issue, the January 29, 1973 issue and the May 6, 1974 issue.
- the systems described in these are suited for the process of the present invention.
- the ink-jet recording process of the present invention comprising carrying out the recording by using the specific recording medium as previously described and the inks and ink-jet system as described above, is characterized in that each of plural ink dots that form unicoloed areas and mixedly colored areas on the recording medium is formed by a plurality of ink droplets applied in superposition from the ink-transporting layer side. More specifically, in the instance where color images with a high recording density are formed particularly by using a plurality of inks having different hues, only one droplet of the ink of the corresponding color is applied to the part at which one of the three primary colors is presented in monochromes.
- the quantity of the inks reaching to the ink-retaining layer will also vary depending on the properties of the recording medium to be used, and moreover the inks ejected from one nozzle in one time is in a small quantity, so that there have been involved the problem that the inks form color with insufficiency, the inks are mixed with insufficiency, or the dot shapes are unsatisfactory.
- the inks can be fed to the ink-retaining layer in a sufficient quantity and with substantial uniformity as a whole if, for example, the number of the ink droplets applied is made to be two or more even at the unicolored areas, approximating to, or making same with, the number of the ink droplets applied in maximum, namely four.
- good color formation, mixing of colors, dot shapes and so forth can be achieved without causing any problems mentioned above.
- any methods may be employed for applying two or more ink droplets in superposition, without any particular limitation.
- a colorless ink may preferably be used as the common ink.
- the colorless ink mentioned in the present invention refers to water, an organic solvent, or a mixture of these, but preferred is a liquid having the same liquid properties as a liquid medium for the inks as described above. Particularly preferred is a liquid having the composition such that only dyes have been removed from the inks of respective colors. Employment of such colorless ink which is common to the respective colors can bring about no complicacy of apparatus or no troublesomeness in operation, without any limitation in the order of the shooting of inks, and makes it possible to freely feed inks not only to the unicolored areas but also to the intermediary areas at which two or more ink droplets are applied.
- the above colorless ink may not be perfectly colorless, and may be colored in pale tone to a certain extent. Employment of such an ink of pale color makes it possible to correct color tone of the whole of the images obtained. For example, in instances where proper color images are to be formed according to information signals from an original copy excessively strong in a particular color as a whole, a pale color ink that is in a complementary relationship may be used as the above colorless ink, thereby making some good use for the correction of tone of the whole.
- the color images formed have superior effect that has not been hitherto obtained, when the recorded images are viewed from the opposite surface to the ink-applying surface, i.e., from the ink-retaining layer side or substrate side, although it is not impossible to view the recorded images from the surface on which the recording is performed with use of ink as in the case of ordinary paper.
- the part of the hue other than the monochromes corresponding to the three primary colors in other words, the area at which a plurality of primary color inks are applied and neutral tints thereof are produced can have color tones sufficiently matched to the desired color tones, exhibiting superior color performances.
- the color images according to the process of the present invention can achieve good color-forming performances as a whole over the higher density areas to the lower density areas, and can sufficiently satisfy the color reproducibility from an original copy.
- the inks are applied in small amounts at areas having a lower image density, so that it has sometimes occurred that the inks do not sufficiently reach to the ink-retaining layer, resulting in unsatisfactory continuity of density.
- the inks applied in a small quantity can sufficiently reach to the ink-retaining layer to have superior density continuity from pale colors to dense colors.
- the color-forming of neutral tints at the mixdly colored area and the color-forming at the low density area are unstable with no color-forming of the neutral tints corresponding to the quantity of the inks to be mixed, resulting in insufficient reproducibility for the colors of an original copy and unclear color tones as a whole for the color images formed. This remarkably tends to occur particularly at the low density areas to lack the continuity of density.
- Decline of resolution can also be very small as compared with an instance where inks are applied in a quantity corresponding to plural droplets by one droplet in order to apply plural minute ink droplets at the same site of the recording surface or in the vicinity thereof.
- the process of the present invention is suited for forming images having a high recording density of 200 ⁇ 200 DPI or more.
- the effect as stated above is presumed by the present inventors to be obtainable because, even at the areas where inks of two or more colors are mixed or the areas where inks are applied only in a small quantity of ink, the ink applied by a second droplet re-dissolves the inks stagnating in the ink-transporting layer near the ink-retaining layer and the dyes retained in the ink-retaining layer, so that the dyes are sufficiently mixed and these inks and dyes are sufficiently transported to the ink-retaining layer.
- the gloss, water resistance, weatherability and abrasion resistance can be further imparted to the recorded images in addition to the above effect originating from the light-transmitting property possessed by the substrate.
- the color images obtained by the process of the present invention are greatly superior in the optical density of recorded images and the operation efficiency at the time of the recorded-image formation.
- composition A shown below was coated on this substrate by means of a bar coater to give a dried coat thickness of 8 ⁇ m, followed by drying in a drying oven for 10 minutes at 140°C.
- composition A Composition A
- PVA-C 318-2A Cationically modified polyvinyl alcohol (PVA-C 318-2A; available from Kuraray Co., Ltd.; a 10 % aqueous solution) 50 parts Water-soluble polyester type polyurethane (Elastron E-37; available from Dai-ichi Kogyo Seiyaku Co., Ltd.; a 25 % aqueous solution) 2.5 parts Catalyst (Elastron Catalyst 32; available from Dai-ichi Kogyo Seiyaku Co., Ltd.) 0.2 part
- Composition B shown below was further coated thereon by means of a bar coater to give a dried coat thickness of 60 ⁇ m, followed by drying in a drying oven for 5 minutes at 140°C.
- Polymethyl methacrylate resin (Microsphere M-100; available from Matsumoto Yushi-Seiyaku Co., Ltd.; 100 parts Acrylic resin (Boncoat 4001; available from Dainippon Ink & Chemicals, Incorporated; solid content: 50 %) 20 parts Sodium dioctyl sulfosuccinate (Pelex OT-P; available from Kao Corporation; solid content: 70 %) 0.5 part Water 50 parts
- the recording medium thus obtained in this Reference Example was white and opaque.
- composition C shown below was coated on this substrate by means of a bar coater to give a dried coat thickness of 10 ⁇ m, followed by drying in a drying oven for 12 minutes at 100°C.
- Composition D shown below was further coated thereon by means of a bar coater to give a dried coat thickness of 40 ⁇ m, followed by drying in a drying oven for 10 minutes at 140°C.
- the recording medium thus obtained in Reference Example was white and opaque.
- the recording as shown below was performed on the recording medium of the above Reference Example 1, by use of a recording apparatus comprising an on-demand type ink-jet recording head that ejects inks by the aid of the pressure of bubbles generated with a heat resistance element.
- Example 2 Recording was performed on the recording medium of the above Reference Example 2 in the same manner as in Example 1 except for the recording density of 300 ⁇ 300 DPI and to droplet diameter of 40 ⁇ m.
- Example 2 Recording was performed on the recording medium of the above Reference Example 1 in the same manner as in Example 2 except for the recording density of 400 ⁇ 400 DPI and the droplet diameter of 30 ⁇ m.
- recording was made once with cyan ink (droplet diameter: 30 ⁇ m) so as to give a recording density of 400 ⁇ 400 DPI, and subsequently recording was made once with the same kind of ink at the same site (in total, 2 droplets of the same kind of inks were applied at the same site). Recording was further made once with cyan ink (droplet diameter: 30 ⁇ m) in the area contiguous to the above recording area so as to give a recording density of 400 ⁇ 400 DPI, and subsequently recording was made once with magenta ink (droplet diameter: 30 ⁇ m) at the same site (in total, 2 droplets of different kind of inks were applied at the same site).
- recording was made once with cyan ink (droplet diameter: 30 ⁇ m) so as to give a recording density of 400 ⁇ 400 DPI, and subsequently recording was made once with colorless ink (droplet diameter: 30 ⁇ m) at the same site (in total, 2 droplets of inks were applied at the same site). Recording was further made once with cyan ink (droplet diameter: 30 ⁇ m) in the area contiguous to the above recording area so as to give a recording density of 400 ⁇ 400 DPI, and subsequently recording was made once with magenta ink (droplet diameter: 30 ⁇ m) at the same site (in total, 2 droplets of different kind of inks were applied at the same site).
- recording was made once with cyan ink (droplet diameter: 30 ⁇ m) so as to give a recording density of 400 ⁇ 400 DPI. Recording was further made once with cyan ink (droplet diameter: 30 ⁇ m) in the area contiguous to the above recording area so as to give a recording density of 400 ⁇ 400 DPI, and subsequently recording was made once with magenta ink (droplet diameter: 30 ⁇ m) at the same site (in total, 2 droplets of different kind of inks were applied at the same site).
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Ink Jet (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP65756/87 | 1987-03-23 | ||
JP6575687 | 1987-03-23 | ||
JP63064316A JP2749814B2 (ja) | 1987-03-23 | 1988-03-17 | インクジエツト記録方法 |
JP64316/88 | 1988-03-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0284050A2 true EP0284050A2 (de) | 1988-09-28 |
EP0284050A3 EP0284050A3 (en) | 1990-05-23 |
EP0284050B1 EP0284050B1 (de) | 1995-02-01 |
Family
ID=26405437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19880104666 Expired - Lifetime EP0284050B1 (de) | 1987-03-23 | 1988-03-23 | Tintenstrahlaufzeichnungsverfahren |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0284050B1 (de) |
JP (1) | JP2749814B2 (de) |
DE (1) | DE3852899T2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2744393A1 (fr) * | 1996-02-01 | 1997-08-08 | Skc Ltd | Film d'enregistrement et son procede de fabrication |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2839133B2 (ja) * | 1994-03-31 | 1998-12-16 | キヤノン株式会社 | カラーフィルタの製造方法及び製造装置及び液晶表示装置の製造方法及び液晶表示装置を備えた装置の製造方法 |
US7237872B1 (en) | 1995-05-02 | 2007-07-03 | Fujifilm Dimatrix, Inc. | High resolution multicolor ink jet printer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4617580A (en) * | 1983-08-26 | 1986-10-14 | Canon Kabushiki Kaisha | Apparatus for recording on different types of mediums |
US4631548A (en) * | 1984-04-27 | 1986-12-23 | Siemens Aktiengesellschaft | Multicolor ink jet printer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5865666A (ja) * | 1981-10-16 | 1983-04-19 | Nippon Telegr & Teleph Corp <Ntt> | カラ−画像構成方法 |
JPS60253580A (ja) * | 1984-05-30 | 1985-12-14 | Canon Inc | 記録方法 |
JPS6112388A (ja) * | 1984-06-29 | 1986-01-20 | Canon Inc | 被記録材 |
-
1988
- 1988-03-17 JP JP63064316A patent/JP2749814B2/ja not_active Expired - Fee Related
- 1988-03-23 DE DE19883852899 patent/DE3852899T2/de not_active Expired - Fee Related
- 1988-03-23 EP EP19880104666 patent/EP0284050B1/de not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4617580A (en) * | 1983-08-26 | 1986-10-14 | Canon Kabushiki Kaisha | Apparatus for recording on different types of mediums |
US4631548A (en) * | 1984-04-27 | 1986-12-23 | Siemens Aktiengesellschaft | Multicolor ink jet printer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2744393A1 (fr) * | 1996-02-01 | 1997-08-08 | Skc Ltd | Film d'enregistrement et son procede de fabrication |
Also Published As
Publication number | Publication date |
---|---|
EP0284050A3 (en) | 1990-05-23 |
JP2749814B2 (ja) | 1998-05-13 |
DE3852899D1 (de) | 1995-03-16 |
EP0284050B1 (de) | 1995-02-01 |
JPS63315285A (ja) | 1988-12-22 |
DE3852899T2 (de) | 1995-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5140339A (en) | Ink jet recording with equal amounts of mono- and mixed color droplets | |
US4642654A (en) | Recording method | |
EP0286427B1 (de) | Aufzeichnungsmittel | |
EP0633143B1 (de) | Druckpapier und Farbempfangsschicht bildende Zusammensetzung zu dessen Herstellung | |
EP0227245B1 (de) | Aufzeichnungsmaterial und Aufzeichnungsverfahren damit | |
EP0285145B1 (de) | Aufzeichnungsmittel | |
EP0411638B1 (de) | Aufnahmemittel und dabei verwendete Aufnahmemethode | |
EP0693385B1 (de) | Aufzeichnungsmaterial, Bilderzeugungsverfahren und bedruckter Artikel der dieses Material verwendet | |
EP0878322B1 (de) | Tintenstrahlaufzeichnngsverfahren und Herstellungsverfahren dafür | |
US6514598B1 (en) | Ink jet recording sheet and method | |
JP2614281B2 (ja) | 被記録材 | |
KR0163272B1 (ko) | 기록 매체, 그것을 사용한 기록 방법 및 기록물의 제조 방법 | |
JPS6049990A (ja) | インクジエツト記録用紙 | |
JP2002370443A (ja) | 再転写可能なインクジェット受像シート及び画像形成方法 | |
EP0284050B1 (de) | Tintenstrahlaufzeichnungsverfahren | |
EP0657299B1 (de) | Tintenstrahldruckverfahren | |
EP0841185B1 (de) | Aufzeichnungsmaterial, das auf der Rückseite bedruckt wird, für Tintenstrahldruck | |
EP1502761B1 (de) | Tintenstrahlaufzeichnungsmittel und Verfahren zu dessen Herstellung | |
JP3542441B2 (ja) | 記録媒体、これを用いた記録方法及び印字物の製造方法 | |
JP4497716B2 (ja) | 被記録媒体、その製造方法及び画像形成方法 | |
JPH01283182A (ja) | インクジェット記録方法 | |
US20050123695A1 (en) | Ink-jet recording material and ink-jet recording method | |
JP2771554B2 (ja) | インクジェット記録方法 | |
JPS62271779A (ja) | カラ−画像の形成方法 | |
JPH072428B2 (ja) | 被記録材及びこれを用いた画像形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB IT LI NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19901010 |
|
17Q | First examination report despatched |
Effective date: 19920707 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 3852899 Country of ref document: DE Date of ref document: 19950316 |
|
ET | Fr: translation filed | ||
ITTA | It: last paid annual fee | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030310 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030319 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030327 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20030331 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030403 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041001 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040323 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20041001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050323 |