EP0272253A4 - Method for enhancing glycoprotein stability. - Google Patents

Method for enhancing glycoprotein stability.

Info

Publication number
EP0272253A4
EP0272253A4 EP19860902150 EP86902150A EP0272253A4 EP 0272253 A4 EP0272253 A4 EP 0272253A4 EP 19860902150 EP19860902150 EP 19860902150 EP 86902150 A EP86902150 A EP 86902150A EP 0272253 A4 EP0272253 A4 EP 0272253A4
Authority
EP
European Patent Office
Prior art keywords
glcnac
gal
galβ1
protein
glcnacβ1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP19860902150
Other languages
German (de)
French (fr)
Other versions
EP0272253A1 (en
Inventor
Michel Louis Eugene Bergh
Catherine S Hubbard
James R Rasmussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of EP0272253A1 publication Critical patent/EP0272253A1/en
Publication of EP0272253A4 publication Critical patent/EP0272253A4/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids

Definitions

  • glycoproteins proteins with covalently bound sugars
  • the carbohydrate moieties of these glycoproteins can participate directly in the biological activity of the glycoproteins in a variety of ways: protection from proteolytic degradation, stabilization of protein conformation, and mediation of inter- and intracellular recognition.
  • glycoproteins include enzymes, serum proteins such as immunoglobulins and blood clotting factors, cell surface receptors for growth factors and infectious agents, hormones, toxins, lectins and structural proteins.
  • Natural and recombinant proteins are being used as tnerapeutic agents in humans and animals. In many cases a therapeutic protein will be most efficacious if it has an appreciable circulatory lifetime. At least four general mechanisms can contribute to a shortened circulatory lifetime for an exogenous protein: proteolytic degradation, clearance by the immune system if the protein is antigenie or immunogenic, clearance by cells of the liver or reticulo-endothelial system that recognize specific exposed sugar units on a glycoprotein, and clearance through the glomerular basement membrane of the kidney if the protein is of low molecular weight. The oligosaccharides of a glycoprotein can exert a strong effect on the first three of these clearance mechanisms.
  • the oligosaccharide chains of glycoproteins are attached to the polypeptide backbone by either N- or O-glycosidic linkages.
  • N-linked glycans there is an amide bond connecting the anomeric carbon (C-1) of a reducing-terminal N-acetylglucosamine (GlcNAc) residue of the oligosaccharide and a nitrogen of an aspara gine (Asn) residue of the polypeptide.
  • O-linked glyeans are attached via a glycosidic bond between N-acetylgalactosamine (GalNAc), galactose (Gal), or xylose and one of several hydroxyamino acids, most commonly serine (Ser) or threonine (Thr), but also hydroxyproline or hydroxylysine in some cases.
  • the O-linked glycans in the yeast Saccharomyces cerevisiae are also attached to serine or threonine residues, but, unlike the glycans of animals, they consist of one to several ⁇ -linked mannose (Man) residues. Mannose residues have not been found in the O-linked oligosaccharides of animal cells.
  • O-Linked glycan synthesis is relatively simple, consisting of a step-by-step transfer of single sugar residues from nucleotide sugars by a series of specific glycosyltransferases.
  • the nucleotide sugars which function as the monosaccharide donors are uridine-diphospho-GalNAc (UDP-GalNAc), UDP-GlcNAc, UDP-Gal , guanidinediphospho-fucose (GDP-Fuc), and cytidine-monophospho-sialic acid (CMP-SA).
  • UDP-GalNAc uridine-diphospho-GalNAc
  • UDP-GlcNAc UDP-GlcNAc
  • UDP-Gal guanidinediphospho-fucose
  • CMP-SA cytidine-monophospho-sialic acid
  • N-linked oligosaccharide assembly does not occur directly on the Asn residues of the protein, but rather involves preassembly of a lipid-linked precursor oligosaccharide which is then transferred to the protein during or very soon after its translation from mRNA.
  • This precursor oligosaccharide which has the composition Glc 3 Man 9 GlcNAc 2 and the structure shown in Fig.
  • lipid-linked precursor is synthesized while attached via a pyrophosphate bridge to a polyisoprenoid carrier lipid, a dolichol.
  • This assembly is a complex process involving at least six distinct membrane-bound glycosyltransferases. Some of these enzymes transfer monosaccharides from nucleotide sugars, while others utilize dolichol-linked monosaccharides as sugar donors.
  • Another membrane-bound enzyme transfers it to sterically accessible Asn residues which occur as part of the sequence -Asn-X-Ser/Thr-. The requirement for steric accessibility is presumably responsible for the observation that denaturation is usually required for in vi tro transfer of precursor ol igosaccharide to exogenous protei ns.
  • Glycosylated Asn residues of newly-synthesized glycoproteins transiently carry only one type of oligosaccharide, Glc 3 Man 9 GlcNAc 2 .
  • Modification, or "processing,” of this structure generates the great diversity of structures found on mature glycoproteins, and it is the variation in the type or extent of this processing which accounts for the observation that different cell types often glycosylate even the same polypeptide differently.
  • N-linked oligosaccharides is accomplished by the sequential action of a number of membrane-bound enzymes and begins immediately after transfer of the precursor oligosaccharide Glc,Man 9 -GlcNAc 2 to the protein.
  • N-linked oligosaccharide processing can be divided into three stages: removal of the three glucose residues, removal of a variable number of mannose residues, and addition of various sugar residues to the resulting trimmed "core," i.e., the Man 3 GlcNAc 2 portion of the original oligosaccharide closest to the polypeptide backbone.
  • a simplified outline of the processing pathway is shown in Fig. 2.
  • tne mannose residues of the Man 9 GlcNAc 2 moiety are bound by ⁇ 1—>2 linkages.
  • the arrow points toward the reducing terminus of an oligosaccharide, or in this case, toward the protein-bound end of the glycan; ⁇ or ⁇ indicate the anomeric configuration of the glycosidic bond; and the two numbers indicate which carbon atoms on each monosaccharide are involved in the bond.
  • the four ⁇ l—>2-linked mannose residues can be removed by Mannosidase I to generate N-linked Man 5-8 GlcNAc 2 , all of which are commonly found on vertebrate glycoproteins.
  • Oligosaccharides with the composition Man 5-9 GlcNAc 2 are said to be of the "high-mannose" type.
  • protein-linked Man 5 GlcNAc 2 can serve as a substrate for GlcNAc transferase I, which transfers a 01—>2-linked GlcNAc residue from UDP-GlcNAc to the ⁇ l—>3-linked mannose residue to form GlcNAcMan 5 GlcNAc 2 (Structure M-d) .
  • Mannosidase II can then complete the trimming phase of the processing pathway by removing two mannose residues to generate a protein-linked oligosaccharide with the composition GlcNAcMan 3 GlcNAc 2 (Structure M-e).
  • This structure is a substrate for GlcNAc transferase II, which can transfer a ⁇ 1—>2-linked GlcNAc residue to the ⁇ 1—>6-linked mannose residue (not shown) .
  • GlcNAc transferases producing ⁇ 1—>3, ⁇ 1 —>4, or ⁇ 1—>6 linkages
  • three gal actosyl transferases producing ⁇ l—>4, ⁇ 1—>3, and ⁇ 1—>3 linkages
  • two sialyl transferases one producing ⁇ 2—>3 and another, ⁇ 2—>6 linkages
  • three fucosyl transferases producing ⁇ 1—>2, ⁇ 1—>3, ⁇ l —>4 or ⁇ 1 —>6 linkages
  • a growing list of other enzymes responsible for a variety of unusual linkages can include at least four more distinct GlcNAc transferases (producing ⁇ 1—>3, ⁇ 1 —>4, or ⁇ 1—>6 linkages); three gal actosyl transferases (producing ⁇ l—>4, ⁇ 1—>3, and ⁇ 1—>3 linkages); two sialyl transferases (one producing ⁇ 2—>3 and another, ⁇ 2—>6 linkages
  • complex oligosaccharides may contain two (for example, Structure M-f in Fig. 2), three (for example, Fig. 1C or Structure M-g in Fig. 2), or four outer branches attached to the invariant core pentasaccharide, Man,GlcNAc 2 .
  • These structures are referred to in terms of the number of their outer branches: biantennary (two branches), triantennary (three branches) or tetraantennary (four branches).
  • the size of these complex glycans varies from a hexasaccharide (on rhodopsin) to very large polylactosaminylglycans, which contain one or more outer branches with repeating (Gal ⁇ 1—>4GlcNAc ⁇ 1—>3) units (on several cell surface glycoproteins such as the erythrocyte glycoprotein Band 3 and the macrophage antigen Mac-2).
  • outer branches of many complex N-linked oligosaccharides consist of all or part of the sequence
  • One or two of these trisaccharide moieties may be attached to each of the two ⁇ -linked mannose residues of the core pentasaccharide, as in Structures M-f and M-g of Fig. 2.
  • oligosaccharide biosynthesis does not take place on a template.
  • considerable heterogeneity is usually observed in the oligosaccharide structures of every giycoprotein. The differences are most commonly due to variations in the extent of processing.
  • the single glycosylation site of the chicken egg glycoprotein ovalbumin for example, contains a structurally related "family" of at least 18 different oligosaccharides, the great majority of which are of the high-mannose or related "hybrid" type (for example, Structure M-h in Fig. 2).
  • glycoproteins contain multiple glycosylated Asn residues, and each of these may carry a distinct family of oligosaccnarides. For example, one site may carry predominantly high-mannose glycans, another may carry mostly fucosylated biantennary complex chains, and a third may carry fucose-free tri- and tetraantennary complex structures. Again, all of these glycans will contain the invariant Man 3 GlcNAc 2 core.
  • lipid-linked Glc 3 Man 9 GlcNAc 2 is assembled, its oligosaccharide chain transferred to acceptor Asn residues of proteins, and its three glucose residues are removed soon after transfer.
  • Yeast cells can remove only a single mannose residue, however, so that the smallest and least-processed N-linked glycans have the composition Man 8-9 GlcNAc 2 . Processing can stop at this stage or continue with the addition of as many as 50 or more ⁇ -linked mannose residues to Man 8 GlcNAc 2 (Fig.
  • Structure Y-c to generate a mannan (for example, Structure Y-d).
  • a mannan for example, Structure Y-d.
  • glycoproteins in mammalian cells may have predominantly high-mannose oligosaccharides at one glycosylated Asn residue and highly processed complex glycans at another, yeast glycoproteins such as external invertase commonly have some glycosylation sites with Man 8-9 GlcNA c2 chains, while other sites carry mannans.
  • bacteria Unlike eukaryotic cells, bacteria lack the enzymatic machinery to assemble lipid-linked Glc 3 Man 9 GlcNAc 2 or transfer it to proteins. Thus, although proteins synthesized in E. coli contain many -Asn-X-Ser/Thr- sequences, they are not glycosylated.
  • glycosylation status of a glycoprotein will depend on the cell in which it is produced.
  • the glycans of a protein synthesized in cultured mammalian cells will resemble those of the same protein isolated from a natural animal source such as a tissue but are unlikely to be identical.
  • Proteins glycosylated by yeast contain high-mannose oligosaccharides and mannans, and proteins synthesized in a bacterium such as E. coli will not be glycosylated because the necessary enzymes are absent.
  • the precise composition and structure of the carbohydrate chain(s) on a glycoprotein can directly influence its serum lifetime, since cells in the liver and reticulo-endothelial system can bind and internalize circulating glycoproteins with specific carbohydrates.
  • Hepatocytes have receptors on their surfaces that recognize oligosaccharide chains with terminal (i.e., at the outermost end(s) of glycans relative to the polypeptide) Gal residues
  • macrophages contain receptors for terminal Man or GlcNAc residues
  • hepatocytes and lymphocytes have receptors for exposed fucose residues. No sialic acid-specific receptors have been found, however.
  • oligosaccharides with all branches terminated, or "capped,” with sialic acid will not promote the clearance of the protein to which they are attached.
  • the presence and nature of the oligosaccharide chain(s) on a glycoprotein can also affect important biochemical properties in addition to its recognition by sugar-specific receptors on liver and reticulo-endothelial cells. Removal of the carbohydrate from a glycoprotein will usually decrease its solubility, and it may also increase its susceptibility to proteolytic degradation by destabi lizing the correct polypeptide folding pattern and/or unmasking protease-sensitive sites. For similar reasons, the glycosylation status of a protein can affect its recognition by the immune system.
  • a method for modifying eukaryotic and prokaryotic proteins to extend their in vivo circulatory lifetimes or to control their site of cellular uptake in the body is used.
  • enzymatic and/or chemical treatments are used to produce a modified protein carrying one or more covalently attached trisaccharide
  • one or two GlcNAc residues bound to the protein are used as a basis for construction of other oligosaccharides by elongation with the appropriate glycosyl transferases.
  • the method can be applied to any natural or recombinant protein possessing Asn-linked oligosaccharides or to any non-glycosylated protein that can be chemically or enzymatically derivatized with the appropriate carbohydrate residues.
  • the preferred oligosaccharide modification scheme consists of the following steps wherein all but the Asn-linked GlcNAc of the N-linked oligosaccharide chains are enzymatically or chemically removed from the protein and a trisaccharide constructed in its place:
  • Step 1 Generation of GlcNAc-->Asn(protein).
  • the initial step is cleavage of the glycosidic bond connecting tne two innermost core GlcNAc residues of some or all N-linked oligosaccharide chains of a glycoprotein with an appropriate endo- ⁇ -N-acetylglucosaminidase such as Endo H or Endo F.
  • Endo H cleaves the high-mannose and hybrid oligosaccharide chains of glycoproteins produced in eukaryotic cells as well as the mannans produced in yeast such as Saccharomyces cerevisiae, removing all but a single GlcNAc residue attached to each glycosylated Asn residue of the polypeptide backbone.
  • Endo F can cleave both high-mannose and biantennary complex chains of N-linked oligosaccharides, again leaving a single GlcNAc residue attached at each glycosylation site.
  • a given glycoprotein contains complex oligosaccharides such as tri- or tetraantennary chains which are inefficiently cleaved by known endoglycosidases, these chains can be trimmed with exoglycosidases such as sialidase, ⁇ - and ⁇ -galactosidase, ⁇ -fucosidase and ⁇ -hexosaminidase.
  • the innermost GlcNAc residue of the resulting core can be then be exposed by any of several procedures.
  • Endo F endo F or other endo-B-N-acetylglucosaminidases such as Endo D.
  • a second procedure is digestion with ⁇ -mannosidase followed by digestion with either Endo L or with ⁇ -mannosidase and ⁇ -hexosaminidase.
  • glycoproteins normally bearing complex Asn-linked oligosaccharides can be produced in mammalian cell culture in the presence of a processing inhibitor such as swainsonine or deoxymannojirimycin.
  • the resulting glycoprotein will bear hybrid or highmannose chains susceptible to cleavage by Endo H, thereby eliminating the need for an initial treatment of the glycoprotein with exoglycosidases.
  • the glycoprotein may be produced in a mutant cell line tnat is incapable of synthesizing complex N-linked chains resistant to endoglycosidases such as Endo H or Endo F.
  • All sugars other than the N-linked GlcNAc residues may also be removed chemically rather than enzymatically by treatment with trifluoromethanesulfonic acid or hydrofluoric acid.
  • chemical cleavage can be expected to be less useful than enzymatic methods because of the denaturing effects of the relatively harsh conditions used.
  • Step 2 Attachment of Gal to GlcNAc-->Asn( protein).
  • the second step is the enzymatic addition of a Gal residue to the residual GlcNAc on the protein by the action of a galactosyltransferase.
  • the preferred galactosyltransferase is a bovine milk enzyme which transfers Gal to GlcNAc in the presence of the sugar donor UDP-Gal to form a ⁇ 1-->4 linkage.
  • galactose can be added to the GlcNAc residue with a ⁇ 1-->3 linkage by the use of a galactosyltransferase from a source such as pig trachea.
  • Step 3 Attachment of SA to Gal-->GlcNAc-->Asn(protein).
  • the final step is the enzymatic addition of a sialic acid residue to Gal ⁇ 1-->4(3)GlcNAc-->Asn(protein).
  • This reaction can be carried out with an ⁇ 2-->6-sialyltransferase isolated, for example, from bovine colostrum or rat liver, which transfers SA from CMP-SA to form an ⁇ 2-->6 linkage to the terminal galactose residue of Gal ⁇ 1-->4(3)-GlcNAc-->Asn( protein).
  • an ⁇ 2-->3-sialyltransferase may be used to form an ⁇ 2—>3 linkage to each terminal Gal residue.
  • sialic acid is N-acetylneuraminic acid (NeuAc)
  • any naturally occurring or chemically synthesized sialic acid which the sialyltransferase can transfer from the CPM-SA derivative to galactose may be used, for exapmole, N-glycolyl neuraminic acid, 9-0-acetyl-N-acetyl neuraminic acid, and 4-0-acetyl-N-acetyl neuraminic acid.
  • glycoproteins containing Asn-1 inked SA >Gal—>GlcNAc—>G1cNAc—>
  • the oligosaccharide chains of the glycoprotein are trimmed back to the two, rather than one, innermost core GlcNAc residues by the use of appropriate exoglycosidases.
  • ⁇ and ⁇ -mannosidase would be used to trim a high-mannose oligosaccharide.
  • GlcNAc ⁇ 1—>4GlcNAc—>Asn( protein) is then converted to the tetrasaccharide SAo2—>6(3 )Gal ⁇ 1-->4(3 )GlcNAc ⁇ 1—>4G1 cNAc—>Asn(protein) by sequential treatment with galactosyl- and sialyl transferases.
  • an oligosaccharide such as the trisaccharide SA—>Gal—>GlcNAc—> or disaccharide SA—>Gal—> is attached at non-glycosylated amino acid residues of a protein expressed eitner in a eukarykotic system or in a bacterial system.
  • the protein is treated with a chemically reactive glycoside derivative of GlcNAc—>, Gal-->GlcNAc-->, or SA-->Gal—>GlcNAc-->.
  • the mono- or disaccharide is then extended to the trisaccharide by the appropriate glycosyltransferase(s).
  • the initial carbohydrate moieties can be attached to the protein by a chemical reaction between a suitable amino acid and a glycoside derivative of the carbohydrate containing an appropriately activated chemical group. Depending on the activation group present in the glycoside, the carbohydrate will be attached to amino acids with free amino groups, carboxyl groups, sulfhydryl groups, or hydroxyl groups or to aromatic amino acids.
  • Variations of the disclosed procedures can be used to produce glycoproteins with oligosaccharides other than the tri- or tetrasaccharides described above.
  • extended oligosaccharide chains consisting of
  • n GlcNAc ⁇ 1—>4GlcNAc-->, where n is 1-10, can be constructed by subjecting a glycoprotein carrying one or two core GlcNAc residues to alternate rounds of ⁇ 1-->4 galactosyltransferase and ⁇ 1-->3 N-acetylglucosaminyltransferase treatments.
  • the resulting extended oligosaccharide chain can be useful for increasing solubility or masking protease-sensitive or antigenic sites of the Dolypeptide.
  • oligosaccharide structures can be constructed by elongation of protein-linked monosaccharides or disaccharides with the use of appropriate glycosyltransferases.
  • An example is the branched fucosylated trisaccharide
  • Fig. 1 shows the structures of (A), the lipid-linked precursor oligosaccharide, Glc 3 Man 9 GlcNA c2 ; (B), a high-mannose Asn-linked oligosaccharide, Man 9 GlcNAc 2 ; and (C), a typical triantennary complex Asn-linked oligosaccharide.
  • the anomeric configurations and linkage positions of the sugar residues are indicated, and dotted lines enclose the invariant pentasaccharide core shared by all known eukaryotic Asn-linked oligosaccharides.
  • Fig. 2 is a simplified biosynthetic pathway for Asn-linked oligosaccharide biosynthesis in yeast and higher organisms. For clarity, anomeric configurations and linkage positions are not shown, but the arrangement of the branches is the same as in Fig. 1.
  • Fig. 3 is a Coomassie blue-stained gel prepared by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of yeast external invertase before and after treatment with glycosidases. The acrylamide concentration was 6%.
  • A untreated invertase;
  • B invertase after treatment with Endo H under non-denaturing conditions;
  • C invertase after Endo H treatment under denaturing conditions (0.7% SDS); and
  • D an aliquot of a sample first treated with Endo H under non-denaturing conditions and subsequently treated with jack bean ⁇ -mannosidase.
  • Fig. 4 is a fluorogram of a 6% SDS-PAGE gel of samples of yeast external invertase removed at intervals (5 min, 1 hr, 2 hr, 3 hr, 5 hr, 9 hr and 19 hr) during galactosylation of Endo H-treated, SDS-denatured invertase (Fig. 3B) with UDP-[ 3 H]Gal and bovine milk ⁇ 1-->4 galactosyltransferase.
  • Fig. 5 shows the rate of incorporation of acid-precipitable radioactivity into Endo H-treated, SDS-denatured yeast external invertase during treatment with UDP-[ 3 H]Gal and bovine milk ⁇ 1-->4 galactosyltransferase.
  • Fig. 6 is an autoradiogram of a 5% SDS-PAGE gel of various yeast external invertase derivatives that have been sialylated using CMP- [ 14 C]NeuAc and bovine colostrum ⁇ 2 -->6 sialyltransferase .
  • A Sialylation product derived from galactosylated, Endo H-treated, SDS-denatured invertase;
  • B sialylation product derived from a galactosylated sample of Endo H- and jack bean ⁇ -mannos idase-treated, non- denatured invertase;
  • C sialylation product derived from untreated invertase.
  • Fig. 7 is a Coomassie blue-stained 6% SDS-PAGE gel of (A) untreated bovine serum albumin (BSA); (B) BSA converted to GlcNAc-BSA containing approximately 48 GlcNAc residues per molecule of protein by incubation with 2-imino-2-methoxyethyl-1-thio-N-acetylglucosaminide in 0.25 M sodium borate pH 8.5 for 24 hr at room temperature; (C) gal actosyl ated BSA formed by treatment of GlcNAc-BSA with UDP-[ 3 H]Gal and bovine milk ⁇ 1-->4 galactosyltransferase; and (D) sialylated BSA formed by treatment of Gal-->GlcNAc-BSA with CMP-[ 14 C]NeuAc and bovine colostrum ⁇ 2-->6 sialyltransferase.
  • Fig. 8 is a graph of specific uptake (
  • Fig. 9 is a graph of specific uptake (ng/mg cellular protein) of Gal-->GlcNAc[ 125 I]BSA ( ⁇ ) and NeuAc-->Gal-->GlcNAc-[ 125 I]BSA (•) by the Gal/GalNAc receptor of HepG2 cells vs. protein concentration (0.5 to 7.5 ⁇ g protein/ml), where specific uptake is equal to total uptake (uptake in the absence of asialo-orosomucoid) minus non-specific uptake (value obtained in the presence of asialo-orosomucoid).
  • the present invention is a method for modifying proteins wherein oligosaccharide chains are bound to the protein to enhance in vivo stability or to target the protein to cells having specific receptors for an exposed saccharide in the attached oligosaccharide chain(s).
  • the method has two principal embodiments. The first is to cleave the existing Asn-linked oligosaccharide chains on a glycoprotein to leave one or two GlcNAc residues attached to the protein at Asn and then enzymatically extend the terminal GlcNAc to attach Gal and SA.
  • the second is to chemically or enzymatically attach a GlcNAc or Gal residue to the protein at any of a number of different amino acids and then enzymatically extend the terminal GlcNAc or Gal to form an oligosaccharide chain capped with sialic acid.
  • a GlcNAc or Gal residue to the protein at any of a number of different amino acids and then enzymatically extend the terminal GlcNAc or Gal to form an oligosaccharide chain capped with sialic acid.
  • Step 1 Generation of GlcNAc-->Asn(protein).
  • the enzyme hydrolyzes the bond between the two core GlcNAc residues of susceptible N-linked oligosaccharides, leaving behind a single GlcNAc residue attached to the glycosylated Asn residues.
  • the preferred enzyme for this purpose is Endo H, which has been isolated from Streptomyces plicatus. The enzyme is available either as the naturally occurring protein or as the recombinant DNA product expressed in E. coli or Streptomyces lividans.
  • Endo H cleaves all susceptible oligosaccharide structures of denatured glycoproteins and many of those on native glycoproteins.
  • the GlcNAc 2 cores of some highmannose glycans may be protected from cleavage by Endo H due to steric factors such as polypeptide folding. This can frequently be overcome by the use of one of several mild denaturing agents that promote partial polypeptide unfolding.
  • mild denaturants include detergent such as Triton X-100, NP-40, octyl glucoside, deoxycholate and dilute sodium dodecyl sulfate; disulfide bond reducing agents such as dithiothreitol and ⁇ -mercaptoethanol; chaotropic agents such as urea, guanidinium hydrochloride and sodium isothiocyanate; and low concentrations of organic solvents such as alcohols (methanol, ethanol, propanol or butanol), DMSO or acetone.
  • detergent such as Triton X-100, NP-40, octyl glucoside, deoxycholate and dilute sodium dodecyl sulfate
  • disulfide bond reducing agents such as dithiothreitol and ⁇ -mercaptoethanol
  • chaotropic agents such as urea, guanidinium hydrochloride and sodium isothiocyanate
  • organic solvents such as
  • Endo H is a very stable enzyme, active over a pH range of about 5 to 6.5, in low- or highionic strength buffers, and in the presence of the above-mentioned denaturing agents or protease inhibitors such as phenylmethanesul fonyl fluoride, EDTA, aprotinin, leupeptide and pepstatin. Protocols for the use of Endo H have been published by Trimble and Maley in Anal. Biochem. 141, 515-522 (1984). The precise set of reaction conditions which will optimize the cleavage of oligosaccharides by Endo H while preserving biological activity will most likely vary depending on the glycoprotein being modified and can be determined routinely by someone of ordinary skill in this field.
  • yeast glycoproteins sometimes contain O-linked oligosaccharides consisting of one to four ⁇ -linked mannose residues. Because these could bind to a mannose-specific receptor and shorten the serum lifetime of a glycoprotein, it is advisable to treat any protein found to contain such oligosaccharides with an ⁇ -mannosi dase such as the enzyme from jack bean. This would remove all but the innermost, protein-linked mannose residue from the 0-1 inked chains. Because ⁇ -mannosidase treatment could interfere with subsequent cleavage by Endo H or Endo C II , it should be performed after digestion with these enzymes.
  • a common O-linked oligosaccharide in animal cells is Gal-->GalNAc ⁇ -->Ser/Thr(protein). These glycans can be removed with the enzyme endo- ⁇ -N-acetylgalactosaminidase, which is commercially available from Genzyme Corp., Boston MA. Many other mammalian O-linked oligosaccharides can be converted to Gal -->GalNAc-->Ser/Thr(protein) by treatment with exoglycosidases such as sialidase, ⁇ -hexosamini ⁇ ase and ⁇ -fucosidase.
  • the resulting protein-linked disaccharides could then be removed from the polypeptide with endo- ⁇ -N-acetylgalactosaminidase.
  • b Cleavage by other endo-8-N-acetylglucosaminidases.
  • endo- ⁇ -N-acetylglucosaminidases are also capable of cleaving between the two innermost GlcNAc residues of various N-linked oligosaccharides.
  • the oligosaccharide specificities of these enzymes vary and are summarized in Table I.
  • Endo C II and Endo F Two of these endoglycosidases, Endo C II and Endo F, can be used in place of Endo H to cleave high-mannose glycans. Unlike Endo H, however, Endo F is also active with biantennary complex N-linked oligosaccnarides. Although the N-linked oligosaccharides of vertebrates are not substrates for Endo D, this enzyme would be active with glycoproteins produced by insect cells, which produce significant quantities of N-linked Man 3 GlcNAc 2 in addition to high-mannose oligosaccharides, as reported by Hsieh and Robbins in J. Biol. Chem. 259, 2375-82 (1984).
  • the glycoprotein can be incubated with the enzymes either sequentially or in combination to maximize cleavage.
  • Mammalian cells often syntnesize glycoproteins carrying oligosaccharides with structures that are resistant to all of the above-mentioned endo- ⁇ -N-acetylglucosaminidases, e.g., tri- or tetraantennary complex oligosaccharides.
  • oligosaccharide processing inhibitors are deoxymannojirimycin and swainsonine. Cells treated with one of these inhibitors will preferentially synthesize N-linked oligosaccharides with Endo H-sensitive structures. Deoxymannojirimycin inhibits Mannosidase I, thereby blocking further modification of high-mannose N-linked oligosaccharides.
  • Swainsonine is a Mannosidase II inhibitor, blocking the removal of the two ⁇ -linked mannose residues on the ⁇ 1-->6-linked mannose residue of the Man 3 GlcNAc 2 core (i.e., conversion of structure M-d to structure M-e in Fig. 2).
  • glycosylated Asn residues which would normally carry Endo H-resistant complex type glycans will carry Endo H-sensitive "hybrid" oligosaccharides instead.
  • Swainsonine and deoxymannojirimycin are both comrnercially available, for example from Genzyme Corp., Boston MA, or Boehringer Mannheim, Indianapolis IN .
  • Oligosaccharide processing inhibitors that block Glucosidases I or II such as deoxynojirimycin or castanospermine, which are both available from Genzyme Corp., Boston MA, will also generate Endo H-sensitive structures, but these inhibitors are less preferred because they sometimes block secretion. Many other oligosaccharide processing inhibitors, described in the two reviews cited in the previous paragraph, will also serve the same purpose. d. Cleavage by endo- ⁇ -N-acetylglucosaminidases after production of a glycoprotein in a mutant cell line.
  • Another approach for manipulating the structures of the N-linked oligosaccharides of a giycoprotein is to express it in cells with one or more mutations in the oligosaccharide processing pathways. Such mutations are readily selected for in mammalian cells. A number of techniques have been used to generate processing mutants, but selection for resistance or hypersensitivity to one or more of a variety of lectins, as an indicator of the presence of a processing mutation, has been one useful approach. DNA coding for a glycoprotein(s) can be introduced into such a mutant cell line using conventional methods (e.g., transformation with an expression vector containing the DNA). Alternatively, a mutant subline with defective processing can be selected from a line already capable of producing a desired glycoprotein.
  • any of a wide variety of mutant cell lines can be used.
  • GlcNAc transferase I mutants of both CHO cells an established Chinese hamster ovary cell line long used for mutational studies and mammalian protein expression
  • BHK-21 cells an established line of baby hamster kidney origin. Both CHO and BHK-21 cells are available from the American Type Culture Collection, Rockville MD. Because of the missing enzyme activity, the mutant cells are unable to synthesize any complex or hybrid N-linked oligosaccharides; glycosylated Asn residues which would normally carry sucn glycans carry Man 5 GlcNAc 2 instead.
  • glycosylated Asn residues carry only Man 5-9 GlcNAc 2 , all structures which are sensitive to Endo H.
  • Many other mutant cell lines have also been characterized, examples of which include lines with various defects in fucosylation, a defect in galactosylation resulting in failure to extend the outer branches past the GlcNAc residues, an inability to add extra branches to produce tri- and tetraantennary complex oligosaccharides, and various defects in Ser/Thr-linked glycan synthesis.
  • the subject of processing-defective animal cell mutants has been reviewed by Stanley, in The Biochemistry of Glycoproteins and Proteoglyeans, edited by Lennarz, Plenum Press, New York, 1980.
  • An alternative, but less preferred method for generating GlcNAc-->Asn( protein) in cases where the giycoprotein contains high-mannose or mannan-type oligosaccharides is to remove monosaccharide units by exoglycosidase digestion with or without subsequent use of Endo L.
  • the first step is digestion with an ⁇ -mannosidase to remove all ⁇ -linked mannose residues.
  • mannans from some yeast strains it may be desirable to include other exoglycosidases or phosphatases if other sugars or phosphate residues are present in the outer portion of the mannan structure.
  • the last mannose residue is removed with a ⁇ -mannosidase.
  • the product, GlcNAc 2 -->Asn(protein), is then subjected to the third digestion step, which is carried out with ⁇ -hexosaminidase.
  • This enzyme removes the terminal GlcNAc residue to generate GlcNAc-->Asn(protein); since the last GlcNAc is linked to the protein by an amide rather than a glycosidic bond, the hexosaminidase cannot remove the innermost GlcNAc residue from the asparagine.
  • ⁇ -mannosidase treatment of high-mannose or mannantype oligosaccharides can be followed by incubation with Endo L, which can be purified from Streptomyces plicatus.
  • Endo L which can be purified from Streptomyces plicatus.
  • This enzyme can cleave between the Gl cNAc resi dues of Man ⁇ 1 -- >4Gl cNAc ⁇ 1 -- >4Gl cNAc .
  • oligosaccharides In the case of a glycoprotein containing complex or hybrid-type oligosaccharides, sequential (or, when the requirements of the enzymes make it possible, siimultaneous) incubation with the appropriate exoglycosidases, such as sialidase, ⁇ - and/or ⁇ -galactosidase, ⁇ -hexosaminidase, and ⁇ -fucosidase, will trim the oligosaccharides back to Man 3 GlcNAc 2 . This oligosaccharide can be cleaved by Endo D or Endo F.
  • exoglycosidases such as sialidase, ⁇ - and/or ⁇ -galactosidase, ⁇ -hexosaminidase, and ⁇ -fucosidase
  • ⁇ -mannosidase can be treated with ⁇ -mannosidase to generate protein-linked Man ⁇ 1-->4GlcNAc ⁇ 1-->4GlcNAc. This can be cleaved either with Endo L or with digestions with ⁇ -mannosidase, ⁇ -mannosidase, and ⁇ -hexosaminidase.
  • Sialidase can be purified from a variety of sources, including E. coli, Clostridium perfringens, Vi bri o cholerae, and Arthrobacter urefaciens, and is commercially available from a number of sources such as Calbiochem-Behring, San Diego CA, or Sigma Chemical Corp., St. Louis MO.
  • ⁇ -Galactosidase can be purified from Asperaillus niger, C. perfringens, jack bean, or other suitable sources and is commercially available from Sigma Chemical Corp., St. Louis MO.
  • ⁇ -Galactosidase from E. coli or green coffee beans is available from Boehringer Mannheim, Indianapolis IN.
  • ⁇ -Hexosaminidase can be purifed from jack bean, bovine liver or testis, or other suitable sources and is also commercially available from Sigma Chemical Corp., St. Louis MO.
  • ⁇ - Mannosidase has been purified from the snail Achatina fulica, as described by Sugahara and Yamashima in Meth. Enzymol. 28, 769-772 (1972), and from hen oviduct, as described by Sukeno et al. in Meth. Enzymol . 28, 777-782 (1972).
  • ⁇ -Mannosidase from jack bean is preferred and is commercially available from Sigma Chem. Corp., St. Louis MO.
  • Endo H, Endo D, and Endo F are commercially available from Genzyme Corp., Boston MA; from New England Nuclear, Boston MA; from Miles Scientific, Naperville IL; or from Boehringer Mannheim, Indianapolis IN. Conditions for the use of these and the other endo- ⁇ -N-acetylglucosaminidases Endo C II and Endo L are described in the publications cited in Table I. f. Chemical removal of all sugars except N-linked GlcNAc. It is also possible to generate protein-linked GlcNAc chemically. For example, as described by Kalyan and Bah! in J. Biol. Chem.
  • Step 2 the terminal GlcNAc residue generated in Step 1 serves as a site for the attachment of galactose.
  • Either of two galactosyltransferases may be used: UDP-Gal :GlcNAc-R ⁇ 1-->4 galactosyltransferase or UDP-Gal :GlcNAc-R ⁇ 1-->3 galactosyltransferase.
  • tne first variation of this step a ⁇ 1-->4-linked galactose residue is added to GlcNAc-->Asn( protein).
  • UDP-Gal :GlcNAc-R ⁇ 1-->4 galactosyltransferase can be obtained from a variety of sources, the most common and costeffective one being bovine milk. Enzyme from this source is commercially available from Sigma Chem. Corp., St. Louis MC.
  • the reaction conditions for using the bovine milk galactosyltransferase to transfer galactose from UDP-Gal to GlcNAc-->Asn( protein) are similar to those described by Trayer and Hill in J. Biol. Chem. 246, 6666-75 (1971) for natural substrates.
  • the preferred reaction pH is 6.0 to 6.5.
  • buffers can be used with the exception of phosphate, which inhibits enyzme activity, and a broad range of salt concentrations can be used. It is preferable to have 5-20 mM Mn +2 or Mg +2 present.
  • Peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin, and pepstatin and exoglycosidase inhibitors such as galactono-1,4-lactone can be added without interfering with the activity of the galactosyltransferase.
  • sialic acid includes any naturally occurring or chemically synthesized sialic acid or sialic acid derivative.
  • the preferred naturally occurring sialic acid is N-acetyl neuraminic acid (NeuAc).
  • N-acetyl neuraminic acid NeAc
  • other sialic acids can also be transferred from CMP-SA to galactose, for example, N-glycolyl neuraminic acid, 9-0-acetyl neuraminic acid, and 4-0-acetyl-N-acetyl neuraminic acid.
  • Many other sialic acids such as those described in Sialic Acids: Chemistry, Metabolism and Function, edited by R.
  • the sialic acid is attached to Gal ⁇ 1-->4GlcNAc-->Asn(protein) in an ⁇ 2-->6 linkage.
  • the CMP-SA: Gal ⁇ 1—>4GlcNAc-R ⁇ 2-->6 sialyltransferase used in this step can be obtained from a variety of sources, the more usual ones being bovine colostrum and rat liver.
  • the rat liver enzyme has recently become commerciany available from Genzyme Corp., Boston MA.
  • the reaction conditions for using the bovine colostrum and rat liver ⁇ 2-->6 sialyltransferases to transfer sialic acid from CMP-SA to Gal ⁇ 1-->4GlcNAc-->Asn(protein) are similar to those described by Paulson et al. in J. Biol. Chem. 252, 2356-62 (1977) for natural substrates, except that it may be desirable to add additional enzyme to accelerate the rate of the reaction.
  • the preferred pH is 6.5-7.0. Although most buffers, with the exception of phosphate, can be employed, preferred buffers are Tris-maleate or cacodylate.
  • the enzyme is functional in the presence of mild detergents such as NP-40 and Triton X-100; peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin and pepstatin; and exoglycosidase inhibitors such as galactono-1,4-lactone.
  • mild detergents such as NP-40 and Triton X-100
  • peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin and pepstatin
  • exoglycosidase inhibitors such as galactono-1,4-lactone.
  • the sialic acid is attached to the Gal ⁇ l— >4(3)GlcNAc— >Asn(protein) by an ⁇ 2-->3 linkage.
  • Two sialyl transferases producing this linkage have been described.
  • CMP-SA Gal ⁇ 1-->4GlcNAc ⁇ 2-->3 sialyltransferase
  • This enzyme although not yet purified, can be purified using conventional methods.
  • the second enzyme, CMP-SA:Gal ⁇ 1-->3(4)GlcNAc ⁇ 2-->3 sialyltransferase has been purified from rat liver by Weinstein et al. as described in J. Biol . Chem. 257, 13835- ⁇ 4 (1982).
  • the rat liver enzyme has a somewhat relaxed specificity and is able to transfer sialic acid from CMP-sialic acid to the C-3 position of galactose in both Gal ⁇ 1-->4GlcNAc and Gal ⁇ 1-->3GlcNAc sequences.
  • Conditions for the use of the ⁇ 2—>3 sialyltransferases are described in the two publications just cited.
  • the method used to generate SA-->Gal-->GlcNAc-->GlcNAc-->Asn (protein) is similar to the method described above for generating modified glycoproteins containing the trisaccharide sequence SA-->Gal-->GlcNAc-->Asn(protein).
  • both core GlcNAc residues of the original N-linked oligosaccharide are left attached to the protein and a tetrasaccharide sequence, SA-->Gal-->GlcNAc-—- >GlcNAc--> is constructed enzymatically.
  • the intact N-linked oligosaccharide cnain is treated with exoglycosidases selected to remove all carbohydrate exterior to the two innermost GlcNAc residues.
  • exoglycosidases selected to remove all carbohydrate exterior to the two innermost GlcNAc residues.
  • ⁇ - and ⁇ -mannosidase are used.
  • additional exoglycosidases are required, the specific enzymes used depending on the structures of the carbohydrate chains being modified.
  • the principal method for attaching oligosaccharides such as SA-->Gal-->GlcNAc--> to non-glycosylated amino acid residues is to react an activated glycoside derivative of what is to be the innermost sugar residue, in this case GlcNAc, with the protein and then to use glycosyltransferases to extend the ol igosaccharide chain.
  • an activated glycoside derivative of what is to be the innermost sugar residue, in this case GlcNAc an activated glycoside derivative of what is to be the innermost sugar residue, in this case GlcNAc
  • Chemical and/or enzymatic coupling of glycosides to proteins can be accomplished using a variety of activated groups, for example, as described by Aplin and Wriston in CRC Crit. Rev. Biochem., pp. 259-306 (1981).
  • the sugar(s) can be attach arginine, histidine, or the ami no-terminal amino acid of the polypeptide; (b) free carboxyl groups, such as those of glutamic acid or aspartic acid or the carboxyterminal amino acid of the polypeptide; (c) free sulfhydryl groups, such as those of cysteine; (d) free hydroxyl groups, such as those of serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (f) the amide group of glutamine.
  • the aglycone, R is the chemical moiety that combines with the sugar to form a glycosi de and which is reacted with the amino acid to bind the sugar to the protein.
  • GlcNAc residues can be attached to the ⁇ -amino groups of lysine residues of a nonglycosyl ated protein by treating the protein with 2-imino-2-methyoxyethyl-1-thio- ⁇ -N-acetylglucosaminide as described by Stowell and Lee in Meth. Enzymol . 83, 278-288 (1982).
  • Other coupling procedures can be used as well, such as treatment of the protein with a glycoside or thioglycoside derivative of GlcNAc in which the aglycone contains an activated carboxylic acid, for example R 1 or R 2 .
  • GlcNAc residues can be attached to the carboxyl groups of aspartic acid and glutamic acid residues of a nonglycosylated protein by treatment of the protein with a glycoside or thioglycoside derivative of GlcNAc in which the aglycone contains a free amino group, for example R 3 or R 4 , in the presence of a coupling reagent such as a carbodiimide.
  • a coupling reagent such as a carbodiimide.
  • GlcNAc derivatives containing the aglycones R 3 or R 4 can also be used to derivatize the amide groups of glutamine through the action of transglutaminase as described by Yan and Wold in Biochemistry 23, 3759-3765 (1984).
  • Attachment of GlcNAc residues to the thiol groups of the cysteine residues of a nonglycosylated protein can be accomplished by treating the protein with a GlcNAc glycoside or thioglycoside in which the aglycone contains an electrophilic site such as an acrylate unit, for example the aglycones R 5 or R 6 .
  • glycosylation of aromatic amino acid residues of a protein with a monosaccharide such as GlcNAc can be accomplished by treatment with a glycoside or thioglycoside in which the aglycone contains a diazo group, for example aglycones R 7 or R 8 .
  • a large number of other coupling methods and aglycone structures can be employed to derivatize a protein with a GlcNAc derivative.
  • the trisaccharide sequence SA ⁇ 2-->3(6)Gal ⁇ 1-->4(3)GlcNAc--> is constructed by sequential enzymatic attachment of galactose and sialic acid residues, as described for Asn-linked GlcNAc residues.
  • the protein is derivatized with: Gal ⁇ 1-->4(3)GlcNAc-X, Gal ⁇ 1-->4(3)GlcNAc ⁇ 1-->4GlcNAc-X, SA ⁇ 2-->3(6)Gal ⁇ 1-->4(3)GlcNAc-X, or SA ⁇ 2-->3(6)Gal ⁇ 1-->4(3)GlcNAc ⁇ 1-->4GlcNAc-X, where X is an aglycone containing a free amino group , an activated ester of a carboxy lic aci d, a diazo group , or other groups described above.
  • the same procedures may be used to chemically attach galactose, rather than GlcNAc, directly to an amino acid.
  • the galactose may then be enzymatically extended or capped with sialic acid, as previously described.
  • Procedures similar to those used to extend GlcNAc-protein or GlcNAc-->GlcNAc-protein to a protein-linked oligosaccharide resembling the outer branch of a complex oligosaccharide can be employed to construct other carbohydrate structures found on GlcNAc residues attached to the terminal mannose units of the core pentasaccharide.
  • Example 1 Generation of proteins containing repeating units of (GlcNAc ⁇ 1-->3Gal ⁇ 1-->4). After preparation of either GlcNAc-protein or GlcNAc ⁇ 1-->4GlcNAc-protein using the methods described above, a long carbohydrate chain may be generated by several rounds of alternating UDP-Gal :G!cNAc-R ⁇ 1-->4 galactosyltransferase and UDP-GlcNAc: Gal ⁇ 1-->4GlcNAc-R ⁇ 1-->3 N-acetylglucosaminyltransferase incubations.
  • the number of repeating GlcNAc-->Gal units in the structure can be varied depending on the desired length; 1-10 such units should suffice for most applications.
  • the essential element is that, after attachment of the disaccharide units, an exposed galactose residue is present so that the carbohydrate chain can be capped with ⁇ 2-->3- or ⁇ 2-->6-linked sialic acid, as described above.
  • the final structure would be
  • a fucose can be attached to any of the acceptor GlcNAc residues by treatment with GDP- FUC and a GDP-Fuc: GlcNAc ⁇ 1—>3(4) fucosyl transferase.
  • the purification of this fucosyl transferase, its substrate specificity and preferred reaction conditions have been reported by Prieels et al in J. Biol. Chem. 256, 104456-63 (1981).
  • sugar-specific cell surface receptors are able to recognize and internalize glycoproteins bearing appropriate carbohydrate structures.
  • the best characterized sugar-specific cell surface receptors are the Gal receptor of hepatocytes, the Man/GlcNAc receptor of reticulo-endothelial cells and the fucose receptor found on hepatocytes, lymphocytes and teratocarcinoma cells.
  • the subject of sugar-specific cell surface receptors has been reviewed by Neufeld and Ashwell in The Biochemistry of Glycoproteins and Proteoglycans, edited by Lennarz, Plenum Press, New York (1980), pp. 241-266.
  • Proteins can be targeted to cells with sugar-specific cell surface receptors by generating glycoproteins that contain the appropriate sugar at nonreducing terminal positions.
  • Several procedures are used to expose the desired terminal sugars.
  • One procedure in general, involves the treatment of a native glycoprotein with exoglycosidases, as described by Ashwell and Morel! in Adv. Enzymol . 41, 99-128 (1974).
  • Another procedure is the attachment of monosaccharides to the protein, as described by Stahl et al . in Proc. Natl. Acad. Sci. USA 75, 1399-1403 (1978).
  • a third approach is the attachment of derivatives of ol igosacchari des i so lated from natura l sources such as ovalbumin , as reported by Yan and Wold in Biochemistry 23, 3759-3765 (1984).
  • the glycosylated proteins that are the subject of the present invention can be targeted to specific cells, depending on the specific sugars attached.
  • Gal--> ( Fuc --> ) Gl cNAc-->[Gal --> ( Fuc--> ) m Gl cNAc] n -->Gl cNAc-protei n where n is 1-10 and m is 0 or 1, are targeted to hepatocytes, lymphocytes and teratocarcinoma cells.
  • One application of targeting is for enzyme replacement therapy.
  • glucocerebrosidase can be targeted to macrophages for the treatment of Gaucher's disease.
  • a second application is to target drugs or toxins to teratocarcinoma cells.
  • the following non-limiting example demonstrates the method of the present invention on a yeast glycoprotein possessing multiple high-mannose and mannan oligosaccharides.
  • Step 1 Endo H treatment of yeast external invertase.
  • Yeast external invertase is a glycoprotein containing approximately two high mannose and seven mannan oligosaccharides.
  • the purified invertase was denatured by placing a 1% SDS solution of the glycoprotein in a boiling water bath for 5 minutes.
  • the denatured invertase (250 ⁇ g) was then incubated with Endo H (C.3 ⁇ g, from Miles Scientific, Naperville ID for 20 hours at 37°C in 175 ul of 0.1 M sodium citrate buffer, pH 5.5. After Endo H treatment, the reaction mixture was desalted on a Bio-Gel P-4 column (1 x 10 cm) equilibrated and eluted with 50 mM ammonium acetate, pH 6.5. The method of desalting is not critical. Dialysis or protein precipitation can also be used. The material eluting in the void volume of the column was pooled and lyophilized.
  • Step 2 Galactosylation of the Endo H-treated samples of native and denatured yeast external invertase.
  • Nonradiolabeled galactosylated samples of native and denatured yeast external invertase were prepared as substrates for the sialylation reaction.
  • Endo H-treated denatured invertase and Endo H plus ⁇ -mannosidase- treated native invertase were galactosylated with nonradioactive UDP-Gal using the procedures described above.
  • Step 3 Sialylation of the galactosylated samples of native and denatured yeast external invertase.
  • the reaction mixtures were analyzed by SDS-PAGE and autoradiography, as shown in Fig. 6.
  • the radioactivity associated with the invertase band demonstrates that sialic acid has been attached to the galactose residues of the invertase by the ⁇ 2-->6 sialyltransferase.
  • the following non-limiting example demonstrates the method of the present invention using chemical and enzymatic techniques on a protein that is not glycosylated in its native form.
  • Step 1 Chemical attachment of a thioglycoside derivative of GlcNAc to bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • BSA was derivatized by treatment with 2-imino-2-methoxyethyl-1-thio-N-acetylglucosaminide by Dr. R. Schnaar at Johns Hopkins University according to the procedure described by Lee et al. in Biochemistry 15, 3956-63 (1976).
  • the glycosylated BSA contained, on the average, 48 lysine-linked GlcNAc residues per molecule.
  • GlcNAc 48 -BSA (0.9 mg) was incubated at 37°C for 17 hours in 600 ⁇ l of 0.12 M MFS, pH 6.3, containing 0.6% Triton X-100, 20 mM MnCl 2 , 5 mM
  • a second incubation of tne gal actosylated BSA under identical conditions increased the extent of reaction from 46 to 51%.
  • the galactosylated BSA was Durified with an anti-BSA antibody column obtained from Cooper Biomedical, Malvern PA.
  • the galactosylated BSA (240 ⁇ g) was incubated for 16 hours at 37°C in 120 ⁇ l of 0.1 M Tris-maleate, pH 6.7, containing 3 mM CMP-[ 14 C]NeuAc (specific activity 0.55 Ci/mol) and bovine colostrum CMP-SA: Gal ⁇ 1-->4GlcNAc-R ⁇ 2-->6 sialyltransferase (2.1 mU).
  • the glycosylated BSA was partially purified from other reaction components by gel filtration. After measurement of the ratio of 14 C to 3 H radioactivity incorporated into the samples, it was calculated that 42% of the Gal-->GlcNAc-->protein residues were sialylated.
  • the following nonlimiting example demonstrates the differential uptake of GlcNAc-BSA and Gal ⁇ 1-->4GlcNAc-BSA by GlcNAc/Man-specific receptors of macrophages.
  • Mouse peritoneal macrophages which possess cell surface receptors that recognize terminal GlcNAc and Man residues, were obtained from mice 4-5 days after intraperitoneal injection of thioglycollate broth (1.5 ml per mouse).
  • the peritoneal cells were washed with Dulbecco's modified minimal essential medium (DME) containing 10% fetal calf serum (FCS) and plated in 96-well tissue culture trays at a density of 2 x 10 5 cells per well. After 4 hours the wells were washed twice with phosphate-buffered saline (PBS) to remove nonadherent cells.
  • DME Dulbecco's modified minimal essential medium
  • FCS fetal calf serum
  • the adherent cells remaining in the wells were used for uptake experiments with GlcNAc-[ 125 I]BSA and Gal ⁇ 1-->4GlcNAc-[ 125 I]BSA which had been radiolabeled with 125 I by the chloramine T method.
  • the radiolabeled protein preparations were added at a concentration of 0.1-1.2 ⁇ g/ml to 100 ⁇ l of DME containing 10% FCS and 10 mM HEPES [4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid], pH 7.4.
  • Parallel experiments were run in the presence of yeast mannan (1 mg/ml ) to measure nonspecific uptake of the glycosylated BSA samples.
  • the cells were incubated with the samples for 30 min at 37°C and then washed five times with PBS to remove residual protein not taken up by the cells.
  • the washed cells were dissolved in 200 ⁇ l of 1% SDS and the radioactivity determined.
  • Nonspecific uptake (CPM in the presence of yeast mannan) was subtracted from the total uptake (CPM in the absence of yeast mannan) to determine Man/GlcNAc receptor-specific uptake by the mouse peritoneal macrophages.
  • GlcNAc-BSA Dut not GalB1-->4GlcNAc-BSA, is recognized and endocytosed by mouse peritoneal macrophages.
  • the following non-limiting example demonstrates the differential uptake of Gal ⁇ 1-->4GlcNAc-BSA and SA ⁇ 2-->6Gal ⁇ 1-->4GlcNAc-BSA by galactose-specific receptors of hepatoma cell line HepG2.
  • Samples of GlcNAc-BSA and Gal-->GlcNAc-BSA were radiolabeled with 125 I by the chloramine T method.
  • HepG2 cells were cultured in DME containing 10% fetal calf serum. Uptake experiments were performed on cells plated in 35 mm tissue culture dishes at approximately 70% confluency. The cells were washed with protein-free medium and incubated with 1 ml of DME containing 20 mM HEPES, pH 7.3, containing cytochrome c (0.2 mg/ml ) and 0.5-7.5 ⁇ g of Gal ⁇ 1-->4GlcNAc-[ 125 I]BSA or SA ⁇ 2-->6Gal ⁇ 1-->4GlcNAc-[ 125 I]BSA.
  • Non-specific uptake (CPM in tne presence of asialo-orosomucoid) was subtracted from the total uptake (CPM in the absence of asialoorosomucoid) to determine the galactose receptor-specific uptake by the HepG2 cells.
  • the galactose receptor-specific uptake is shown as a function of glycosylated BSA concentration in Fig. 9.
  • the results demonstrate that Gal ⁇ 1-->4GlcNAc-BSA, but not SA ⁇ 2— >6Gal ⁇ 1-->4GlcNAc-BSA, is recognized and endocytosed by HepG2 cells.
  • the following non-limiting example demonstrates the method of the present invention on a mammalian glycoprotein having one oligosaccharide chain of the high-mannose type.
  • Step 1 Deglycosylation of ribonuclease B, a glycoprotein having a single high-mannose oligosaccharide.
  • Native ribonuclease B (490 ⁇ g), obtained from Sigma Chem. Corp., St. Louis MO, and further purified by concanavalin A affinity chromatography as described by Baynes and Wold in J. Biol. Chem. 251, 6016-24 (1976) was incubated with Endo H (50 mU, obtained from Genzyme Corp., Boston MA) in 100 ⁇ l of 50 mM sodium acetate, pH 5.5, for 24 hours at 37°C. SDS-PAGE indicated complete conversion of the giycoprotein to a form containing a single GlcNAc residue.
  • the modified ribonuclease B was desalted on a Bio-Gel P6DG column and the ribonuclease fractions were freeze-dried.
  • Endo H-treated ribonuclease B 400 ⁇ g was incubated for 3 hours at 37° in 250 ⁇ l of 0.1 M MES, pH 6.3, containing 0.1% Triton X-100, 0.01 M MnCl 2 , 100 mU bovine milk UDP-Gal :GlcNAc-R ⁇ 1-->4 galactosyltransferase and 300 nmol UDP-[ 3 H]Ga! (specific activity 17.3 Ci/mmol).
  • the ga! actosyl ated ribonuclease was analyzed by FPLC on a Mono S column.
  • Step 3 Sialylation of gal actosylated ribonuclease.
  • a 40 ⁇ l aliquot of the reaction mixture from Step 2 was mixed with 10 ⁇ l of 6.5 mM CMP-NeuAc and 10 ul of rat liver CMP-NeuAc :Gal-R ⁇ 2-->6 sialyltransferase (1.6 mU, obtained from Genzyme Corp., Boston MA) and incubated at 37°C for 18 hours.
  • the sialylated ribonuclease was analyzed by FPLC on a Mono S column using the conditions described in Step 2.
  • the sialylated ribonuclease eluted at a NaCl concentration of 0.18 M, as judged by the profiles of both A280 and radioactivity.
  • the profile of radioactivity is shown in Fig 10, ( ⁇ — ⁇ ).

Abstract

A method for modifiying eukaryotic and prokaryotic proteins to extend their in vivo circulatory lifetimes. In the preferred embodiment, enzymatic and/or chemical treatments are used to produce a modified protein carrying one or more covalently attached trisaccharide, sialic acid-->galactose-->N-acetylglucosamine--> (SA-->Gal-->GlcNAc-->), or tetrasaccharide (SA-->Gal-->GlcNAc-->GlcNAc-->)moieties. The method can be applied to any natural or recombinant protein possessing asparagine-linked oligosaccharides or to any non-glycosylated protein that can be chemically or enzymatically derivatized with the appropriate carbohydrate units. Following injection into an animal, the modified glycoproteins are protected from premature clearence by cells of the liver and reticulo-endothelial system which recognize and rapidly internalize circulating glycoproteins with carbohydrate containing terminal Gal, GlcNAc, fucose or mannose residues. The method can also be used to mask antigenic determinants on foreign proteins which would otherwise produce an immune response or to ''target'' a protein for recognition by sugar-specific cell surface receptors.

Description

METHOD FOR ENHANCING GIYCOPROTEIN STABILITY
BACKGROUND OF THE INVENTION
The United States Government has certain rights in this invention by virtue of National Institutes of Health grants No. CA26712, GN31318, and CA14051.
Glycoproteins, proteins with covalently bound sugars, are found in plants, animals, insects, and even many unicellular eukaryotes such as yeast. They occur within cells in both soluble and membrane-bound forms, in the intercellular matrix, and in extracellular fluids. The carbohydrate moieties of these glycoproteins can participate directly in the biological activity of the glycoproteins in a variety of ways: protection from proteolytic degradation, stabilization of protein conformation, and mediation of inter- and intracellular recognition. Examples of glycoproteins include enzymes, serum proteins such as immunoglobulins and blood clotting factors, cell surface receptors for growth factors and infectious agents, hormones, toxins, lectins and structural proteins.
Natural and recombinant proteins are being used as tnerapeutic agents in humans and animals. In many cases a therapeutic protein will be most efficacious if it has an appreciable circulatory lifetime. At least four general mechanisms can contribute to a shortened circulatory lifetime for an exogenous protein: proteolytic degradation, clearance by the immune system if the protein is antigenie or immunogenic, clearance by cells of the liver or reticulo-endothelial system that recognize specific exposed sugar units on a glycoprotein, and clearance through the glomerular basement membrane of the kidney if the protein is of low molecular weight. The oligosaccharides of a glycoprotein can exert a strong effect on the first three of these clearance mechanisms.
The oligosaccharide chains of glycoproteins are attached to the polypeptide backbone by either N- or O-glycosidic linkages. In the case of N-linked glycans, there is an amide bond connecting the anomeric carbon (C-1) of a reducing-terminal N-acetylglucosamine (GlcNAc) residue of the oligosaccharide and a nitrogen of an aspara gine (Asn) residue of the polypeptide. In animal cells, O-linked glyeans are attached via a glycosidic bond between N-acetylgalactosamine (GalNAc), galactose (Gal), or xylose and one of several hydroxyamino acids, most commonly serine (Ser) or threonine (Thr), but also hydroxyproline or hydroxylysine in some cases. The O-linked glycans in the yeast Saccharomyces cerevisiae are also attached to serine or threonine residues, but, unlike the glycans of animals, they consist of one to several α-linked mannose (Man) residues. Mannose residues have not been found in the O-linked oligosaccharides of animal cells.
The biosynthetic pathways of N- and O-linked oligosaccharides are quite different. O-Linked glycan synthesis is relatively simple, consisting of a step-by-step transfer of single sugar residues from nucleotide sugars by a series of specific glycosyltransferases. The nucleotide sugars which function as the monosaccharide donors are uridine-diphospho-GalNAc (UDP-GalNAc), UDP-GlcNAc, UDP-Gal , guanidinediphospho-fucose (GDP-Fuc), and cytidine-monophospho-sialic acid (CMP-SA). N-Linked oligosaccharide synthesis, which is much more complex, is described below.
The initial steps in the biosynthesis of N-l inked glycans have been preserved with little change through evolution from the level of unicellular eukaryotes such as yeast to higher plants and man. For all of these organisms, initiation of N-linked oligosaccharide assembly does not occur directly on the Asn residues of the protein, but rather involves preassembly of a lipid-linked precursor oligosaccharide which is then transferred to the protein during or very soon after its translation from mRNA. This precursor oligosaccharide, which has the composition Glc3Man9GlcNAc2 and the structure shown in Fig. 1A, is synthesized while attached via a pyrophosphate bridge to a polyisoprenoid carrier lipid, a dolichol. This assembly is a complex process involving at least six distinct membrane-bound glycosyltransferases. Some of these enzymes transfer monosaccharides from nucleotide sugars, while others utilize dolichol-linked monosaccharides as sugar donors. After assembly of the lipid-linked precursor is complete, another membrane-bound enzyme transfers it to sterically accessible Asn residues which occur as part of the sequence -Asn-X-Ser/Thr-. The requirement for steric accessibility is presumably responsible for the observation that denaturation is usually required for in vi tro transfer of precursor ol igosaccharide to exogenous protei ns.
Glycosylated Asn residues of newly-synthesized glycoproteins transiently carry only one type of oligosaccharide, Glc3Man9GlcNAc2. Modification, or "processing," of this structure generates the great diversity of structures found on mature glycoproteins, and it is the variation in the type or extent of this processing which accounts for the observation that different cell types often glycosylate even the same polypeptide differently.
The processing of N-linked oligosaccharides is accomplished by the sequential action of a number of membrane-bound enzymes and begins immediately after transfer of the precursor oligosaccharide Glc,Man9-GlcNAc2 to the protein. In broad terms, N-linked oligosaccharide processing can be divided into three stages: removal of the three glucose residues, removal of a variable number of mannose residues, and addition of various sugar residues to the resulting trimmed "core," i.e., the Man3GlcNAc2 portion of the original oligosaccharide closest to the polypeptide backbone. A simplified outline of the processing pathway is shown in Fig. 2.
Like the assembly of the precursor oligosaccharide, the removal of the glucose residues in the first stage of processing has been preserved through evolution. In yeast and in vertebrates, all three glucose residues are trimmed to generate N-linked Man9GlcNAC2. Processing sometimes stops with this structure, but usually it continues to the second stage with removal of mannose residues. Here the pathway for yeast diverges from that in vertebrate cells.
As shown in Fig. 1B, four of tne mannose residues of the Man9GlcNAc2 moiety are bound by α1—>2 linkages. By convention the arrow points toward the reducing terminus of an oligosaccharide, or in this case, toward the protein-bound end of the glycan; α or β indicate the anomeric configuration of the glycosidic bond; and the two numbers indicate which carbon atoms on each monosaccharide are involved in the bond. The four αl—>2-linked mannose residues can be removed by Mannosidase I to generate N-linked Man5-8GlcNAc2, all of which are commonly found on vertebrate glycoproteins. Oligosaccharides with the composition Man5-9GlcNAc2 are said to be of the "high-mannose" type.
As shown in Fig. 2, protein-linked Man5GlcNAc2 (Structure M-c) can serve as a substrate for GlcNAc transferase I, which transfers a 01—>2-linked GlcNAc residue from UDP-GlcNAc to the αl—>3-linked mannose residue to form GlcNAcMan5GlcNAc2 (Structure M-d) . Mannosidase II can then complete the trimming phase of the processing pathway by removing two mannose residues to generate a protein-linked oligosaccharide with the composition GlcNAcMan3GlcNAc2 (Structure M-e). This structure is a substrate for GlcNAc transferase II, which can transfer a β1—>2-linked GlcNAc residue to the α1—>6-linked mannose residue (not shown) .
It is at this stage that the true complexity of the processing pathway begins to unfold. Simply stated, monosaccharides are sequentially added to the growing oligosaccharide chain by a series of membrane-bound Golgi glycosyltransferases, each of which is highly specific with respect to the acceptor oligosaccharide, the donor sugar, and the type of linkage formed between the sugars. Each type of cell has an extensive but discrete set of these glycosyltransferases. These can include at least four more distinct GlcNAc transferases (producing β1—>3, β1 —>4, or β1—>6 linkages); three gal actosyl transferases (producing βl—>4, β1—>3, and α1—>3 linkages); two sialyl transferases (one producing α2—>3 and another, α2—>6 linkages); three fucosyl transferases (producing α1—>2, α1—>3, αl —>4 or α1 —>6 linkages); and a growing list of other enzymes responsible for a variety of unusual linkages. The cooperative action of these glycosyl transferases produces a diverse family of structures collectively referred to as "complex" oligosaccharides. These may contain two (for example, Structure M-f in Fig. 2), three (for example, Fig. 1C or Structure M-g in Fig. 2), or four outer branches attached to the invariant core pentasaccharide, Man,GlcNAc2. These structures are referred to in terms of the number of their outer branches: biantennary (two branches), triantennary (three branches) or tetraantennary (four branches). The size of these complex glycans varies from a hexasaccharide (on rhodopsin) to very large polylactosaminylglycans, which contain one or more outer branches with repeating (Galβ1—>4GlcNAcβ1—>3) units (on several cell surface glycoproteins such as the erythrocyte glycoprotein Band 3 and the macrophage antigen Mac-2). Despite this diversity, the specificities of the glycosyltransferases do produce some frequently recurring structures. For example, the outer branches of many complex N-linked oligosaccharides consist of all or part of the sequence
SAα2— >3 ( 6 )Gal βl— >4Gl cNAcβl— > . One or two of these trisaccharide moieties may be attached to each of the two α-linked mannose residues of the core pentasaccharide, as in Structures M-f and M-g of Fig. 2.
Unlike transcription of DNA or translation of mRNA, which are highly reproducible events, oligosaccharide biosynthesis does not take place on a template. As a consequence, considerable heterogeneity is usually observed in the oligosaccharide structures of every giycoprotein. The differences are most commonly due to variations in the extent of processing. The single glycosylation site of the chicken egg glycoprotein ovalbumin, for example, contains a structurally related "family" of at least 18 different oligosaccharides, the great majority of which are of the high-mannose or related "hybrid" type (for example, Structure M-h in Fig. 2). Many glycoproteins contain multiple glycosylated Asn residues, and each of these may carry a distinct family of oligosaccnarides. For example, one site may carry predominantly high-mannose glycans, another may carry mostly fucosylated biantennary complex chains, and a third may carry fucose-free tri- and tetraantennary complex structures. Again, all of these glycans will contain the invariant Man3GlcNAc2 core.
As discussed above, the initial stages of N-linked oligosaccharide synthesis in the yeast Saccharomyces cerevisiae closely resemble those occurring in vertebrate cells. As in higher organisms, lipid-linked Glc3Man9GlcNAc2 is assembled, its oligosaccharide chain transferred to acceptor Asn residues of proteins, and its three glucose residues are removed soon after transfer. Yeast cells can remove only a single mannose residue, however, so that the smallest and least-processed N-linked glycans have the composition Man8-9GlcNAc2. Processing can stop at this stage or continue with the addition of as many as 50 or more α-linked mannose residues to Man8GlcNAc2 (Fig. 2, Structure Y-c) to generate a mannan (for example, Structure Y-d). Just as glycoproteins in mammalian cells may have predominantly high-mannose oligosaccharides at one glycosylated Asn residue and highly processed complex glycans at another, yeast glycoproteins such as external invertase commonly have some glycosylation sites with Man8-9GlcNAc2 chains, while other sites carry mannans.
Unlike eukaryotic cells, bacteria lack the enzymatic machinery to assemble lipid-linked Glc3Man9GlcNAc2 or transfer it to proteins. Thus, although proteins synthesized in E. coli contain many -Asn-X-Ser/Thr- sequences, they are not glycosylated.
From the foregoing discussion, it is apparent that the glycosylation status of a glycoprotein will depend on the cell in which it is produced. The glycans of a protein synthesized in cultured mammalian cells will resemble those of the same protein isolated from a natural animal source such as a tissue but are unlikely to be identical. Proteins glycosylated by yeast contain high-mannose oligosaccharides and mannans, and proteins synthesized in a bacterium such as E. coli will not be glycosylated because the necessary enzymes are absent.
The precise composition and structure of the carbohydrate chain(s) on a glycoprotein can directly influence its serum lifetime, since cells in the liver and reticulo-endothelial system can bind and internalize circulating glycoproteins with specific carbohydrates. Hepatocytes have receptors on their surfaces that recognize oligosaccharide chains with terminal (i.e., at the outermost end(s) of glycans relative to the polypeptide) Gal residues, macrophages contain receptors for terminal Man or GlcNAc residues, and hepatocytes and lymphocytes have receptors for exposed fucose residues. No sialic acid-specific receptors have been found, however. Although somewhat dependent on the spatial arrangement of the oligosaccharides, as a general rule, the greater the number of exposed sugar residues recognized by cell surface receptors in the liver and reticulo-endothelial system, the more rapidly a glycoprotein will be cleared from the serum. Because of the absence of sialic acid-specific receDtors, however, oligosaccharides with all branches terminated, or "capped," with sialic acid will not promote the clearance of the protein to which they are attached.
The presence and nature of the oligosaccharide chain(s) on a glycoprotein can also affect important biochemical properties in addition to its recognition by sugar-specific receptors on liver and reticulo-endothelial cells. Removal of the carbohydrate from a glycoprotein will usually decrease its solubility, and it may also increase its susceptibility to proteolytic degradation by destabi lizing the correct polypeptide folding pattern and/or unmasking protease-sensitive sites. For similar reasons, the glycosylation status of a protein can affect its recognition by the immune system.
It is therefore an objective of the present invention to provide a method for modifying oligosaccharide chains of glycoproteins isolated from natural sources or produced from recombinant DNA in yeast, insect, plant or vertebrate cells in a manner that increases serum lifetime or targets the protein to specific cell types.
It is another objective of the invention to provide an in vitro method for glycosylating proteins produced from bacterial, yeast, plant, viral or animal DNA in a manner that enhances stability and effective biological activity.
It is a further objective of the invention to provide a method for glycosylation of proteins or modification of oligosaccharide chains on glycoproteins which is efficient, reproducible and cost-effective.
SUMMARY OF THE INVENTION
A method for modifying eukaryotic and prokaryotic proteins to extend their in vivo circulatory lifetimes or to control their site of cellular uptake in the body. In preferred embodiments, enzymatic and/or chemical treatments are used to produce a modified protein carrying one or more covalently attached trisaccharide
SAα2-->6(3)Galβ1-->4(3)GlcNAc--> or tetrasaccharide
SAα2-->6 (3 )Gal β1-->4(3 )Gl cNAcβ1-->4Gl cNAc--> moieties. In alternative embodiments, one or two GlcNAc residues bound to the protein are used as a basis for construction of other oligosaccharides by elongation with the appropriate glycosyl transferases. The method can be applied to any natural or recombinant protein possessing Asn-linked oligosaccharides or to any non-glycosylated protein that can be chemically or enzymatically derivatized with the appropriate carbohydrate residues.
Generation of glycoproteins containing Asn-linked SA—>Gal—>GlcNAc—>
The preferred oligosaccharide modification scheme consists of the following steps wherein all but the Asn-linked GlcNAc of the N-linked oligosaccharide chains are enzymatically or chemically removed from the protein and a trisaccharide constructed in its place:
Step 1. Generation of GlcNAc-->Asn(protein). The initial step is cleavage of the glycosidic bond connecting tne two innermost core GlcNAc residues of some or all N-linked oligosaccharide chains of a glycoprotein with an appropriate endo-β-N-acetylglucosaminidase such as Endo H or Endo F. Endo H cleaves the high-mannose and hybrid oligosaccharide chains of glycoproteins produced in eukaryotic cells as well as the mannans produced in yeast such as Saccharomyces cerevisiae, removing all but a single GlcNAc residue attached to each glycosylated Asn residue of the polypeptide backbone. Endo F can cleave both high-mannose and biantennary complex chains of N-linked oligosaccharides, again leaving a single GlcNAc residue attached at each glycosylation site. If a given glycoprotein contains complex oligosaccharides such as tri- or tetraantennary chains which are inefficiently cleaved by known endoglycosidases, these chains can be trimmed with exoglycosidases such as sialidase, β- and α-galactosidase, α-fucosidase and β-hexosaminidase. The innermost GlcNAc residue of the resulting core can be then be exposed by any of several procedures. One procedure is digestion with Endo F or other endo-B-N-acetylglucosaminidases such as Endo D. A second procedure is digestion with α-mannosidase followed by digestion with either Endo L or with β-mannosidase and β-hexosaminidase.
Alternatively, glycoproteins normally bearing complex Asn-linked oligosaccharides can be produced in mammalian cell culture in the presence of a processing inhibitor such as swainsonine or deoxymannojirimycin. The resulting glycoprotein will bear hybrid or highmannose chains susceptible to cleavage by Endo H, thereby eliminating the need for an initial treatment of the glycoprotein with exoglycosidases. In a related variation, the glycoprotein may be produced in a mutant cell line tnat is incapable of synthesizing complex N-linked chains resistant to endoglycosidases such as Endo H or Endo F.
All sugars other than the N-linked GlcNAc residues may also be removed chemically rather than enzymatically by treatment with trifluoromethanesulfonic acid or hydrofluoric acid. In general, chemical cleavage can be expected to be less useful than enzymatic methods because of the denaturing effects of the relatively harsh conditions used.
Step 2. Attachment of Gal to GlcNAc-->Asn( protein). The second step is the enzymatic addition of a Gal residue to the residual GlcNAc on the protein by the action of a galactosyltransferase. The preferred galactosyltransferase is a bovine milk enzyme which transfers Gal to GlcNAc in the presence of the sugar donor UDP-Gal to form a β1-->4 linkage. In another variation, galactose can be added to the GlcNAc residue with a β1-->3 linkage by the use of a galactosyltransferase from a source such as pig trachea.
Step 3. Attachment of SA to Gal-->GlcNAc-->Asn(protein). The final step is the enzymatic addition of a sialic acid residue to Galβ1-->4(3)GlcNAc-->Asn(protein). This reaction can be carried out with an α2-->6-sialyltransferase isolated, for example, from bovine colostrum or rat liver, which transfers SA from CMP-SA to form an α2-->6 linkage to the terminal galactose residue of Galβ1-->4(3)-GlcNAc-->Asn( protein). Alternatively, an α2-->3-sialyltransferase may be used to form an α2—>3 linkage to each terminal Gal residue. Although the preferred sialic acid is N-acetylneuraminic acid (NeuAc), any naturally occurring or chemically synthesized sialic acid which the sialyltransferase can transfer from the CPM-SA derivative to galactose may be used, for exapmole, N-glycolyl neuraminic acid, 9-0-acetyl-N-acetyl neuraminic acid, and 4-0-acetyl-N-acetyl neuraminic acid.
Generation of glycoproteins containing Asn-1 inked SA—>Gal—>GlcNAc—>G1cNAc—>
In a second embodiment, the oligosaccharide chains of the glycoprotein, whether natural or produced in the presence of a processing inhibitor or in a mutant cell line, are trimmed back to the two, rather than one, innermost core GlcNAc residues by the use of appropriate exoglycosidases. For example, α and β-mannosidase would be used to trim a high-mannose oligosaccharide. The product of this treatment, GlcNAcβ1—>4GlcNAc—>Asn( protein), is then converted to the tetrasaccharide SAo2—>6(3 )Gal β1-->4(3 )GlcNAcβ1—>4G1 cNAc—>Asn(protein) by sequential treatment with galactosyl- and sialyl transferases.
Attachment of oligosaccharides to non-glycosylated amino acid residues of proteins.
In a third embodiment, an oligosaccharide such as the trisaccharide SA—>Gal—>GlcNAc—> or disaccharide SA—>Gal—> is attached at non-glycosylated amino acid residues of a protein expressed eitner in a eukarykotic system or in a bacterial system. For example, to attach the trisaccharide SA—>Gal—>GlcN'Ac, the protein is treated with a chemically reactive glycoside derivative of GlcNAc—>, Gal-->GlcNAc-->, or SA-->Gal—>GlcNAc-->. In the first two cases, the mono- or disaccharide is then extended to the trisaccharide by the appropriate glycosyltransferase(s). The initial carbohydrate moieties can be attached to the protein by a chemical reaction between a suitable amino acid and a glycoside derivative of the carbohydrate containing an appropriately activated chemical group. Depending on the activation group present in the glycoside, the carbohydrate will be attached to amino acids with free amino groups, carboxyl groups, sulfhydryl groups, or hydroxyl groups or to aromatic amino acids.
Generation of other oligosaccharides by elongation of protein-linked GlcNAc residues.
Variations of the disclosed procedures can be used to produce glycoproteins with oligosaccharides other than the tri- or tetrasaccharides described above. For example, extended oligosaccharide chains consisting of
SAα2-->6(3)Galβ1-->4(GlcNAcβ1-->3Galβ1-->4)nGlcNAc--> or
SAα2-->6(3)Galβ1-->4(GlcNAcβ1-->3Galβ1—>4)nGlcNAcβ1—>4GlcNAc-->, where n is 1-10, can be constructed by subjecting a glycoprotein carrying one or two core GlcNAc residues to alternate rounds of β1-->4 galactosyltransferase and β1-->3 N-acetylglucosaminyltransferase treatments. The resulting extended oligosaccharide chain can be useful for increasing solubility or masking protease-sensitive or antigenic sites of the Dolypeptide.
Many other useful oligosaccharide structures can be constructed by elongation of protein-linked monosaccharides or disaccharides with the use of appropriate glycosyltransferases. An example is the branched fucosylated trisaccharide
Gal β1-->4 (Fucα1-->3)G1 cNAc-->. These and other structures could be useful in preferenti al ly "targeting" a glycoprotein to a specific tissue known to contain receptors for a specific mono- or oligosaccharide.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows the structures of (A), the lipid-linked precursor oligosaccharide, Glc3Man9GlcNAc2; (B), a high-mannose Asn-linked oligosaccharide, Man9GlcNAc2; and (C), a typical triantennary complex Asn-linked oligosaccharide. The anomeric configurations and linkage positions of the sugar residues are indicated, and dotted lines enclose the invariant pentasaccharide core shared by all known eukaryotic Asn-linked oligosaccharides.
Fig. 2 is a simplified biosynthetic pathway for Asn-linked oligosaccharide biosynthesis in yeast and higher organisms. For clarity, anomeric configurations and linkage positions are not shown, but the arrangement of the branches is the same as in Fig. 1.
Fig. 3 is a Coomassie blue-stained gel prepared by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of yeast external invertase before and after treatment with glycosidases. The acrylamide concentration was 6%. (A) untreated invertase; (B) invertase after treatment with Endo H under non-denaturing conditions; (C) invertase after Endo H treatment under denaturing conditions (0.7% SDS); and (D) an aliquot of a sample first treated with Endo H under non-denaturing conditions and subsequently treated with jack bean α-mannosidase.
Fig. 4 is a fluorogram of a 6% SDS-PAGE gel of samples of yeast external invertase removed at intervals (5 min, 1 hr, 2 hr, 3 hr, 5 hr, 9 hr and 19 hr) during galactosylation of Endo H-treated, SDS-denatured invertase (Fig. 3B) with UDP-[3H]Gal and bovine milk β1-->4 galactosyltransferase.
Fig. 5 shows the rate of incorporation of acid-precipitable radioactivity into Endo H-treated, SDS-denatured yeast external invertase during treatment with UDP-[3H]Gal and bovine milk β1-->4 galactosyltransferase.
Fig. 6 is an autoradiogram of a 5% SDS-PAGE gel of various yeast external invertase derivatives that have been sialylated using CMP- [14C]NeuAc and bovine colostrum α2 -->6 sialyltransferase . (A) Sialylation product derived from galactosylated, Endo H-treated, SDS-denatured invertase; (B) sialylation product derived from a galactosylated sample of Endo H- and jack bean α-mannos idase-treated, non- denatured invertase; (C) sialylation product derived from untreated invertase.
Fig. 7 is a Coomassie blue-stained 6% SDS-PAGE gel of (A) untreated bovine serum albumin (BSA); (B) BSA converted to GlcNAc-BSA containing approximately 48 GlcNAc residues per molecule of protein by incubation with 2-imino-2-methoxyethyl-1-thio-N-acetylglucosaminide in 0.25 M sodium borate pH 8.5 for 24 hr at room temperature; (C) gal actosyl ated BSA formed by treatment of GlcNAc-BSA with UDP-[3H]Gal and bovine milk β1-->4 galactosyltransferase; and (D) sialylated BSA formed by treatment of Gal-->GlcNAc-BSA with CMP-[14C]NeuAc and bovine colostrum α2-->6 sialyltransferase. Fig. 8 is a graph of specific uptake (ng/2 x 105 cells) of
Gal-->GlcNAc-[125I]BSA (□) and GlcNAc-[125I]BSA (■) by the Man/GlcNAc receptor of thioglycollate-eli cited mouse peritoneal macrophages as a function of the concentration of glycosylated BSA (ug/ml), where specific uptake is equal to total uptake (uptake in the absence of mannan) minus non-specific uptake (value obtained in the presence of mannan).
Fig. 9 is a graph of specific uptake (ng/mg cellular protein) of Gal-->GlcNAc[125I]BSA (■) and NeuAc-->Gal-->GlcNAc-[125I]BSA (•) by the Gal/GalNAc receptor of HepG2 cells vs. protein concentration (0.5 to 7.5 μg protein/ml), where specific uptake is equal to total uptake (uptake in the absence of asialo-orosomucoid) minus non-specific uptake (value obtained in the presence of asialo-orosomucoid).
Fig. 10 Analysis of [3H]Gal-->GlcNAc-RNase by fast protein liquid chromatography (FPLC) on a Mono S column before (o-----o ) and after
(Δ-Δ ) sialylation with CMP-NeuAc and rat liver α2-->6 sialyltransferase, where the column was eluted with a linear gradient as described below. DETAILED DESCRIPTION OF THE INVENTION
The present invention is a method for modifying proteins wherein oligosaccharide chains are bound to the protein to enhance in vivo stability or to target the protein to cells having specific receptors for an exposed saccharide in the attached oligosaccharide chain(s). The method has two principal embodiments. The first is to cleave the existing Asn-linked oligosaccharide chains on a glycoprotein to leave one or two GlcNAc residues attached to the protein at Asn and then enzymatically extend the terminal GlcNAc to attach Gal and SA. The second is to chemically or enzymatically attach a GlcNAc or Gal residue to the protein at any of a number of different amino acids and then enzymatically extend the terminal GlcNAc or Gal to form an oligosaccharide chain capped with sialic acid. There are a number of variations of the methods and enzymes used at each step of the methods, depending on the substrate and desired oligosaccharide structure.
A. Generation of glycoproteins containing SA-->Gal-->GlcNAc-->Asn¬(protein)
Step 1. Generation of GlcNAc-->Asn(protein). There are several methods for preparing glycoproteins containing a single GlcNAc residue attached to glycosylated asparagine residues. Six methods are as follows . a. Cleavage by Endo H. To generate GlcNAc-->Asn( protein) enzymatically on glycoproteins having one or more oligosaccharides of the high-mannose or mannan type, the glycoprotein is incubated with an endo-β-N-acetylglucosaminidase capable of cleaving these oligosaccharide structures. The enzyme hydrolyzes the bond between the two core GlcNAc residues of susceptible N-linked oligosaccharides, leaving behind a single GlcNAc residue attached to the glycosylated Asn residues. The preferred enzyme for this purpose is Endo H, which has been isolated from Streptomyces plicatus. The enzyme is available either as the naturally occurring protein or as the recombinant DNA product expressed in E. coli or Streptomyces lividans.
Endo H cleaves all susceptible oligosaccharide structures of denatured glycoproteins and many of those on native glycoproteins. However, in native glycoprotei ns the GlcNAc2 cores of some highmannose glycans may be protected from cleavage by Endo H due to steric factors such as polypeptide folding. This can frequently be overcome by the use of one of several mild denaturing agents that promote partial polypeptide unfolding. Examples of such mild denaturants include detergent such as Triton X-100, NP-40, octyl glucoside, deoxycholate and dilute sodium dodecyl sulfate; disulfide bond reducing agents such as dithiothreitol and β-mercaptoethanol; chaotropic agents such as urea, guanidinium hydrochloride and sodium isothiocyanate; and low concentrations of organic solvents such as alcohols (methanol, ethanol, propanol or butanol), DMSO or acetone. Endo H is a very stable enzyme, active over a pH range of about 5 to 6.5, in low- or highionic strength buffers, and in the presence of the above-mentioned denaturing agents or protease inhibitors such as phenylmethanesul fonyl fluoride, EDTA, aprotinin, leupeptide and pepstatin. Protocols for the use of Endo H have been published by Trimble and Maley in Anal. Biochem. 141, 515-522 (1984). The precise set of reaction conditions which will optimize the cleavage of oligosaccharides by Endo H while preserving biological activity will most likely vary depending on the glycoprotein being modified and can be determined routinely by someone of ordinary skill in this field.
In situations where one or more intact high-mannose glycans persist even after incubation under the most stringent Endo H reaction conditions judged safe to use, exposed mannose residues can be trimmed away by the use of an α-mannosidase such as the cornmercially available α-mannosidase from jack bean. While high-mannose oligosaccharides modified in this way will not serve as substrates for the further modification reactions described below, this treatment should reduce the possibility that mannose-specific receptors on macrophages or other cells might bind to residual high-mannose glycan(s) on the glycoprotein and cause its premature clearance from the circulation.
As mentioned earlier, yeast glycoproteins sometimes contain O-linked oligosaccharides consisting of one to four α-linked mannose residues. Because these could bind to a mannose-specific receptor and shorten the serum lifetime of a glycoprotein, it is advisable to treat any protein found to contain such oligosaccharides with an α-mannosi dase such as the enzyme from jack bean. This would remove all but the innermost, protein-linked mannose residue from the 0-1 inked chains. Because α-mannosidase treatment could interfere with subsequent cleavage by Endo H or Endo CII, it should be performed after digestion with these enzymes.
A common O-linked oligosaccharide in animal cells is Gal-->GalNAc¬-->Ser/Thr(protein). These glycans can be removed with the enzyme endo-α-N-acetylgalactosaminidase, which is commercially available from Genzyme Corp., Boston MA. Many other mammalian O-linked oligosaccharides can be converted to Gal -->GalNAc-->Ser/Thr(protein) by treatment with exoglycosidases such as sialidase, β-hexosaminiαase and α-fucosidase. The resulting protein-linked disaccharides could then be removed from the polypeptide with endo-α-N-acetylgalactosaminidase. b. Cleavage by other endo-8-N-acetylglucosaminidases. Several other endo-β-N-acetylglucosaminidases are also capable of cleaving between the two innermost GlcNAc residues of various N-linked oligosaccharides. The oligosaccharide specificities of these enzymes vary and are summarized in Table I. Two of these endoglycosidases, Endo CII and Endo F, can be used in place of Endo H to cleave high-mannose glycans. Unlike Endo H, however, Endo F is also active with biantennary complex N-linked oligosaccnarides. Although the N-linked oligosaccharides of vertebrates are not substrates for Endo D, this enzyme would be active with glycoproteins produced by insect cells, which produce significant quantities of N-linked Man3GlcNAc2 in addition to high-mannose oligosaccharides, as reported by Hsieh and Robbins in J. Biol. Chem. 259, 2375-82 (1984). In situations where the target glycoprotein contains multiple oligosaccharides sensitive to different endo-β-N-acetylglucosaminidases, the glycoprotein can be incubated with the enzymes either sequentially or in combination to maximize cleavage. c. Cleavage by Endo H after incubation of cultured cells with oligosaccharide processing inhibitors. Mammalian cells often syntnesize glycoproteins carrying oligosaccharides with structures that are resistant to all of the above-mentioned endo-β-N-acetylglucosaminidases, e.g., tri- or tetraantennary complex oligosaccharides. If such a glycoprotein is being produced in a cultured cell system, it is possible to block the later stages of oligosaccharide processing by adding oligosaccharide processing inhibitors to the culture medium. Two preferred processing inhibitors are deoxymannojirimycin and swainsonine. Cells treated with one of these inhibitors will preferentially synthesize N-linked oligosaccharides with Endo H-sensitive structures. Deoxymannojirimycin inhibits Mannosidase I, thereby blocking further modification of high-mannose N-linked oligosaccharides. Swainsonine is a Mannosidase II inhibitor, blocking the removal of the two α-linked mannose residues on the α1-->6-linked mannose residue of the Man3GlcNAc2 core (i.e., conversion of structure M-d to structure M-e in Fig. 2). As a result, glycosylated Asn residues which would normally carry Endo H-resistant complex type glycans will carry Endo H-sensitive "hybrid" oligosaccharides instead. Swainsonine and deoxymannojirimycin are both comrnercially available, for example from Genzyme Corp., Boston MA, or Boehringer Mannheim, Indianapolis IN . In most cases, the altered glycoproteins produced in tne presence of deoxymannojirimycin or swainsonine will still be secreted in biologically active form. The use and properties of swainsonine and deoxymannojirimycin, as well as those of other oligosaccnaride processing inhibitors, have been reviewed by Schwartz and Datema, Adv . Carbohyd. Chem. Biocnem. 40, 287-379 (1982) and by Fuhrmann et al., Biochim. Biophys. Acta 825, 95-110 (1985).
Oligosaccharide processing inhibitors that block Glucosidases I or II, such as deoxynojirimycin or castanospermine, which are both available from Genzyme Corp., Boston MA, will also generate Endo H-sensitive structures, but these inhibitors are less preferred because they sometimes block secretion. Many other oligosaccharide processing inhibitors, described in the two reviews cited in the previous paragraph, will also serve the same purpose. d. Cleavage by endo-β-N-acetylglucosaminidases after production of a glycoprotein in a mutant cell line. Another approach for manipulating the structures of the N-linked oligosaccharides of a giycoprotein is to express it in cells with one or more mutations in the oligosaccharide processing pathways. Such mutations are readily selected for in mammalian cells. A number of techniques have been used to generate processing mutants, but selection for resistance or hypersensitivity to one or more of a variety of lectins, as an indicator of the presence of a processing mutation, has been one useful approach. DNA coding for a glycoprotein(s) can be introduced into such a mutant cell line using conventional methods (e.g., transformation with an expression vector containing the DNA). Alternatively, a mutant subline with defective processing can be selected from a line already capable of producing a desired glycoprotein.
Depending on the desired phenotype, any of a wide variety of mutant cell lines can be used. For example, there are perfectly viable, fast-growing GlcNAc transferase I mutants of both CHO cells (an established Chinese hamster ovary cell line long used for mutational studies and mammalian protein expression) and BHK-21 cells (an established line of baby hamster kidney origin). Both CHO and BHK-21 cells are available from the American Type Culture Collection, Rockville MD. Because of the missing enzyme activity, the mutant cells are unable to synthesize any complex or hybrid N-linked oligosaccharides; glycosylated Asn residues which would normally carry sucn glycans carry Man5GlcNAc2 instead. Thus, glycosylated Asn residues carry only Man5-9GlcNAc2, all structures which are sensitive to Endo H. Many other mutant cell lines have also been characterized, examples of which include lines with various defects in fucosylation, a defect in galactosylation resulting in failure to extend the outer branches past the GlcNAc residues, an inability to add extra branches to produce tri- and tetraantennary complex oligosaccharides, and various defects in Ser/Thr-linked glycan synthesis. The subject of processing-defective animal cell mutants has been reviewed by Stanley, in The Biochemistry of Glycoproteins and Proteoglyeans, edited by Lennarz, Plenum Press, New York, 1980.
A series of yeast mutants with various defects in mannan synthesis has also been produced, as described by Ballou, in The Molecular Biology of the Yeast Saccharomyces, edited by Strathern et al., Cold Spring Harbor Laboratory, 1982. Thus, it is possible to produce a glycoprotein in a mutant S. cerevisiae strain which cannot elongate high-mannose oligosaccharides into large mannans. e. Sequential exoglycosidase digestion with or without subsequent cleavage by Endo L or Endo D. An alternative, but less preferred method for generating GlcNAc-->Asn( protein) in cases where the giycoprotein contains high-mannose or mannan-type oligosaccharides is to remove monosaccharide units by exoglycosidase digestion with or without subsequent use of Endo L. The first step is digestion with an α-mannosidase to remove all α-linked mannose residues. In the case of mannans from some yeast strains, it may be desirable to include other exoglycosidases or phosphatases if other sugars or phosphate residues are present in the outer portion of the mannan structure. In the second digestion step, the last mannose residue is removed with a β-mannosidase. The product, GlcNAc2-->Asn(protein), is then subjected to the third digestion step, which is carried out with β-hexosaminidase. This enzyme removes the terminal GlcNAc residue to generate GlcNAc-->Asn(protein); since the last GlcNAc is linked to the protein by an amide rather than a glycosidic bond, the hexosaminidase cannot remove the innermost GlcNAc residue from the asparagine.
Alternatively, α-mannosidase treatment of high-mannose or mannantype oligosaccharides can be followed by incubation with Endo L, which can be purified from Streptomyces plicatus. This enzyme can cleave between the Gl cNAc resi dues of Manβ1 -- >4Gl cNAcβ1 -- >4Gl cNAc .
In the case of a glycoprotein containing complex or hybrid-type oligosaccharides, sequential (or, when the requirements of the enzymes make it possible, siimultaneous) incubation with the appropriate exoglycosidases, such as sialidase, β- and/or α-galactosidase, β-hexosaminidase, and α-fucosidase, will trim the oligosaccharides back to Man3GlcNAc2. This oligosaccharide can be cleaved by Endo D or Endo F. Alternatively, it can be treated with α-mannosidase to generate protein-linked Manβ1-->4GlcNAcβ1-->4GlcNAc. This can be cleaved either with Endo L or with digestions with α-mannosidase, β-mannosidase, and β-hexosaminidase.
Sialidase can be purified from a variety of sources, including E. coli, Clostridium perfringens, Vi bri o cholerae, and Arthrobacter urefaciens, and is commercially available from a number of sources such as Calbiochem-Behring, San Diego CA, or Sigma Chemical Corp., St. Louis MO. β-Galactosidase can be purified from Asperaillus niger, C. perfringens, jack bean, or other suitable sources and is commercially available from Sigma Chemical Corp., St. Louis MO. α-Galactosidase from E. coli or green coffee beans is available from Boehringer Mannheim, Indianapolis IN. β-Hexosaminidase can be purifed from jack bean, bovine liver or testis, or other suitable sources and is also commercially available from Sigma Chemical Corp., St. Louis MO. β- Mannosidase has been purified from the snail Achatina fulica, as described by Sugahara and Yamashima in Meth. Enzymol. 28, 769-772 (1972), and from hen oviduct, as described by Sukeno et al. in Meth. Enzymol . 28, 777-782 (1972). α-Mannosidase from jack bean is preferred and is commercially available from Sigma Chem. Corp., St. Louis MO. Endo H, Endo D, and Endo F are commercially available from Genzyme Corp., Boston MA; from New England Nuclear, Boston MA; from Miles Scientific, Naperville IL; or from Boehringer Mannheim, Indianapolis IN. Conditions for the use of these and the other endo-β-N-acetylglucosaminidases Endo CII and Endo L are described in the publications cited in Table I. f. Chemical removal of all sugars except N-linked GlcNAc. It is also possible to generate protein-linked GlcNAc chemically. For example, as described by Kalyan and Bah! in J. Biol. Chem. 258, 67-74 (1983), hydrolysis with trifluoromethane sulfonic acid (TFMS) has been used to remove all sugars except the M-linked GlcNAc residues while leaving the protein backbone intact. Similar results have been obtained using hydrofluoric acid, as described by Mort and Lamport in Anal. Biochem. 82, 289-309 (1977).
Step 2. Attachment of galactose to GlcNAc-->Asn(protein).
In Step 2, the terminal GlcNAc residue generated in Step 1 serves as a site for the attachment of galactose. Either of two galactosyltransferases may be used: UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase or UDP-Gal :GlcNAc-R β1-->3 galactosyltransferase. In tne first variation of this step, a β1-->4-linked galactose residue is added to GlcNAc-->Asn( protein). UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase can be obtained from a variety of sources, the most common and costeffective one being bovine milk. Enzyme from this source is commercially available from Sigma Chem. Corp., St. Louis MC. The reaction conditions for using the bovine milk galactosyltransferase to transfer galactose from UDP-Gal to GlcNAc-->Asn( protein) are similar to those described by Trayer and Hill in J. Biol. Chem. 246, 6666-75 (1971) for natural substrates. The preferred reaction pH is 6.0 to 6.5. Most buffers can be used with the exception of phosphate, which inhibits enyzme activity, and a broad range of salt concentrations can be used. It is preferable to have 5-20 mM Mn+2 or Mg+2 present. Peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin, and pepstatin and exoglycosidase inhibitors such as galactono-1,4-lactone can be added without interfering with the activity of the galactosyltransferase.
Since the removal of the carbohydrate from the protein can cause solubility problems, it is sometimes necessary to use relatively high concentrations of a non-ionic detergent such as 2-3% Triton X-10C, other suitable solubilizers such as DMSO, or denaturing agents such as 2-3 M urea to keep the protein in solution. We have found that this does not interfere with the galactosylation step, the bovine milk β1-->4 galactosyltransferase apparently remaining sufficiently active under these conditions.
In the second variation of this step, a β1-->3-linked galactose residue is transferred to GlcNAc-->Asn(protein). UDP-Gal: GlcNAc -R β1-->3 galactosyltransferase has been purified from pig trachea. Conditions for the use of this enzyme to transfer galactose from UDP-Gal to GlcNAc-R have been described by Sheares and Carlson in J. Biol. Chem. 258, 9893-98 (1983).
Step 3. Attachment of sialic acid to Galβ1-->4(3)GlcNAc-->Asn(protein)
The term "sialic acid" (SA) includes any naturally occurring or chemically synthesized sialic acid or sialic acid derivative. The preferred naturally occurring sialic acid is N-acetyl neuraminic acid (NeuAc). As discussed by Schauer in Adv. Carb. Chem. Biochem. 40, 131-234 (1982), other sialic acids can also be transferred from CMP-SA to galactose, for example, N-glycolyl neuraminic acid, 9-0-acetyl neuraminic acid, and 4-0-acetyl-N-acetyl neuraminic acid. Many other sialic acids such as those described in Sialic Acids: Chemistry, Metabolism and Function, edited by R. Schauer (Springer-Verlag, New York, (1982), are potential substrates. There are two variations of the method for attaching sialic acid tc the substrate generated in Steps 1 and 2, Galβ1-->4(3)GlcNAc-->Asn(protein).
In the first of the two variations, the sialic acid is attached to Galβ1-->4GlcNAc-->Asn(protein) in an α2-->6 linkage. The CMP-SA: Galβ1—>4GlcNAc-R α2-->6 sialyltransferase used in this step can be obtained from a variety of sources, the more usual ones being bovine colostrum and rat liver. The rat liver enzyme has recently become commerciany available from Genzyme Corp., Boston MA.
The reaction conditions for using the bovine colostrum and rat liver α2-->6 sialyltransferases to transfer sialic acid from CMP-SA to Galβ1-->4GlcNAc-->Asn(protein) are similar to those described by Paulson et al. in J. Biol. Chem. 252, 2356-62 (1977) for natural substrates, except that it may be desirable to add additional enzyme to accelerate the rate of the reaction. The preferred pH is 6.5-7.0. Although most buffers, with the exception of phosphate, can be employed, preferred buffers are Tris-maleate or cacodylate. The enzyme is functional in the presence of mild detergents such as NP-40 and Triton X-100; peptidase inhibitors such as phenylmethanesulfonyl fluoride, TPCK, aprotinin, leupeptin and pepstatin; and exoglycosidase inhibitors such as galactono-1,4-lactone.
In the second variation of this step, the sialic acid is attached to the Galβl— >4(3)GlcNAc— >Asn(protein) by an α2-->3 linkage. Two sialyl transferases producing this linkage have been described. The first, CMP-SA: Gal β1-->4GlcNAc α2-->3 sialyltransferase, has been identified in human placenta by van den Eijnden and Schiphorst as described in J. Biol. Chem. 256, 3159-3162 (1981). This enzyme, although not yet purified, can be purified using conventional methods. The second enzyme, CMP-SA:Galβ1-->3(4)GlcNAc α2-->3 sialyltransferase, has been purified from rat liver by Weinstein et al. as described in J. Biol . Chem. 257, 13835-^4 (1982). The rat liver enzyme has a somewhat relaxed specificity and is able to transfer sialic acid from CMP-sialic acid to the C-3 position of galactose in both Galβ1-->4GlcNAc and Galβ1-->3GlcNAc sequences. Conditions for the use of the α2—>3 sialyltransferases are described in the two publications just cited.
B. Method for preparing glycoproteins containing SA-->Gal-->GlcNAc-->GlcNAc-->Asn(protein)
The method used to generate SA-->Gal-->GlcNAc-->GlcNAc-->Asn (protein) is similar to the method described above for generating modified glycoproteins containing the trisaccharide sequence SA-->Gal-->GlcNAc-->Asn(protein). In the preferred embodiment, both core GlcNAc residues of the original N-linked oligosaccharide are left attached to the protein and a tetrasaccharide sequence, SA-->Gal-->GlcNAc-—- >GlcNAc--> is constructed enzymatically.
Step 1. Generation of GlcNAcβ1-->4GlcNAc-->Asn(protein)
The intact N-linked oligosaccharide cnain is treated with exoglycosidases selected to remove all carbohydrate exterior to the two innermost GlcNAc residues. In the case of high-mannose or mannan-type oligosaccharides, α- and β-mannosidase are used. In the case of complex or hybrid-type oligosaccharides, additional exoglycosidases are required, the specific enzymes used depending on the structures of the carbohydrate chains being modified. In most cases, treatments with sialidase, β- and/or α-galactosidase, β-hexosaminidase, and if necessary, α-fucosidase, are carried out in addition to treatment with α- and β-mannosioase. The 6-hexcsaminidase treatment is intended to remove GlcNAc residues only from the outer branches of the oligosaccharides, not from the core, and care snould be taken that no β-hexosaminidase is present during or after β-mannosidase treatment. The reaction conditions and sources of the exoglycosidases are identical to those described above for Step 1 in the generation of SA-->Gal-->GlcNAc-->Asn(protein).
The methods used to attach galactose to GlcNAcβ1-- >4GlcNAc-->Asn¬(protein) and sialic acid to Galβ1-->4(3)GlcNAcβ1-->4GlcNAc-->Asn(protein) are the same as those described earlier for the preparation of modified glycoproteins containing N-linked SAα2-->3(6)Galβ1-->4(3)¬GlcNAc-->Asn(protein).
C. Method for attaching oligosaccharides to nonglycosylated amino acid residues of proteins
The principal method for attaching oligosaccharides such as SA-->Gal-->GlcNAc--> to non-glycosylated amino acid residues is to react an activated glycoside derivative of what is to be the innermost sugar residue, in this case GlcNAc, with the protein and then to use glycosyltransferases to extend the ol igosaccharide chain. Chemical and/or enzymatic coupling of glycosides to proteins can be accomplished using a variety of activated groups, for example, as described by Aplin and Wriston in CRC Crit. Rev. Biochem., pp. 259-306 (1981). The advantages of the chemical coupling techniques are that they are relatively simple and do not need the complicated enzymatic machinery required for natural N-linked glycosylation. Depending on the coupling mode used, the sugar(s) can be attach arginine, histidine, or the ami no-terminal amino acid of the polypeptide; (b) free carboxyl groups, such as those of glutamic acid or aspartic acid or the carboxyterminal amino acid of the polypeptide; (c) free sulfhydryl groups, such as those of cysteine; (d) free hydroxyl groups, such as those of serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (f) the amide group of glutamine.
As shown below, the aglycone, R, is the chemical moiety that combines with the sugar to form a glycosi de and which is reacted with the amino acid to bind the sugar to the protein.
GlcNAc residues can be attached to the β-amino groups of lysine residues of a nonglycosyl ated protein by treating the protein with 2-imino-2-methyoxyethyl-1-thio-β-N-acetylglucosaminide as described by Stowell and Lee in Meth. Enzymol . 83, 278-288 (1982). Other coupling procedures can be used as well, such as treatment of the protein with a glycoside or thioglycoside derivative of GlcNAc in which the aglycone contains an activated carboxylic acid, for example R1 or R2.
GlcNAc residues can be attached to the carboxyl groups of aspartic acid and glutamic acid residues of a nonglycosylated protein by treatment of the protein with a glycoside or thioglycoside derivative of GlcNAc in which the aglycone contains a free amino group, for example R3 or R4, in the presence of a coupling reagent such as a carbodiimide.
Compounds which contain free amino groups, for example GlcNAc derivatives containing the aglycones R3 or R4, can also be used to derivatize the amide groups of glutamine through the action of transglutaminase as described by Yan and Wold in Biochemistry 23, 3759-3765 (1984).
Attachment of GlcNAc residues to the thiol groups of the cysteine residues of a nonglycosylated protein can be accomplished by treating the protein with a GlcNAc glycoside or thioglycoside in which the aglycone contains an electrophilic site such as an acrylate unit, for example the aglycones R5 or R6.
The glycosylation of aromatic amino acid residues of a protein with a monosaccharide such as GlcNAc can be accomplished by treatment with a glycoside or thioglycoside in which the aglycone contains a diazo group, for example aglycones R7 or R8.
A large number of other coupling methods and aglycone structures can be employed to derivatize a protein with a GlcNAc derivative.
After chemical derivatization of the protein with GlcNAc residues, the trisaccharide sequence SAα2-->3(6)Galβ1-->4(3)GlcNAc--> is constructed by sequential enzymatic attachment of galactose and sialic acid residues, as described for Asn-linked GlcNAc residues.
In other variations, the protein is derivatized with: Galβ1-->4(3)GlcNAc-X, Galβ1-->4(3)GlcNAcβ1-->4GlcNAc-X, SAα2-->3(6)Galβ1-->4(3)GlcNAc-X, or SAα2-->3(6)Galβ1-->4(3)GlcNAcβ1-->4GlcNAc-X, where X is an aglycone containing a free amino group , an activated ester of a carboxy lic aci d, a diazo group , or other groups described above.
The same procedures may be used to chemically attach galactose, rather than GlcNAc, directly to an amino acid. The galactose may then be enzymatically extended or capped with sialic acid, as previously described.
D. Generation of additional protein-linked oligosaccharides by elongation of GlcNAc-protein or GlcNAc-->GlcNAc-protein.
Procedures similar to those used to extend GlcNAc-protein or GlcNAc-->GlcNAc-protein to a protein-linked oligosaccharide resembling the outer branch of a complex oligosaccharide can be employed to construct other carbohydrate structures found on GlcNAc residues attached to the terminal mannose units of the core pentasaccharide.
Example 1. Generation of proteins containing repeating units of (GlcNAcβ1-->3Galβ1-->4). After preparation of either GlcNAc-protein or GlcNAcβ1-->4GlcNAc-protein using the methods described above, a long carbohydrate chain may be generated by several rounds of alternating UDP-Gal :G!cNAc-R β1-->4 galactosyltransferase and UDP-GlcNAc: Galβ1-->4GlcNAc-R β1-->3 N-acetylglucosaminyltransferase incubations. This will generate a polylactosaminyl-type structure of the type (GlcNAcβ1-->3Galβ1-->4)n attached to the GlcNAc-protein or GlcNAcβ1-->4GlcNAc-protein starting material. Kaur, Turco and Laine reported in Biochemistry International 4, 345-351 (1982) that bovine milk UDP-Gal : GlcNAc β1-->4 galactosyltransferase can transfer the β1-->4-linked galactosyl residues to polylactosaminyl oligosaccharides, and a β1-->3 N-acetylglucosaminyltransferase has Deen identified in Novikoff ascites tumor cells by van den Eijnden et al., J. Biol. Chem. 258, 3435-37 (1983). The number of repeating GlcNAc-->Gal units in the structure can be varied depending on the desired length; 1-10 such units should suffice for most applications. The essential element is that, after attachment of the disaccharide units, an exposed galactose residue is present so that the carbohydrate chain can be capped with α2-->3- or α2-->6-linked sialic acid, as described above. Thus, the final structure would be
SAα2-->6(3)Galβ1-->4[GlcNAcβ1-->3Galβ1-->4]nGlcNAc-protein, or
SAα2-->6(3) Galβ1-->4[GlcNAcβ1-->3Galβ1-->4l GlcNAcβ1-->4GlcNAc- protein, where n is 1-10.
The advantages of introducing such a polylactosaminyl structure would be to increase solubility or to better mask the protein backbone to protect it from recognition by the immune system or from degradation by proteases.
Example 2. Generation of glycoproteins containing terminal
Galβ1-->4(3)[Fucα1-->3(4)GlcNAc or
SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAc structures. After preparation of
Galβ1-->4(3)GlcNAc-protein,
Galβ1-->3 (4) [Gl cNAcβ1-->3Galβ1-->4]nGl cNAc-protei n ,
Galβ1-->4(3)GlcNAcβ1-->4GlcNAc-protein,
Galβ1-->3(4)[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1-->4GlcNAc-protein,
SAα2-->3Gal β1-->3GlcNAc-protein,
SAα2-->3Galβ1-->3[GlcNAcβ1-->3Galβ1-->4]nGlcNAc-protein,
SAα2-->3Galβ1-->3GlcNAcβ1-->4GlcNAc-protein or
SAα2-->3Galβ1-->3[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1-->4GlcNAc-protein where n is between 1 and 10, using the methods described above, a fucose can be attached to any of the acceptor GlcNAc residues by treatment with GDP- FUC and a GDP-Fuc: GlcNAc α1—>3(4) fucosyl transferase. The purification of this fucosyl transferase, its substrate specificity and preferred reaction conditions have been reported by Prieels et al in J. Biol. Chem. 256, 104456-63 (1981). The activity of this enzyme with sialyl ateα substrates has been described by Jonnson and Watkiπs in Proc. Vlllth Int. Symp. Glycoconjugates (1985), eds. E.A. Davidson, J.C. Williams and N.M. Di Ferrante. If it is desired to attach fucose only in an α1—>3 linkage to the appropriate acceptor GlcNAc residues, the GDP-Fuc: GlcNAc α1—>3 fucosyltransferase can be used. This enzyme has been described by Johnson and Watkins in Proc. VIIIth Int. Symp. Glycoconjugates (1985), eds. E.A. Davidson, J.C. Williams and N.M. Di Ferrante.
E. Targeting of glycosylated proteins to specific cells
Cells with sugar-specific cell surface receptors are able to recognize and internalize glycoproteins bearing appropriate carbohydrate structures. The best characterized sugar-specific cell surface receptors are the Gal receptor of hepatocytes, the Man/GlcNAc receptor of reticulo-endothelial cells and the fucose receptor found on hepatocytes, lymphocytes and teratocarcinoma cells. The subject of sugar-specific cell surface receptors has been reviewed by Neufeld and Ashwell in The Biochemistry of Glycoproteins and Proteoglycans, edited by Lennarz, Plenum Press, New York (1980), pp. 241-266.
Proteins can be targeted to cells with sugar-specific cell surface receptors by generating glycoproteins that contain the appropriate sugar at nonreducing terminal positions. Several procedures are used to expose the desired terminal sugars. One procedure, in general, involves the treatment of a native glycoprotein with exoglycosidases, as described by Ashwell and Morel! in Adv. Enzymol . 41, 99-128 (1974). Another procedure is the attachment of monosaccharides to the protein, as described by Stahl et al . in Proc. Natl. Acad. Sci. USA 75, 1399-1403 (1978). A third approach is the attachment of derivatives of ol igosacchari des i so lated from natura l sources such as ovalbumin , as reported by Yan and Wold in Biochemistry 23, 3759-3765 (1984). The glycosylated proteins that are the subject of the present invention can be targeted to specific cells, depending on the specific sugars attached.
Gal-->GlcNAc-protein,
Gal-->GlcNAc-->G1 cNAc-protein,
(Gal-->GlcNAc)n-->Gal-->GlcNAc-protein and
(Gal-->GlcNAc)n-->Gal-->GlcNAc-->GlcNAc-protein, where n is 1-10, are directed to hepatocytes.
GlcNAc-protein,
GlcNAc-->GlcNAc-protein,
(GlcNAc-->Gal)n -->GlcNAc-protein and
(Gl cNAc-->Gal )n-->Gl cNAc-->Gl cNAc-protein, where n i s 1-10, are targeted to macrophages . Fi nal ly ,
Gal--> (Fuc--> )GlcNAc-protein,
Gal --> ( Fuc--> ) Gl cNAc-->Gl cNAc-protei n ,
Gal -->(Fuc--> )Gl cNAc-->[Gal--> (Fuc --> )m Gl cNAc]n -Drotei n , and
Gal--> ( Fuc --> ) Gl cNAc-->[Gal --> ( Fuc--> )m Gl cNAc]n-->Gl cNAc-protei n, where n is 1-10 and m is 0 or 1, are targeted to hepatocytes, lymphocytes and teratocarcinoma cells. One application of targeting is for enzyme replacement therapy. For example, glucocerebrosidase can be targeted to macrophages for the treatment of Gaucher's disease. A second application is to target drugs or toxins to teratocarcinoma cells.
The following non-limiting example demonstrates the method of the present invention on a yeast glycoprotein possessing multiple high-mannose and mannan oligosaccharides.
Step 1. Endo H treatment of yeast external invertase.
Yeast external invertase is a glycoprotein containing approximately two high mannose and seven mannan oligosaccharides. External invertase of a commercial preparation from Saccharomyces cerevisiae, obtained from Sigma Chem. Corp, St. Louis MO, was purified as described by Trimble and Maley in J. Biol . Chem. 252, 4409-12 (1977), and treated with Endo H essentially as described by Trimble et al. in J. Biol. Chem. 258, 2562-67 (1983). The purified invertase was denatured by placing a 1% SDS solution of the glycoprotein in a boiling water bath for 5 minutes. The denatured invertase (250 μg) was then incubated with Endo H (C.3 μg, from Miles Scientific, Naperville ID for 20 hours at 37°C in 175 ul of 0.1 M sodium citrate buffer, pH 5.5. After Endo H treatment, the reaction mixture was desalted on a Bio-Gel P-4 column (1 x 10 cm) equilibrated and eluted with 50 mM ammonium acetate, pH 6.5. The method of desalting is not critical. Dialysis or protein precipitation can also be used. The material eluting in the void volume of the column was pooled and lyophilized.
Analysis of the Endo H-treated preparation of SDS-denatured invertase by SDS-PAGE, shown in Fig. 3c, indicated that the glycoprotein had been converted to a form consistent with an invertase possessing only a single GlcNAc residue at each glycosylation site.
In a parallel experiment, native invertase was treated with Endo H in the same manner as the SDS-denatured invertase. Analysis of the desalted reaction product by SDS-PAGE, shown in Fig. 3b, indicated that 2-3 oligosaccharide chains of native invertase were resistant to cleavage by Endo H. To remove exposed mannose residues on the resistant chains, 250 μg Endo H-treated invertase was desalted, lyophilized, and incubated in 100 μl of 50 mM sodium acetate, pH 5.C, containing 50 mM NaCl, 4 mM ZnCl2, and 20 mU of jack bean α-mannosidase (a gift from Dr. R. Trimble at State University of New York, Albany NY) for 17 hours at 37°C. Analysis of the reaction mixture by SDS-PAGE, shown in Fig. 3d, demonstrated through a shift to lower molecular weight that the α-mannosidase treatment removed additional mannose residues.
Step 2. Galactosylation of the Endo H-treated samples of native and denatured yeast external invertase.
An Endo H-treated sample of denatured yeast external invertase [85 μg, containing approximately 15 nmol of GlcNAc-->Asn( protein) sites] was incubated at 37ºC in 180 μl of 50 mM 2-(N-morphol ino)ethanesulfonic acid (MES), pH 6.3, containing 0.8% Triton X-100, 25 mM MnCl2,
1.25 mM UDP-C H]Gal (specific activity, 8 Ci/mol) and bovine milk
UDP-Gal : GlcNAc β1-->4 galactosyltransferase (100 mU, Sigma Chem. Corp., St. Louis MO). Aliquots were removed at selected times and analyzed by SDS-PAGE, as shown in Fig. 4. A gradual increase in apparent molecular weight was apparent up to a reaction time of one hour. This result was confirmed by measuring the incorporation of tritium into material precipitable by 0.5 M HCl/1% phosphotungstic acid, which gave the result shown in Fig. 5.
Nonradiolabeled galactosylated samples of native and denatured yeast external invertase were prepared as substrates for the sialylation reaction. Endo H-treated denatured invertase and Endo H plus α-mannosidase- treated native invertase were galactosylated with nonradioactive UDP-Gal using the procedures described above.
Step 3. Sialylation of the galactosylated samples of native and denatured yeast external invertase.
The native and denatured samples of nonradioactive galactosylated yeast external invertase (50 μg of protein) were incubated at 37ºC for 17 hours in 70 μl of 0.1 M Tris-maleate, pH 6.7, containing 0.7 % Triton X-100, 2 mM CMP-[14C]NeuAc (specific activity, 1.1 Ci/mmol) and bovine colostrum CMP-SA:Galβ1-->4GlcNAc-R α2--->6 sialyltransferase [1.1 mU, purified according to Paulson et al. in J. Biol. Chem. 252, 2356-2362 (1977)]. The reaction mixtures were analyzed by SDS-PAGE and autoradiography, as shown in Fig. 6. The radioactivity associated with the invertase band demonstrates that sialic acid has been attached to the galactose residues of the invertase by the α2-->6 sialyltransferase.
The following non-limiting example demonstrates the method of the present invention using chemical and enzymatic techniques on a protein that is not glycosylated in its native form.
Step 1. Chemical attachment of a thioglycoside derivative of GlcNAc to bovine serum albumin (BSA).
BSA was derivatized by treatment with 2-imino-2-methoxyethyl-1-thio-N-acetylglucosaminide by Dr. R. Schnaar at Johns Hopkins University according to the procedure described by Lee et al. in Biochemistry 15, 3956-63 (1976). The glycosylated BSA contained, on the average, 48 lysine-linked GlcNAc residues per molecule.
Step 2. Galactosylation of GlcNAc48-BSA.
GlcNAc48-BSA (0.9 mg) was incubated at 37°C for 17 hours in 600 μl of 0.12 M MFS, pH 6.3, containing 0.6% Triton X-100, 20 mM MnCl2, 5 mM
UDP-[3 H]Gal (specific activity, 1 Ci/mol), 1 mM galactono-1,4-lactone,
1 mM phenylmethanesulfonyl fluoride, TPCK (21 μg), aprotinin (12 μTIU), leupeptin (0.6 μg), oepstatin (0.6 μg) and bovine milk UDP-Gal:GlcNAc-R β1-->4 galactosyltransferase. The glycosylated BSA was partially purified from other reaction components by Bio-Gel P-4 gel filtration. After measurement of the amount of radioactivity incorporated into the BSA, it was calculated that 46% of the available GlcNAc residues were galactosylated. A second incubation of tne gal actosylated BSA under identical conditions increased the extent of reaction from 46 to 51%. The galactosylated BSA was Durified with an anti-BSA antibody column obtained from Cooper Biomedical, Malvern PA.
Step 3. Sialylation of galactosylated BSA.
The galactosylated BSA (240 μg) was incubated for 16 hours at 37°C in 120 μl of 0.1 M Tris-maleate, pH 6.7, containing 3 mM CMP-[14 C]NeuAc (specific activity 0.55 Ci/mol) and bovine colostrum CMP-SA: Galβ1-->4GlcNAc-R α2-->6 sialyltransferase (2.1 mU). The glycosylated BSA was partially purified from other reaction components by gel filtration. After measurement of the ratio of 14C to 3H radioactivity incorporated into the samples, it was calculated that 42% of the Gal-->GlcNAc-->protein residues were sialylated. A second incubation of the sialylated BSA with 25 mU of sialyltransferase increased the extent of sialylation to 51%. The glycoprotein was isolated by immunoaffinity chromatography on an anti-BSA antibody column. Analysis of the three glycosylated forms of BSA by SDS-PAGE demonstrated a significant increase in apparent molecular weight after each step of the procedure, as shown in Fig. 7. This evidence confirms that SA-->Gal-->GlcNAc--> moieties have been constructed on the protein.
The following nonlimiting example demonstrates the differential uptake of GlcNAc-BSA and Galβ1-->4GlcNAc-BSA by GlcNAc/Man-specific receptors of macrophages.
Mouse peritoneal macrophages, which possess cell surface receptors that recognize terminal GlcNAc and Man residues, were obtained from mice 4-5 days after intraperitoneal injection of thioglycollate broth (1.5 ml per mouse). The peritoneal cells were washed with Dulbecco's modified minimal essential medium (DME) containing 10% fetal calf serum (FCS) and plated in 96-well tissue culture trays at a density of 2 x 105 cells per well. After 4 hours the wells were washed twice with phosphate-buffered saline (PBS) to remove nonadherent cells. The adherent cells remaining in the wells were used for uptake experiments with GlcNAc-[125I]BSA and Galβ1-->4GlcNAc-[125I]BSA which had been radiolabeled with 125I by the chloramine T method. The radiolabeled protein preparations were added at a concentration of 0.1-1.2 μg/ml to 100 μl of DME containing 10% FCS and 10 mM HEPES [4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid], pH 7.4. Parallel experiments were run in the presence of yeast mannan (1 mg/ml ) to measure nonspecific uptake of the glycosylated BSA samples. The cells were incubated with the samples for 30 min at 37°C and then washed five times with PBS to remove residual protein not taken up by the cells. The washed cells were dissolved in 200 μl of 1% SDS and the radioactivity determined. Nonspecific uptake (CPM in the presence of yeast mannan) was subtracted from the total uptake (CPM in the absence of yeast mannan) to determine Man/GlcNAc receptor-specific uptake by the mouse peritoneal macrophages.
The specific uptake of GlcNAc-[125I]BSA and Galβ1-->4GlcNAc-[125I]BSA is presented as a function of ESA concentration in Fig. 8.
The results demonstrate that GlcNAc-BSA, Dut not GalB1-->4GlcNAc-BSA, is recognized and endocytosed by mouse peritoneal macrophages. The following non-limiting example demonstrates the differential uptake of Galβ1-->4GlcNAc-BSA and SAα2-->6Galβ1-->4GlcNAc-BSA by galactose-specific receptors of hepatoma cell line HepG2.
Samples of GlcNAc-BSA and Gal-->GlcNAc-BSA were radiolabeled with 125I by the chloramine T method. HepG2 cells were cultured in DME containing 10% fetal calf serum. Uptake experiments were performed on cells plated in 35 mm tissue culture dishes at approximately 70% confluency. The cells were washed with protein-free medium and incubated with 1 ml of DME containing 20 mM HEPES, pH 7.3, containing cytochrome c (0.2 mg/ml ) and 0.5-7.5 μg of Galβ1-->4GlcNAc-[125I]BSA or SAα2-->6Galβ1-->4GlcNAc-[125I]BSA. Parallel experiments were performed in the presence of nonradioactive asialo-orosomucoid (0.2 mg/ml) to determine nonspecific uptake. The cells were incubated with the radiolabeled protein solutions for 2.5 hours at 37°C in a 5% CO2 atmosphere, and then rinsed five times with chilled PBS containing 1.7 mM Ca++. The washed cells were solubilized with 1 ml of 1 M NaOH/10% SDS. Separate aliquots were used to measure radioactivity and the amount of protein per culture dish. It is assumed that the amount of protein in each dish is proportional to the number of cells. Non-specific uptake (CPM in tne presence of asialo-orosomucoid) was subtracted from the total uptake (CPM in the absence of asialoorosomucoid) to determine the galactose receptor-specific uptake by the HepG2 cells.
The galactose receptor-specific uptake is shown as a function of glycosylated BSA concentration in Fig. 9. The results demonstrate that Galβ1-->4GlcNAc-BSA, but not SAα2— >6Galβ1-->4GlcNAc-BSA, is recognized and endocytosed by HepG2 cells.
The following non-limiting example demonstrates the method of the present invention on a mammalian glycoprotein having one oligosaccharide chain of the high-mannose type.
Step 1. Deglycosylation of ribonuclease B, a glycoprotein having a single high-mannose oligosaccharide.
Native ribonuclease B (490 μg), obtained from Sigma Chem. Corp., St. Louis MO, and further purified by concanavalin A affinity chromatography as described by Baynes and Wold in J. Biol. Chem. 251, 6016-24 (1976) was incubated with Endo H (50 mU, obtained from Genzyme Corp., Boston MA) in 100 μl of 50 mM sodium acetate, pH 5.5, for 24 hours at 37°C. SDS-PAGE indicated complete conversion of the giycoprotein to a form containing a single GlcNAc residue. The modified ribonuclease B was desalted on a Bio-Gel P6DG column and the ribonuclease fractions were freeze-dried.
Step 2. Galactosylation of Endo H-treated ribonuclease B.
Endo H-treated ribonuclease B (400 μg) was incubated for 3 hours at 37° in 250 μl of 0.1 M MES, pH 6.3, containing 0.1% Triton X-100, 0.01 M MnCl2, 100 mU bovine milk UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase and 300 nmol UDP-[3H]Ga! (specific activity 17.3 Ci/mmol). The ga! actosyl ated ribonuclease was analyzed by FPLC on a Mono S column. A linear gradient from 20 mM sodium phosphate, pH 7.95 to 20 mM sodium phosphate containing 1 M NaCl was run. The galactosyl ated ribonuclease eluted at a NaCl concentration of 0.13 M. The protein peak measured by UV absorbance (A280) coincided with a peak of radioactivity, as shown in Fig. 10 ( o ----o ). The protein peak eluting at 0.13 M NaCl was collected and analyzed by SDS-PAGE. The only protein band detected after staining with Coomassie blue co-migrated with Endo H-treated ribonuclease B (not shown).
Step 3. Sialylation of gal actosylated ribonuclease.
A 40 μl aliquot of the reaction mixture from Step 2 was mixed with 10 μl of 6.5 mM CMP-NeuAc and 10 ul of rat liver CMP-NeuAc :Gal-R α2-->6 sialyltransferase (1.6 mU, obtained from Genzyme Corp., Boston MA) and incubated at 37°C for 18 hours. The sialylated ribonuclease was analyzed by FPLC on a Mono S column using the conditions described in Step 2. The sialylated ribonuclease eluted at a NaCl concentration of 0.18 M, as judged by the profiles of both A280 and radioactivity. The profile of radioactivity is shown in Fig 10, (Δ—Δ). The conversion of Gal-->GlcNAc-RNAse to SA-->Gal-->RNAse appeared to be quantitative. Al though this invention has been described with reference to specific embodiments, it is understood that modifications and variations of the methods for modifying or glycosylating proteins, and the glycosylated proteins, may occur to those skilled in the art. It is intended that all such modifications and variations be included within the scope of the appended claims.
Table I. Oligosaccharide Specificities of Endo-β-N-acetylglucosaminidases
Enzyme and Susceptible N-linked oligosaccharides (Ref.) Source
Endo H Yeast mannans, all high-mannose oligosac(1,2)
(Streptomyces charides, and hybrid oligosaccharides. plicams) (The enzyme requires an α1-->3-linked mannose residue attached to the α1-->6 mannose residue of the Man3G!cNAc2 core and we have found that the enzyme is not inhibited by an α1-->6 linked fucose attached to the innermost GlcNAc residue.)
Endo CII Certain high-mannose oligosaccharides. (3)
(Clostridium (Similar to Endo H except that it will not perfringens) cleave substrates if the mannose linked α1-->3 to the β-linked mannose is substituted at C-4 with another sugar or if the β-linked mannose residue is substituted with a β1-->4- linked GlcNAc residue.)
Endo D Man3-5GlcNAc2, with or without a fucose (4)
(Diplococcus residue linked a1-->6 to the innermost pneumoniae) GlcNAc residue
Endo L ManGlcNAc, (5)
(S. plicatus)
Endo F High-mannose and biantennary complex (6)
(Flavobacterium oligosaccharides meningosepticum)
References:
1. Tarentino et al., Meth. Enzymol. 50, 574-580 (1978).
2. Tai and KoData, Biocnem . Biopnys. Res. Commun. 78, 434-441 (1977)
3. Kobata, Meth. Enzymol. 50, 567-574 (1978). 4. Muramats , Meth. Enzymol. 50 , 555-559 (1978). 5. Trimble et al., J. Biol Chem. 254, 9708-13 (1979). 6. Plummer et al., J. Biol. Chem. 259, 10700-4 (1984)

Claims

We claim:
1. A method for modifying a giycoprotein comprising: attaching a gal actose residue to a core N-acetyl gl ucosamine to form a Gal-GlcNAc sequence; and attaching a sial ic acid residue to the galactose to form a SA- Gal -GlcNAc sequence.
2. The method of cl aim 1 further comprising fi rst cleaving asparagine-1 inked ol igosaccharide chai ns of the giycoprotein to remove all sugars other than core N-acetyl gl ucosamine residues bound to the giycoprotein.
3. The method of claim 2 wherein the ol igosaccharide chains are cleaved by an endoglycosidase.
4. The method of cl aim 3 wherein the endoglycosidase is sel ected from the group consisting of endo-β-N-acetyl gl ucosaminidase H, endo-β-N-acetyl glucosaminidase F, endo-β-N-acetyl gl ucosaminidase CII, endo-β- N-acetylglucosaminidase D, endo-β-N-acetylgl ucosaminidase L, and combinations thereof.
5. The method of claim 4 further comprising cleaving 0-1 inked ol igosaccharide chains with an enzyme selected from the group consisting of α-mannosidase, endo-α-N-acetyl gal actosaminidase, and combinations thereof.
6. The method of cl aim 1 further comprising cleaving 0-1 inked ol igosaccharide chains with an enzyme selected from the group consisting of α-mannosidase, eπdo-α-N-acetyl gal actosaminidase, and combinations thereof.
7. The method of claim 2 wherein the oligosaccharide chain is cleaved by digestion with an exoglycosidase.
8. The method of claim 7 wherein the exoglycosidase is selected from the group consisting of sialidase, α-mannosidase, β-mannosidase, α-galactosidase, β-galactosidase, α-fucosidase, β-hexosaminidase, and combi nati ons thereof.
9. The method of claim 8 wherein the oligosaccharide chains are sequentially cleaved by:
1) digesting the glycoprotein with α-mannosidase to remove α-mannose residues;
2) digesting the product of step 1) with β-mannosidase to remove β-mannose residues.
10. The method of claim 9 further comprising digesting the glycoprotein with an additional enzyme selected from the group consisting of exoglycosidases and phosphatases.
11. The method of claim 10 wherein the product of step 2 is digested with β-hexosaminidase.
12. The method of claim 2 wherein the oligosaccharide chains are cleaved by sequentially digesting the giycoprotein first with an exoglycosidase and secondly with an endoglycosidase.
13. The method of claim 12 wherein the oligosaccharide chains are cleaved by
1) digesting the glycoprotein with α-mannosidase to remove α-mannose residues; and
2) digesting the product of step 1) with an endoglycosidase selected from the group consisting of endo-β-N-acetylglucosaminidase L and endo-β-N-acetylglucosaminidase D.
14. The method of claim 12 for modifying glycoproteins wherein the oligosaccharide chains are cleaved by digesting the glycoprotein with an enzyme selected from the group consisting of sialidase, α-galactosidase, β-galactosidase, β-hexosaminidase, α-fucosidase, and combinations thereof followed by digestion with an enzyme selected from the group consisting of endo-β-N-acetyl glucosaminidase D and endo-β-N-acetylglucosaminidase F.
15. The method of claim 2 further comprising cleaving high-mannose oligosaccharide chains with α-mannosidase to remove mannose residues.
16. The method of claim 2 wherein the oligosaccharide chains are cleaved by chemical treatment.
17. The method of claim 16 wherein the oligosaccharide chains are cleaved with a compound selected from the group consisting of trifluoromethane sulfonic acid and hydrofluoric acid.
18. The method of claim 1 further comprising first producing the glycoproteins in cells in the presence of a glycosidase inhibitor.
19. The method of claim 18 wherein the glycosidase inhibitor is selected from the group consisting of deoxymannojirimycin, swainsonine, castanospermine and deoxynojirimycin.
20. The method of claim 1 further comprising first producing the glycoprotein in cells with one or more mutations in the oligosaccharide processing pathway.
21. A method for modifying proteins comprising: derivatizing amino acids on the protein with a glycoside or thioglycoside S-X, wherein S is a first saccharide selected from the group consisting of N-acetylglucosamine and galactose and X is an aglycone, and enzymatically attaching a second saccharide selected from the group consisting of galactose, N-acetylglucosamine, fucose, and sialic acid.
22. The method of claim 21 wherein said aglycone comprises an activation group selected from the group consisting of an activated carboxylic acid; a free amino group; an electrophilic site; and a diazo grouping.
23. The method of claim 21 comprising reacting a glycoside or thioglycosid having an aglycone containing an activated carboxylic acid with a amino acid of the protein selected from the group consisting of lysine, arginine, histidine, the amino-terminal amino acid of the protein; and other amino acids containing free amino groups.
24. The method of claim 21 comprising reacting a glycoside or thioglycoside having an aglycone containing a free amino group with an amino acid of the protein selected from the group consisting of glutamic acid, aspartic acid, the carboxy-terminal amino acid of the protein, and other amino acids containing free carboxy! groups.
25. The method of claim 21 comprising reacting a glycoside or thioglycoside having an aglycone containing an electrophilic site with an amino acid of the protein selected from the group consisting of cysteine and other amino acids containing free sulfhydryl groups.
26. The method of claim 21 comprising reacting a glycoside or thioglycoside having an aglycone containing a free amino group with an amino acid of the protein selected from the group consisting of hydroxyproline, serine, threonine, and other amino acids with free hydroxy! groups.
27. The method of claim 21 comprising reacting a glycoside or thioglycoside having an aglycone containing a diazo grouping with an amino acid of the protein selected from the group consisting of phenylalanine, tyrosine, tryptophan, and other aromatic amino acids.
28. The method of claim 22 comprising reacting a glycoside or thioglycoside having an aglycone containing a free amino group with glutamine using a transglutaminase.
29. The method of claim 21, wherein the first saccharide is GlcNAc, and wherein said enzymatic attachment comprises: attaching a galactose residue to the N-acetylglucosamine to form a Gal -GlcNAc—> sequence; and attaching a sialic acid residue to the galactose to form a SA-Gal -GlcNAc—> sequence.
30. The method of claim 21, wherein the first saccharide is galactose, and wherein said enzymatic attachment comprises: attaching a sialic acid residue to the galactose to form a SA-Gal sequence.
31. The method of claim 1 or 29 wherein the galactose residue is attached to the N-acetylglucosamine residue by a galactosyltransferase.
32. The method of claim 31 wherein the gal actosyltransferase is selected from the group consisting of UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase and UDP-Gal :GlcNAc-R β1-->3 galactosyltransferase.
33. The method of claim 1 or 29 wherein the galactose is attached to the N-acetylglucosamine by:
1) incubating UDP-Gal :GlcNAc-R β1-->4 galactosyltransferase with the derivatized protein to attach a terminal galactose to the GlcNAc;
2) incubating the product of step 1 with UDP-GlcNAc:-Galβ1-->4GlcNAc-R β1-->3 N-acetylglucosaminyltransferase to attach a terminal GlcNAc to the terminal galactose;
3) incubating the product of step 2 with UDP-Gal : GlcNAc -R1-->4 galactosyltransferase to attach a terminal galactose to the terminal GlcNAc; and
4) repeating steps 2 and 3 until an oligosaccharide chain (Galβ1-->4GlcNAcβ1-->3) units, wherein n is between 1 and 10, is produced.
34. The method of claim 1 or 29 or 33 further comprising attaching fucose to a Gal-->GlcNAc--> sequence.
35. The method of claim 34 wherein the fucose is attached to the Gal-GlcNAc--> sequence with GDP-Fuc: GlcNAc α1-->3 fucosyltransferase.
36. The method of claim 1 or 29 further comprising attaching the galactose residues to the N-acetylglucosamine in a solution containing a non-ionic detergent, a chaotropic agent, an organic solvent, urea, a protease inhibitor, an exoglycosidase inhibitor, a disulfide bond reducing agent, or a combination thereof.
37. The method of claim 1 wherein the sialic acid residue is attached to the Gal -GlcNAc sequence in an α linkage by a sialyltransferase.
38. The method of claim 37 wherein the sialyltransferase is selected from the group consisting of CMP-SA: Gal β1-->4GlcNAc-R β2-->6 sialyltransferase, CMP-SA:Galβ1-->3(4)GlcNAc α2-- >3 sialyltransferase, and CMP-SA:Galβ1-->4GlcNAc α2-->3 sialyltransferase
39. A method for targeting a protein to a cell having a specific surface receptor for a saccharide, said method comprising: attaching to the protein an oligosaccharide chain, said oligosaccharide chain having an exposed saccharide and a Gal-->GlcNAc sequence, wherein said exposed saccharide is recognized by the cell surface receptor and said oligosaccharide chain is attached to the protein with a Gal-->GlcNAc sequence.
40. The method of claim 39 wherein the oligosaccharide chain is a disaccharide consisting of Galβ1-- >4 GlcNAc.
41. The method of claim 39 wherein the oligosaccharide chain is a branched oligosaccharide selected from the group of Galβ1-->3(4)[Fucα1-->4(3)]GlcNAc, SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAc, Galβ1-->3(4)[Fucα1-->4(3)]GlcNAcβ1-->4GlcNAc, and SAα2-- >3Galβ1-->3(Fucα1-->4)GlcNAcβ1-->4GlcNAc.
42. A protein comprising an oligosaccharide sequence consisting of any of
Galβ1-->4GlcNAc-->;
Galβ1-->3GlcNAc-->:
SAα2-->6Gal β1-->4G1 cNAc--> ;
SAα2-->3Galβ1-->4GlcNAc—>;
SAα2-->3Galβ1--->3GlcNAc-->:
Gal β1-->4( Fucα1-->3 ) GlcNAc—> ;
Galβ1-->3(Fucα1-->4)GlcNAc-->;
SAα2-->3Galβ1-->3 (Fucα1—>4)GlcMAc—>;
Galβ1-->4GlcNAcβ1-->4GlcNAc—>;
Galβ1-->3G1 cNAcβ1-->4G1 cNAc—>;
SAα2-->6Galβ1-->4GlcNAcβ1—>4G! cNAc--> :
SAα2-->3Galβ1-->4Gl cNAcβ1—>4GlcNAc—> ;
SAα2-->3Galβ1-->3Gl cNAcβ1—>4GlcNAc-->:
Galβ1-->4(Fucα1-->3) GlcNAcβ1—>4G1 cNAc-- > ;
Galβ1-->3 (Fucα1-->4)GlcNAcβ1—>4GlcNAc-->;
SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAcβ1-->4GlcNAc-->;
[GlcNAcβ1-->3Galβ1-->4]nGιcNAc-->, wherein n is between 1 and 10; [GlcNAcβ1—>3Galβ1—>4]n GlcNAcβ1-->4GlcNAc-->, wherein n is between 1 and 10;
Galβ1-->4[GlcNAcβ1—>3Galβ1-->4]nGlcNAc-->, wherein n is between 1 and
10;
Galβ1-->3[GlcNAcβ1-- 3Galβ1-->4]nGlcNAc—>, wherein n is between 1 and
10:
SAα2-->6Galβ1—>4[GlcNAcβ1-->3Galβ1-->4]nGlcNAc-->, wherein n is between 1 and 10:
SAα2-->3Galβ1—>4[Gl cNAcβ1-->3Galβ1-->4]nGlcNAc-->, wherein n is between 1 and 10;
SAα2-->3Galβ1—>3[GlcNAcβ1-->3GalβI—>4]nGlcNAc—>, wherein n is between 1 and 10;
Galβ1-->4(Fucα1—>3)GlcNAcβ1-->3[Galβ1—>4(Fucα1-->3)mGlcNAcβ1-->3]n-
Galβ1-->4GlcNAc-->, wherein m is between 0 and 1, and n is between
1 and 10; Galβ1-->3(Fucα1-->4)Gl cNAcβ1-->3[Gal β1-->4(Fucα1-->3 )mGl cNAcβ1-- >3]n- Galβ1-->4GlcNAc-->, wherein m is between 0 and 1, and n is between 1 and 10;
SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAcβ1-->3[Galβ1-->4GlcNAcβ-->3]n- Galβ1-->4GlcNAc-->, wherein n is between 1 and 10;
Galβ1-->4[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1—>4GlcNAc—>, wherein n is between 1 and 10;
Galβ1-->3[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1-->4GlcNAc-->, wherein n is between 1 and 10; SAα2-->6Galβ1-->4[GlcNAcβ1-->3Galβ1-->4]nGlcNAcβ1-->4GlcNAc-->, wherein n is between 1 and 10; SAα2—>3Galβ1—>4[Gl cNAcβ1—>3Galβ1—>4]nG! cNAcβ1— >4GlcNAc—>, wherein n is between 1 and 10; SAα2-->3Galβ1-->3[GlcNAcβ1-->3Galβ1—>4]nGlcNAcβ1—>4GlcNAc—>, wherein n is between 1 and 10; Galβ1-->4(Fucα1-->3)GlcNAcβ1-->3[Galβ1-->4(Fucα1-->3)mGlcNAcβ1-->3]n- Galβ1-->4Gl cNAcβ1-->4GlcNAc-->, wherein m is oetween 0 and 1, and n is between 1 and 10; GaTβ1-->3(Fucα1-->4)GlcNAcβ1-->3[Galβ1-->4(Fucα1-->3)m GlcNAcβ1-->3]n- Galβ1—>4GlcNAcSi— 4GlcNAc-->, wherein m is between 0 and 1, and n is between 1 and 10; SAα2-->3Galβ1-->3(Fucα1-->4)GlcNAcβ1-->3 [Galβ1-->4GlcNAcβ-->3]n- Galβ1—>4GlcNAcβ1-->4GlcNAc-->, wherein n is between 1 and 10;
43. A protein comprising an ol igosaccnaride sequence consisting of any of:
(GlcNAcβ1-->3Galβ1-->4)nGlcNAcβ1-->3Gal-->, wherein n is between 1 and 10; SAα2-->6Gal-->;
SAα2—>6Galβ1-->4(GlcNAcβ1-->3Galβ1-->4)nGlcNAcβ1-->3Gal, wherein n is between 1 and 10; SAα2-->3Gal-->; and
SAα2-->3Galβ1-->4(Gl cNAcβ1-->3Galβ1-->4)nGlcNAcβ1-->3Gal-->, wherein n is between 1 and 10.
44. A glycosylated protein comprising Gal-GlcNAc-protein, wherein the Gal is attached to the GlcNAc by an enzyme selected from the group consisting of UDP-Gal :GlcNAc-R β1-- >4 gal actosyltransferase and UDP-Gal :GlcNAc-R β1-- >3 gal actosyltransferase.
45. A glycosylated protein comprising SA-Gal -GlcNAc-protein, wherein the SA is attached to the Gal by an enzyme selected from the group consisting of CMP-SA:Galβ1-- >4GlcNAc-R α2-->6 sialyltransferase; CMP-SA:Galβ1-->3(4)GlcNAc-R α2-->3 sialyltransferase; and CMP-SA:-Galβ1-->4GlcNAc-R α2-->3 sialyltransferase.
EP19860902150 1986-03-07 1986-03-07 Method for enhancing glycoprotein stability. Ceased EP0272253A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1986/000495 WO1987005330A1 (en) 1986-03-07 1986-03-07 Method for enhancing glycoprotein stability

Publications (2)

Publication Number Publication Date
EP0272253A1 EP0272253A1 (en) 1988-06-29
EP0272253A4 true EP0272253A4 (en) 1990-02-05

Family

ID=22195409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860902150 Ceased EP0272253A4 (en) 1986-03-07 1986-03-07 Method for enhancing glycoprotein stability.

Country Status (5)

Country Link
EP (1) EP0272253A4 (en)
JP (1) JPS63502716A (en)
AU (2) AU597574B2 (en)
DK (1) DK583087D0 (en)
WO (1) WO1987005330A1 (en)

Families Citing this family (551)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911912A (en) * 1985-12-20 1990-03-27 Sanofi Ribosome-inactivating glycoproteins, modified by oxidation of their osidic units and reduction, and in vivo prolonged-action immunotoxins containing such a glycoprotein
WO1989007641A1 (en) * 1988-02-10 1989-08-24 Genzyme Corporation Enhancement of the therapeutic properties of glycoprotein
DE3927801A1 (en) * 1989-08-23 1991-02-28 Hoechst Ag PROCESS FOR ENZYMATIC SYNTHESIS OF GALACTOSYLATED GLYCOPROTEIN COMPONENTS
EP0642526B1 (en) 1991-10-15 1998-12-23 The Scripps Research Institute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of gdp-fucose
US6319695B1 (en) * 1991-10-15 2001-11-20 The Scripps Research Insitute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of GDP-fucose
US5877016A (en) 1994-03-18 1999-03-02 Genentech, Inc. Human trk receptors and neurotrophic factor inhibitors
US5708142A (en) 1994-05-27 1998-01-13 Genentech, Inc. Tumor necrosis factor receptor-associated factors
DE4423131A1 (en) * 1994-07-01 1996-01-04 Bayer Ag New hIL-4 mutant proteins as antagonists or partial agonists of human interleukin 4
SK284191B6 (en) 1995-02-24 2004-10-05 Genentech, Inc. Human DNASE I variants
US7005505B1 (en) 1995-08-25 2006-02-28 Genentech, Inc. Variants of vascular endothelial cell growth factor
US6020473A (en) * 1995-08-25 2000-02-01 Genentech, Inc. Nucleic acids encoding variants of vascular endothelial cell growth factor
US6030945A (en) * 1996-01-09 2000-02-29 Genentech, Inc. Apo-2 ligand
US6998116B1 (en) 1996-01-09 2006-02-14 Genentech, Inc. Apo-2 ligand
US6469144B1 (en) 1996-04-01 2002-10-22 Genentech, Inc. Apo-2LI and Apo-3 polypeptides
US5851984A (en) * 1996-08-16 1998-12-22 Genentech, Inc. Method of enhancing proliferation or differentiation of hematopoietic stem cells using Wnt polypeptides
US6159462A (en) * 1996-08-16 2000-12-12 Genentech, Inc. Uses of Wnt polypeptides
US6462176B1 (en) 1996-09-23 2002-10-08 Genentech, Inc. Apo-3 polypeptide
US5990281A (en) * 1996-09-30 1999-11-23 Genentech, Inc. Vertebrate smoothened proteins
US6136958A (en) * 1996-09-30 2000-10-24 Genentech, Inc. Antibodies to vertebrate smoothened proteins
ATE356212T1 (en) 1997-01-31 2007-03-15 Genentech Inc O-FUKOSYL TRANSFERASE
US6342369B1 (en) 1997-05-15 2002-01-29 Genentech, Inc. Apo-2-receptor
CA2293724C (en) 1997-06-05 2010-02-02 Xiaodong Wang Apaf-1, the ced-4 human homolog, an activator of caspase-3
EP2083079A1 (en) 1997-06-18 2009-07-29 Genentech, Inc. Apo-2DcR
CA2382506A1 (en) 1997-09-17 1999-03-25 Genentech, Inc. Novel polypeptides and nucleic acids encoding pro293 which are useful for treating disorders of the pancreas
WO1999014330A1 (en) 1997-09-18 1999-03-25 Genentech, Inc. DcR3 POLYPEPTIDE, A TNFR HOMOLOG
IL135051A0 (en) 1997-10-10 2001-05-20 Genentech Inc Apo-3 ligand polypeptide
EP2033970A3 (en) 1997-10-29 2009-06-17 Genentech, Inc. Polypeptides and nucleic acids encoding the same
US6387657B1 (en) 1997-10-29 2002-05-14 Genentech, Inc. WISP polypeptides and nucleic acids encoding same
US7192589B2 (en) 1998-09-16 2007-03-20 Genentech, Inc. Treatment of inflammatory disorders with STIgMA immunoadhesins
EP2014677A1 (en) 1997-11-21 2009-01-14 Genentech, Inc. A-33 related antigens and their pharmacological uses
DK1045906T3 (en) 1998-01-15 2009-02-16 Genentech Inc APO-2 ligand
US6727079B1 (en) 1998-02-25 2004-04-27 The United States Of America As Represented By The Department Of Health And Human Services cDNA encoding a gene BOG (B5T Over-expressed Gene) and its protein product
NZ525914A (en) 1998-03-10 2004-03-26 Genentech Inc Novel polypeptides and nucleic acids encoding the same
ES2389387T3 (en) 1998-03-17 2012-10-25 Genentech, Inc. Homologous VEGF and BMP1 polypeptides
EP2333069A3 (en) 1998-05-15 2011-09-14 Genentech, Inc. Therapeutic uses of IL-17 homologous polypeptides
EP3112468A1 (en) 1998-05-15 2017-01-04 Genentech, Inc. Il-17 homologous polypeptides and therapeutic uses thereof
EP1865061A3 (en) 1998-05-15 2007-12-19 Genentech, Inc. IL-17 homologous polypeptides and therapeutic uses thereof
US20020172678A1 (en) 2000-06-23 2002-11-21 Napoleone Ferrara EG-VEGF nucleic acids and polypeptides and methods of use
EP2075335A3 (en) 1998-12-22 2009-09-30 Genentech, Inc. Methods and compositions for inhibiting neoplastic cell growth
JP5456222B2 (en) 1998-12-23 2014-03-26 ジェネンテック, インコーポレイテッド IL-1 related polypeptides
AU5152700A (en) 1999-06-15 2001-01-02 Genentech Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
CA2490853A1 (en) 1999-12-01 2001-06-07 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
DK1897945T3 (en) 1999-12-23 2012-05-07 Genentech Inc IL-17 homologous polypeptides and therapeutic uses thereof.
ES2327606T3 (en) 2000-01-10 2009-11-02 Maxygen Holdings Ltd CONJUGATES OF G-CSF.
ATE424457T1 (en) 2000-01-13 2009-03-15 Genentech Inc HUMAN STRA6 POLYPEPTIDES
ES2325877T3 (en) 2000-02-11 2009-09-23 Bayer Healthcare Llc FACTOR TYPE MOLECULES VII OR VIIA.
US7101974B2 (en) 2000-03-02 2006-09-05 Xencor TNF-αvariants
DK2042597T3 (en) 2000-06-23 2014-08-11 Genentech Inc COMPOSITIONS AND PROCEDURES FOR DIAGNOSIS AND TREATMENT OF DISEASES INVOLVING ANGIOGENESIS
CA2709771A1 (en) 2000-06-23 2002-01-03 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
DE60136281D1 (en) 2000-08-24 2008-12-04 Genentech Inc METHOD FOR INHIBITING IL-22-INDUCED PAP1
EP1944317A3 (en) 2000-09-01 2008-09-17 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US6576452B1 (en) 2000-10-04 2003-06-10 Genencor International, Inc. 2,5-diketo-L-gluconic acid reductases and methods of use
US6673580B2 (en) 2000-10-27 2004-01-06 Genentech, Inc. Identification and modification of immunodominant epitopes in polypeptides
US7892730B2 (en) 2000-12-22 2011-02-22 Sagres Discovery, Inc. Compositions and methods for cancer
US20030232334A1 (en) 2000-12-22 2003-12-18 Morris David W. Novel compositions and methods for cancer
US7645441B2 (en) 2000-12-22 2010-01-12 Sagres Discovery Inc. Compositions and methods in cancer associated with altered expression of PRLR
US7820447B2 (en) 2000-12-22 2010-10-26 Sagres Discovery Inc. Compositions and methods for cancer
US7700274B2 (en) 2000-12-22 2010-04-20 Sagres Discovery, Inc. Compositions and methods in cancer associated with altered expression of KCNJ9
WO2002074806A2 (en) 2001-02-27 2002-09-26 Maxygen Aps New interferon beta-like molecules
US20060270003A1 (en) 2003-07-08 2006-11-30 Genentech, Inc. IL-17A/F heterologous polypeptides and therapeutic uses thereof
US20070160576A1 (en) 2001-06-05 2007-07-12 Genentech, Inc. IL-17A/F heterologous polypeptides and therapeutic uses thereof
CA2633171C (en) 2001-06-20 2012-11-20 Genentech, Inc. Antibodies against tumor-associated antigenic target (tat) polypeptides
HU230373B1 (en) 2001-08-29 2016-03-29 Genentech Inc Bv8 nucleic acids and polypeptides with mitogenic activity
NZ573831A (en) 2001-09-18 2010-07-30 Genentech Inc Compositions and methods for the diagnosis and treatment of tumor, particularly breast tumor - TAT193
US7320789B2 (en) 2001-09-26 2008-01-22 Wyeth Antibody inhibitors of GDF-8 and uses thereof
US7265084B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US7125843B2 (en) 2001-10-19 2006-10-24 Neose Technologies, Inc. Glycoconjugates including more than one peptide
ES2606840T3 (en) * 2001-10-10 2017-03-28 Ratiopharm Gmbh Remodeling and glycoconjugation of granulocyte colony stimulating factor (G-CSF)
US7439043B2 (en) 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
US7173003B2 (en) 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US7226903B2 (en) 2001-10-10 2007-06-05 Neose Technologies, Inc. Interferon beta: remodeling and glycoconjugation of interferon beta
US7795210B2 (en) * 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
DK2279755T3 (en) 2001-10-10 2014-05-26 Ratiopharm Gmbh Remodeling and glycoconjugation of fibroblast growth factor (FGF)
US8008252B2 (en) 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
US7157277B2 (en) 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US7696163B2 (en) 2001-10-10 2010-04-13 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7179617B2 (en) 2001-10-10 2007-02-20 Neose Technologies, Inc. Factor IX: remolding and glycoconjugation of Factor IX
US7297511B2 (en) 2001-10-10 2007-11-20 Neose Technologies, Inc. Interferon alpha: remodeling and glycoconjugation of interferon alpha
US7399613B2 (en) 2001-10-10 2008-07-15 Neose Technologies, Inc. Sialic acid nucleotide sugars
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7473680B2 (en) 2001-11-28 2009-01-06 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
CA2468295C (en) 2001-11-28 2010-08-03 Neose Technologies, Inc. Glycoprotein remodeling using endoglycanases
NZ533933A (en) 2002-01-02 2008-06-30 Genentech Inc Compositions and methods for the diagnosis and treatment of glioma tumor
KR20040096592A (en) 2002-02-21 2004-11-16 와이어쓰 Follistatin domain containing proteins
EP1575480A4 (en) 2002-02-22 2008-08-06 Genentech Inc Compositions and methods for the treatment of immune related diseases
US7303896B2 (en) 2002-02-25 2007-12-04 Genentech, Inc. Nucleic acid encoding novel type-1 cytokine receptor GLM-R
US20040023267A1 (en) 2002-03-21 2004-02-05 Morris David W. Novel compositions and methods in cancer
CA2481507A1 (en) 2002-04-16 2003-10-30 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2305710A3 (en) 2002-06-03 2013-05-29 Genentech, Inc. Synthetic antibody phage libraries
AU2003243400B2 (en) 2002-06-07 2009-10-29 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
CA2489588A1 (en) 2002-07-08 2004-01-15 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
MXPA05001364A (en) 2002-08-02 2005-08-03 Wyeth Corp Mk2 interacting proteins.
EP1546316B1 (en) 2002-08-12 2010-12-01 Danisco US Inc. Mutant e. coli appa phytase enzymes and natural variants thereof, nucleic acids encoding such phytase enzymes, vectors and host cells incorporating same and methods of making and using same
EP2277532A1 (en) 2002-09-11 2011-01-26 Genentech, Inc. Novel composition and methods for the treatment of immune related diseases
AU2003276874B2 (en) 2002-09-11 2009-09-03 Genentech, Inc. Novel compositions and methods for the treatment of immune related diseases
CA2498274A1 (en) 2002-09-16 2004-03-25 Genentech, Inc. Compositions and methods for the diagnosis of immune related diseases using pro7
EP1585482A4 (en) 2002-09-25 2009-09-09 Genentech Inc Nouvelles compositions et methodes de traitement du psoriasis
WO2004039956A2 (en) 2002-10-29 2004-05-13 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
JP2006516094A (en) 2002-11-08 2006-06-22 ジェネンテック・インコーポレーテッド Compositions and methods for treatment of natural killer cell related diseases
EP2308968A1 (en) 2002-11-26 2011-04-13 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
TWI335920B (en) 2002-12-24 2011-01-11 Yasuhiro Kajihara Sugar chain asparagine derivatives, sugar chain asparagine and sugar chain and manufacture thereof
US7553930B2 (en) 2003-01-06 2009-06-30 Xencor, Inc. BAFF variants and methods thereof
US7767387B2 (en) 2003-06-13 2010-08-03 Sagres Discovery, Inc. Therapeutic targets in cancer
EP1592708A2 (en) 2003-02-14 2005-11-09 Sagres Discovery, Inc. Therapeutic gpcr targets in cancer
US20040170982A1 (en) 2003-02-14 2004-09-02 Morris David W. Novel therapeutic targets in cancer
FR2851471B1 (en) * 2003-02-24 2006-07-28 Synt Em COMPOUNDS COMPRISING AT LEAST ONE ACTIVE SUBSTANCE AND AT LEAST ONE VECTOR CONNECTED BY A BINDING AGENT, USES THEREOF AND THE BINDING AGENTS
KR101118340B1 (en) 2003-03-12 2012-04-12 제넨테크, 인크. Use of bv8 and/or eg-vegf to promote hematopoiesis
JP4914209B2 (en) 2003-03-14 2012-04-11 ワイス Antibody against human IL-21 receptor and use of the antibody
CA2519092C (en) 2003-03-14 2014-08-05 Neose Technologies, Inc. Branched water-soluble polymers and their conjugates
US7378503B2 (en) 2003-04-02 2008-05-27 Hoffmann-La Roche Inc. Antibodies against insulin-like growth factor 1 receptor and uses thereof
EP1613261A4 (en) 2003-04-09 2011-01-26 Novo Nordisk As Intracellular formation of peptide conjugates
US8791070B2 (en) 2003-04-09 2014-07-29 Novo Nordisk A/S Glycopegylated factor IX
WO2006127896A2 (en) 2005-05-25 2006-11-30 Neose Technologies, Inc. Glycopegylated factor ix
US20070026485A1 (en) 2003-04-09 2007-02-01 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US20050025763A1 (en) 2003-05-08 2005-02-03 Protein Design Laboratories, Inc. Therapeutic use of anti-CS1 antibodies
US7709610B2 (en) 2003-05-08 2010-05-04 Facet Biotech Corporation Therapeutic use of anti-CS1 antibodies
BRPI0410164A (en) 2003-05-09 2006-05-16 Neose Technologies Inc compositions and methods for preparing human growth hormone glycosylation mutants
UA101945C2 (en) 2003-05-30 2013-05-27 Дженентек, Инк. Treatment of cancer using bevacizumab
AR046071A1 (en) 2003-07-10 2005-11-23 Hoffmann La Roche ANTIBODIES AGAINST RECEIVER I OF THE INSULINAL TYPE GROWTH FACTOR AND THE USES OF THE SAME
WO2005012484A2 (en) 2003-07-25 2005-02-10 Neose Technologies, Inc. Antibody-toxin conjugates
WO2005019258A2 (en) 2003-08-11 2005-03-03 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
US8883147B2 (en) 2004-10-21 2014-11-11 Xencor, Inc. Immunoglobulins insertions, deletions, and substitutions
US8399618B2 (en) 2004-10-21 2013-03-19 Xencor, Inc. Immunoglobulin insertions, deletions, and substitutions
WO2005035564A2 (en) 2003-10-10 2005-04-21 Xencor, Inc. Protein based tnf-alpha variants for the treatment of tnf-alpha related disorders
PT2161283E (en) 2003-11-17 2014-08-29 Genentech Inc Compositions comprising antibodies against cd79b conjugated to a growth inhibitory agent or cytotoxic agent and methods for the treatment of tumor of hematopoietic origin
US20080305992A1 (en) 2003-11-24 2008-12-11 Neose Technologies, Inc. Glycopegylated erythropoietin
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
ES2445948T3 (en) 2003-11-24 2014-03-06 Ratiopharm Gmbh Glycopegylated Erythropoietin
US7956032B2 (en) 2003-12-03 2011-06-07 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
HUE026132T2 (en) 2004-01-07 2016-05-30 Novartis Vaccines & Diagnostics Inc M-csf-specific monoclonal antibody and uses thereof
ES2560657T3 (en) 2004-01-08 2016-02-22 Ratiopharm Gmbh O-linked glycosylation of G-CSF peptides
EP2067789A1 (en) 2004-04-13 2009-06-10 F. Hoffmann-La Roche Ag Anti-P selectin antibodies
CA2565414A1 (en) 2004-05-04 2005-11-24 Novo Nordisk Health Care Ag O-linked glycoforms of polypeptides and method to manufacture them
WO2006010143A2 (en) 2004-07-13 2006-01-26 Neose Technologies, Inc. Branched peg remodeling and glycosylation of glucagon-like peptide-1 [glp-1]
US20060024677A1 (en) 2004-07-20 2006-02-02 Morris David W Novel therapeutic targets in cancer
ES2339789T3 (en) 2004-07-20 2010-05-25 Genentech, Inc. PROTEIN 4 INHIBITORS OF ANGIOPOYETINE TYPE, COMBINATIONS AND ITS USE.
WO2006012627A2 (en) 2004-07-23 2006-02-02 Acceleron Pharma Inc. Actrii receptor polypeptides, methods and compositions
EP1799249A2 (en) 2004-09-10 2007-06-27 Neose Technologies, Inc. Glycopegylated interferon alpha
DK2586456T3 (en) 2004-10-29 2016-03-21 Ratiopharm Gmbh Conversion and glycopegylation of fibroblast growth factor (FGF)
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
WO2006053301A2 (en) 2004-11-12 2006-05-18 Xencor, Inc. Fc variants with altered binding to fcrn
JP2008521411A (en) 2004-11-30 2008-06-26 キュラジェン コーポレイション Antibodies against GPNMB and uses thereof
JP4951527B2 (en) 2005-01-10 2012-06-13 バイオジェネリックス アーゲー GlycoPEGylated granulocyte colony stimulating factor
AU2006214121B9 (en) 2005-02-15 2013-02-14 Duke University Anti-CD19 antibodies and uses in oncology
US9820986B2 (en) * 2005-03-04 2017-11-21 Taiwan Hopaz Chems, Mfg. Co., Ltd. Glycopeptide compositions
TW200720289A (en) 2005-04-01 2007-06-01 Hoffmann La Roche Antibodies against CCR5 and uses thereof
EP2083088A3 (en) 2005-04-07 2009-10-14 Novartis Vaccines and Diagnostics, Inc. Cancer-related genes
EP2062591A1 (en) 2005-04-07 2009-05-27 Novartis Vaccines and Diagnostics, Inc. CACNA1E in cancer diagnosis detection and treatment
US20070154992A1 (en) 2005-04-08 2007-07-05 Neose Technologies, Inc. Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
CA2607281C (en) 2005-05-05 2023-10-03 Duke University Anti-cd19 antibody therapy for autoimmune disease
EP1888098A2 (en) 2005-05-25 2008-02-20 Neose Technologies, Inc. Glycopegylated erythropoietin formulations
HUE030701T2 (en) 2005-05-27 2017-05-29 Biogen Ma Inc Tweak binding antibodies
US8389469B2 (en) 2005-06-06 2013-03-05 The Rockefeller University Bacteriophage lysins for Bacillus anthracis
NZ563341A (en) 2005-06-06 2009-10-30 Genentech Inc Methods for identifying agents that modulate a gene that encodes for a PRO1568 polypeptide
US7582291B2 (en) 2005-06-30 2009-09-01 The Rockefeller University Bacteriophage lysins for Enterococcus faecalis, Enterococcus faecium and other bacteria
AU2006280321A1 (en) 2005-08-15 2007-02-22 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
US20070105755A1 (en) 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
CN101297034A (en) 2005-08-24 2008-10-29 洛克菲勒大学 PLY-GBS mutant lysins
US20090048440A1 (en) 2005-11-03 2009-02-19 Neose Technologies, Inc. Nucleotide Sugar Purification Using Membranes
RS54111B1 (en) 2005-11-18 2015-12-31 Glenmark Pharmaceuticals S.A. Anti-alpha2 integrin antibodies and their uses
ZA200804162B (en) 2005-11-21 2009-12-30 Genentech Inc Novel gene disruptions, compositions and methods relating thereto
JP5261187B2 (en) 2005-11-23 2013-08-14 アクセルロン ファーマ, インコーポレイテッド Activin-ActRIIa antagonist and use for promoting bone growth
WO2007114979A2 (en) 2006-02-17 2007-10-11 Genentech, Inc. Gene disruptons, compositions and methods relating thereto
TWI417301B (en) 2006-02-21 2013-12-01 Wyeth Corp Antibodies against human il-22 and uses therefor
TW200744634A (en) 2006-02-21 2007-12-16 Wyeth Corp Methods of using antibodies against human IL-22
US8389688B2 (en) 2006-03-06 2013-03-05 Aeres Biomedical, Ltd. Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
JP2009529915A (en) 2006-03-20 2009-08-27 ゾーマ テクノロジー リミテッド Human antibodies and methods specific for gastrin substances
US7846724B2 (en) 2006-04-11 2010-12-07 Hoffmann-La Roche Inc. Method for selecting CHO cell for production of glycosylated antibodies
US20090288176A1 (en) 2006-04-19 2009-11-19 Genentech, Inc. Novel Gene Disruptions, Compositions and Methods Relating Thereto
TWI395754B (en) 2006-04-24 2013-05-11 Amgen Inc Humanized c-kit antibody
WO2008011633A2 (en) 2006-07-21 2008-01-24 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences
EP2057193B1 (en) 2006-08-04 2013-12-18 Novartis AG Ephb3-specific antibody and uses thereof
TWI454480B (en) 2006-08-18 2014-10-01 Novartis Ag Prlr-specific antibody and uses thereof
JP5502480B2 (en) 2006-09-18 2014-05-28 コンピュゲン エルティーディー. Biologically active peptides and methods of use thereof
BRPI0717512A2 (en) 2006-09-29 2013-11-19 Hoffmann La Roche CCR5 ANTIBODIES AND USES OF THE SAME
US7767206B2 (en) 2006-10-02 2010-08-03 Amgen Inc. Neutralizing determinants of IL-17 Receptor A and antibodies that bind thereto
US8969532B2 (en) 2006-10-03 2015-03-03 Novo Nordisk A/S Methods for the purification of polypeptide conjugates comprising polyalkylene oxide using hydrophobic interaction chromatography
SI2068907T1 (en) 2006-10-04 2018-01-31 Novo Nordisk A/S Glycerol linked pegylated sugars and glycopeptides
EP3284825B1 (en) 2006-11-02 2021-04-07 Biomolecular Holdings LLC Methods of producing hybrid polypeptides with moving parts
MX2009004718A (en) 2006-11-02 2009-06-19 Acceleron Pharma Inc Alk1 receptor and ligand antagonists and uses thereof.
WO2008070780A1 (en) 2006-12-07 2008-06-12 Novartis Ag Antagonist antibodies against ephb3
TWI548647B (en) 2007-02-02 2016-09-11 艾瑟勒朗法瑪公司 Variants derived from actriib and uses therefor
CN104548056B (en) 2007-02-09 2022-09-09 阿塞勒隆制药公司 activin-ACTRIIA antagonists and uses for promoting bone growth in cancer patients
WO2008103962A2 (en) 2007-02-22 2008-08-28 Genentech, Inc. Methods for detecting inflammatory bowel disease
CA2682897C (en) 2007-04-03 2016-11-22 Biogenerix Ag Methods of treatment using glycopegylated g-csf
EP2068925A4 (en) 2007-05-07 2011-08-31 Medimmune Llc Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
MX2009013259A (en) 2007-06-12 2010-01-25 Novo Nordisk As Improved process for the production of nucleotide sugars.
CA2693651A1 (en) 2007-07-12 2009-01-15 Ronen Shemesh Bioactive peptides and method of using same
NZ583367A (en) 2007-07-16 2012-10-26 Genentech Inc Anti-cd79b antibodies and immunoconjugates and methods of use
CN101802013B (en) 2007-07-16 2014-07-02 健泰科生物技术公司 Humanized anti-CD79b antibodies and immunoconjugates and methods of use
CN101361968B (en) 2007-08-06 2011-08-03 健能隆医药技术(上海)有限公司 Use of interleukin-22 in treating fatty liver
DK2188313T3 (en) 2007-08-21 2017-12-11 Amgen Inc HUMAN C-FMS ANTI-BINDING PROTEINS
NZ583605A (en) 2007-08-29 2012-10-26 Sanofi Aventis Humanized anti-cxcr5 antibodies, derivatives thereof and their uses
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
US8415455B2 (en) 2007-09-04 2013-04-09 Compugen Ltd Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
CN107412734A (en) 2007-09-18 2017-12-01 阿塞勒隆制药公司 Activin A CTRIIA antagonists and the purposes for reducing or suppressing FSH secretions
TW200918553A (en) 2007-09-18 2009-05-01 Amgen Inc Human GM-CSF antigen binding proteins
EP2050764A1 (en) 2007-10-15 2009-04-22 sanofi-aventis Novel polyvalent bispecific antibody format and uses thereof
CA2702289A1 (en) 2007-10-30 2009-05-07 Indiana University Research And Technology Corporation Compounds exhibiting glucagon antagonist and glp-1 agonist activity
WO2009085200A2 (en) 2007-12-21 2009-07-09 Amgen Inc. Anti-amyloid antibodies and uses thereof
SI2808343T1 (en) 2007-12-26 2019-10-30 Xencor Inc Fc variants with altered binding to FcRn
US9181327B2 (en) 2008-01-07 2015-11-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-HIV domain antibodies and method of making and using same
WO2009094551A1 (en) 2008-01-25 2009-07-30 Amgen Inc. Ferroportin antibodies and methods of use
MX2010008437A (en) 2008-01-31 2010-11-25 Genentech Inc Anti-cd79b antibodies and immunoconjugates and methods of use.
JP6018361B2 (en) 2008-01-31 2016-11-02 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Antibodies against human CD39 and their use for inhibiting regulatory T cell activity
PL2257311T3 (en) 2008-02-27 2014-09-30 Novo Nordisk As Conjugated factor viii molecules
EP2279412B1 (en) 2008-04-09 2017-07-26 Genentech, Inc. Novel compositions and methods for the treatment of immune related diseases
EP2816059A1 (en) 2008-05-01 2014-12-24 Amgen, Inc Anti-hepcidin antibodies and methods of use
KR20190128254A (en) 2008-05-02 2019-11-15 악셀레론 파마 인코포레이티드 Methods and compositions based on alk1 antagonists for modulating angiogenesis and pericyte coverage
US8093018B2 (en) 2008-05-20 2012-01-10 Otsuka Pharmaceutical Co., Ltd. Antibody identifying an antigen-bound antibody and an antigen-unbound antibody, and method for preparing the same
CN104447980A (en) 2008-06-17 2015-03-25 印第安纳大学研究及科技有限公司 Glucagon analogs exhibiting enhanced solubility and stability in physiological pH buffers
MX2010013454A (en) 2008-06-17 2011-01-21 Tion Indiana University Res And Technology Corpora Glucagon/glp-1 receptor co-agonists.
AU2009274425B2 (en) 2008-06-17 2014-05-15 Indiana University Research And Technology Corporation GIP-based mixed agonists for treatment of metabolic disorders and obesity
EP2671891A3 (en) 2008-06-27 2014-03-05 Amgen Inc. Ang-2 inhibition to treat multiple sclerosis
PT3494986T (en) 2008-08-14 2020-07-14 Acceleron Pharma Inc Gdf traps for use to treat anemia
US8163497B2 (en) 2008-09-07 2012-04-24 Glyconex Inc. Anti-extended type I glycosphingolipid antibody, derivatives thereof and use
JP2012504946A (en) 2008-10-07 2012-03-01 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Neutralizing antibody against platelet factor 4 variant 1 (PF4V1) and fragments thereof
JP5775458B2 (en) 2008-11-06 2015-09-09 グレンマーク ファーマシューティカルズ, エセ.アー. Treatment using anti-α2 integrin antibody
JP5933975B2 (en) 2008-11-12 2016-06-15 メディミューン,エルエルシー Antibody preparation
CA2745492A1 (en) 2008-12-08 2010-06-17 Compugen Ltd. A polyclonal or monoclonal antibody or antibody binding fragment that binds to a tmem154 polypeptide
CN102245624B (en) 2008-12-19 2016-08-10 印第安纳大学研究及科技有限公司 Insulin prodrug based on amide
WO2010071807A1 (en) 2008-12-19 2010-06-24 Indiana University Research And Technology Corporation Amide based glucagon superfamily peptide prodrugs
JO3382B1 (en) 2008-12-23 2019-03-13 Amgen Inc Human cgrp receptor binding antibodies
JP5841845B2 (en) 2009-02-24 2016-01-13 ソーク・インステチュート・フォー・バイオロジカル・スタディーズSalk Institute For Biological Studies Designer ligands of the TGF-β superfamily
EP3002296B1 (en) 2009-03-17 2020-04-29 Université d'Aix-Marseille Btla antibodies and uses thereof
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
US20120121591A1 (en) 2009-03-20 2012-05-17 Amgen Inc. SELECTIVE AND POTENT PEPTIDE INHIBITORS OF Kv1.3
CN107375919B (en) 2009-03-27 2022-07-29 台湾地区“中央研究院” Methods and compositions for antiviral immunization
EP2411038B1 (en) 2009-03-27 2016-12-28 Van Andel Research Institute Parathyroid hormone peptides and parathyroid hormone-related protein peptides and methods of use
ES2575695T3 (en) 2009-03-30 2016-06-30 Acceleron Pharma Inc. BMP-ALK3 antagonists and their uses to stimulate bone growth
WO2010120561A1 (en) 2009-04-01 2010-10-21 Genentech, Inc. Anti-fcrh5 antibodies and immunoconjugates and methods of use
US8580732B2 (en) 2009-04-07 2013-11-12 Duke University Peptide therapy for hyperglycemia
EP2248903A1 (en) 2009-04-29 2010-11-10 Universitat Autònoma De Barcelona Methods and reagents for efficient and targeted gene transfer to monocytes and macrophages
EP2440576A4 (en) 2009-06-08 2013-11-20 Acceleron Pharma Inc Methods for increasing thermogenic adipocytes
KR20120028358A (en) 2009-06-12 2012-03-22 악셀레론 파마 인코포레이티드 Truncated actriib-fc fusion proteins
CN102459325B (en) 2009-06-16 2015-03-25 印第安纳大学科技研究有限公司 Gip receptor-active glucagon compounds
NZ598348A (en) 2009-08-13 2014-05-30 Acceleron Pharma Inc Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
KR20120062874A (en) 2009-09-09 2012-06-14 악셀레론 파마 인코포레이티드 Actriib antagonists and dosing and uses thereof
WO2011032099A1 (en) 2009-09-11 2011-03-17 The Board Of Trustees Of The University Of Illinois Methods of treating diastolic dysfunction and related conditions
US8926976B2 (en) 2009-09-25 2015-01-06 Xoma Technology Ltd. Modulators
WO2011038301A2 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Screening methods
TW201117824A (en) 2009-10-12 2011-06-01 Amgen Inc Use of IL-17 receptor a antigen binding proteins
EP2488643A4 (en) 2009-10-15 2013-07-03 Hoffmann La Roche Chimeric fibroblast growth factors with altered receptor specificity
KR20120105446A (en) 2009-10-22 2012-09-25 제넨테크, 인크. Methods and compositions for modulating hepsin activation of macrophage-stimulating protein
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
JO3244B1 (en) 2009-10-26 2018-03-08 Amgen Inc Human il-23 antigen binding proteins
KR102071834B1 (en) 2009-10-26 2020-01-30 에프. 호프만-라 로슈 아게 Method for the production of a glycosylated immunoglobulin
WO2011056572A1 (en) 2009-10-27 2011-05-12 The Board Of Trustees Of The University Of Illinois Methods of diagnosing diastolic dysfunction
AU2010315245B2 (en) 2009-11-03 2016-11-03 Acceleron Pharma Inc. Methods for treating fatty liver disease
EP2501400B1 (en) 2009-11-17 2017-11-01 Acceleron Pharma, Inc. Actriib proteins and variants and uses therefore relating to utrophin induction for muscular dystrophy therapy
TW201129379A (en) 2009-11-20 2011-09-01 Amgen Inc Anti-Orai1 antigen binding proteins and uses thereof
AU2010324686B2 (en) 2009-11-30 2016-05-19 Genentech, Inc. Antibodies for treating and diagnosing tumors expressing SLC34A2 (TAT211 = SEQID2 )
US9428586B2 (en) 2009-12-01 2016-08-30 Compugen Ltd Heparanase splice variant
EP2507267B1 (en) 2009-12-02 2016-09-14 Acceleron Pharma, Inc. Compositions and methods for increasing serum half-life of fc fusion proteins
UA109888C2 (en) 2009-12-07 2015-10-26 ANTIBODY OR ANTIBODILITY ANTIBODY OR ITS BINDING TO THE β-CLOTE, FGF RECEPTORS AND THEIR COMPLEXES
EP2512503A4 (en) 2009-12-18 2013-08-21 Univ Indiana Res & Tech Corp Glucagon/glp-1 receptor co-agonists
EP2528618A4 (en) 2010-01-27 2015-05-27 Univ Indiana Res & Tech Corp Glucagon antagonist - gip agonist conjugates and compositions for the treatment of metabolic disorders and obesity
WO2011097527A2 (en) 2010-02-04 2011-08-11 Xencor, Inc. Immunoprotection of therapeutic moieties using enhanced fc regions
US8877897B2 (en) 2010-02-23 2014-11-04 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US8975376B2 (en) 2010-02-23 2015-03-10 Sanofi Anti-alpha2 integrin antibodies and their uses
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
EP3153521B1 (en) 2010-03-26 2019-09-04 Trustees of Dartmouth College Vista regulatory t cell mediator protein, vista binding agents and use thereof
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
US9517264B2 (en) 2010-04-15 2016-12-13 Amgen Inc. Human FGF receptor and β-Klotho binding proteins
BR112012028010A2 (en) 2010-05-03 2017-09-26 Genentech Inc isolated antibody, cell, isolated nucleic acid, method of identifying a first antibody that binds to a tat425 antigenic epitope attached to an antibody, methods of inhibiting cell growth, therapeutic treatment of determining the presence of a tat425 protein and diagnosing the presence of a tumor in a mammal
US20120135912A1 (en) 2010-05-10 2012-05-31 Perseid Therapeutics Llc Polypeptide inhibitors of vla4
EP2569000B1 (en) 2010-05-13 2017-09-27 Indiana University Research and Technology Corporation Glucagon superfamily peptides exhibiting nuclear hormone receptor activity
WO2011160062A2 (en) 2010-06-17 2011-12-22 The Usa As Represented By The Secretary, National Institutes Of Health Compositions and methods for treating inflammatory conditions
EP2585102B1 (en) 2010-06-24 2015-05-06 Indiana University Research and Technology Corporation Amide-based insulin prodrugs
EP2588126A4 (en) 2010-06-24 2015-07-08 Univ Indiana Res & Tech Corp Amide based glucagon superfamily peptide prodrugs
AU2011272941B2 (en) 2010-06-30 2014-05-29 Compugen Ltd. C10RF32 for the treatment of multiple sclerosis, rheumatoid arthritis and other autoimmune disorders
WO2016030888A1 (en) 2014-08-26 2016-03-03 Compugen Ltd. Polypeptides and uses thereof as a drug for treatment of autoimmune disorders
WO2012010696A1 (en) 2010-07-23 2012-01-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for cancer management targeting co-029
CA2806252C (en) 2010-07-29 2019-05-14 Xencor, Inc. Antibodies with modified isoelectric points
US8999335B2 (en) 2010-09-17 2015-04-07 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
JP6159660B2 (en) 2010-09-22 2017-07-05 アムジエン・インコーポレーテツド Immunoglobulins as carriers and uses thereof
EP2621954A1 (en) 2010-10-01 2013-08-07 Oxford Biotherapeutics Ltd. Anti-rori antibodies
TWI537385B (en) 2010-11-04 2016-06-11 中央研究院 Methods for producing virus particles with simplified glycosylation of surface proteins
WO2012080769A1 (en) 2010-12-15 2012-06-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd277 antibodies and uses thereof
CN103458920B (en) 2010-12-22 2016-07-06 印第安那大学科技研究公司 Show the glucagon analogs of GIP receptor active
WO2012085132A1 (en) 2010-12-22 2012-06-28 Orega Biotech Antibodies against human cd39 and use thereof
WO2012090150A2 (en) 2010-12-27 2012-07-05 Compugen Ltd New cell-penetrating peptides and uses thereof
JOP20210044A1 (en) 2010-12-30 2017-06-16 Takeda Pharmaceuticals Co Anti-cd38 antibodies
WO2012101125A1 (en) 2011-01-24 2012-08-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Specific antibodies against human cxcl4 and uses thereof
AR085911A1 (en) 2011-03-16 2013-11-06 Sanofi Sa SAFE THERAPEUTIC DOSE OF A SIMILAR PROTEIN TO AN ANTIBODY WITH VUAL REGION
EA035351B1 (en) 2011-03-31 2020-06-01 Инсэрм (Инститют Насиональ Де Ля Сантэ Э Де Ля Решерш Медикаль) Antibodies directed against icos and uses thereof
WO2012140627A1 (en) 2011-04-15 2012-10-18 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof for treatment of immune related disorders and cancer
JP6250533B2 (en) 2011-04-20 2017-12-20 アクセレロン ファーマ インコーポレイテッドAcceleron Pharma,Inc. Endoglin polypeptides and uses thereof
US9127065B2 (en) 2011-05-19 2015-09-08 Institut National De La Sante Et De La Recherche Medicale (Inserm) Anti-human HER3 antibodies and uses thereof
ES2894398T3 (en) 2011-06-03 2022-02-14 Xoma Technology Ltd Specific antibodies to TGF-beta
US9574002B2 (en) 2011-06-06 2017-02-21 Amgen Inc. Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor
MX347703B (en) 2011-06-22 2017-05-09 Univ Indiana Res & Tech Corp Glucagon/glp-1 receptor co-agonists.
EP2726503B1 (en) 2011-06-30 2019-09-04 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
CN105601748B (en) 2011-07-01 2021-08-27 恩格姆生物制药公司 Compositions, uses and methods for the treatment of metabolic disorders and diseases
EP2543677A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
EP2543678A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
EP2543679A1 (en) 2011-07-08 2013-01-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the treatment and prevention of thrombosis
US20140234330A1 (en) 2011-07-22 2014-08-21 Amgen Inc. Il-17 receptor a is required for il-17c biology
WO2013022855A1 (en) 2011-08-05 2013-02-14 Xencor, Inc. Antibodies with modified isoelectric points and immunofiltering
EA027900B1 (en) 2011-09-22 2017-09-29 Эмджен Инк. Cd27l antigen binding proteins
WO2013052933A2 (en) 2011-10-06 2013-04-11 The Board Of Trustees Of The University Of Illinois Myosin binding protein-c for use in methods relating to diastolic heart failure
AU2012323287B2 (en) 2011-10-10 2018-02-01 Xencor, Inc. A method for purifying antibodies
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
EP2797620B1 (en) 2011-10-17 2019-04-24 Acceleron Pharma Inc. Compositions for treating iron overload in thalassemia
WO2013074910A1 (en) 2011-11-17 2013-05-23 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting glucocorticoid receptor activity
CA2858572C (en) 2011-12-08 2023-01-17 Amgen Inc. Human lcat antigen binding proteins and their use in therapy
JP2015502368A (en) 2011-12-16 2015-01-22 カロス セラピューティクス,インコーポレーテッド Methods and uses of ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide) and CNP (C-type natriuretic peptide) -related peptides and their derivatives for the treatment of retinal disorders and diseases
CN104114183A (en) 2011-12-20 2014-10-22 印第安纳大学研究及科技有限公司 CTP-based insulin analogs for treatment of diabetes
WO2013114367A2 (en) 2012-02-01 2013-08-08 Compugen Ltd. C10rf32 antibodies, and uses thereof for treatment of cancer
WO2013116781A1 (en) 2012-02-02 2013-08-08 Acceleron Pharma Inc. Alk1 antagonists and their uses in treating renal cell carcinoma
KR102143887B1 (en) 2012-03-16 2020-08-12 유니버시티 헬스 네트워크 Methods and compositions for modulating toso activity
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
US9809636B2 (en) 2012-04-06 2017-11-07 Acceleron Pharma Inc. Methods for increasing red blood cell levels comprising administering BMP9
WO2013155346A1 (en) 2012-04-11 2013-10-17 The Regents Of The University Of California Diagnostic tools for response to 6-thiopurine therapy
MX357327B (en) 2012-04-27 2018-07-05 Novo Nordisk As Human cd30 ligand antigen binding proteins.
EP2847219A1 (en) 2012-05-07 2015-03-18 Amgen Inc. Anti-erythropoietin antibodies
UY34813A (en) 2012-05-18 2013-11-29 Amgen Inc ANTIGEN UNION PROTEINS DIRECTED AGAINST ST2 RECEIVER
EP2861259A1 (en) 2012-06-14 2015-04-22 Ambrx, Inc. Anti-psma antibodies conjugated to nuclear receptor ligand polypeptides
WO2013192129A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Glucagon analogs exhibiting gip receptor activity
DK2864350T3 (en) 2012-06-21 2018-05-28 Univ Indiana Res & Tech Corp ANALOGUE OF GLUCAGON EXPRESSING GIP RECEPTOR ACTIVITY
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
WO2014039983A1 (en) 2012-09-07 2014-03-13 The Trustees Of Dartmouth College Vista modulators for diagnosis and treatment of cancer
EP2864355B1 (en) 2012-06-25 2016-10-12 Orega Biotech Il-17 antagonist antibodies
WO2014004549A2 (en) 2012-06-27 2014-01-03 Amgen Inc. Anti-mesothelin binding proteins
WO2014022759A1 (en) 2012-08-03 2014-02-06 Dana-Farber Cancer Institute, Inc. Agents that modulate immune cell activation and methods of use thereof
EP2892928B1 (en) 2012-09-03 2018-05-30 INSERM - Institut National de la Santé et de la Recherche Médicale Antibodies directed against icos for treating graft-versus-host disease
WO2014066486A2 (en) 2012-10-24 2014-05-01 Celgene Corporation Biomarker for use in treating anemia
WO2014071158A1 (en) 2012-11-02 2014-05-08 Celgene Corporation Activin-actrii antagonists and uses for treating bone and other disorders
JP6324399B2 (en) 2012-11-20 2018-05-16 サノフイ Anti-CEACAM5 antibody and use thereof
WO2014085365A2 (en) 2012-11-28 2014-06-05 Ngm Biopharmaceuticals, Inc. Compositions and methods for treatment of metabolic disorders and diseases
TW201425336A (en) 2012-12-07 2014-07-01 Amgen Inc BCMA antigen binding proteins
PT2928923T (en) 2012-12-10 2020-03-27 Biogen Ma Inc Anti-blood dendritic cell antigen 2 antibodies and uses thereof
EA201591219A1 (en) 2012-12-27 2015-12-30 Санофи ANTIBODIES AGAINST LAMP1 AND CONJUGATES ANTIBODIES AND MEDICINES AND THEIR APPLICATION
CN105008548B (en) 2012-12-27 2020-11-27 恩格姆生物制药公司 Methods for modulating bile acid homeostasis and treating bile acid disorders and diseases
US10717965B2 (en) 2013-01-10 2020-07-21 Gloriana Therapeutics, Inc. Mammalian cell culture-produced neublastin antibodies
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
AU2014205086B2 (en) 2013-01-14 2019-04-18 Xencor, Inc. Novel heterodimeric proteins
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
CA2897987A1 (en) 2013-01-15 2014-07-24 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
ES2728936T3 (en) 2013-01-25 2019-10-29 Amgen Inc Antibodies directed against CDH19 for melanoma
JO3519B1 (en) 2013-01-25 2020-07-05 Amgen Inc Antibody constructs for CDH19 and CD3
ES2858472T3 (en) 2013-03-11 2021-09-30 Amgen Inc Protein formulations
AU2014244444A1 (en) 2013-03-14 2015-09-24 Amgen Inc. CHRDL-1 antigen binding proteins and methods of treatment
US9580486B2 (en) 2013-03-14 2017-02-28 Amgen Inc. Interleukin-2 muteins for the expansion of T-regulatory cells
WO2014144553A1 (en) 2013-03-15 2014-09-18 Amgen Inc. Secreted frizzle-related protein 5 (sfrp5) binding proteins and methods of treatment
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
EP2970486B1 (en) 2013-03-15 2018-05-16 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
US9260527B2 (en) 2013-03-15 2016-02-16 Sdix, Llc Anti-human CXCR4 antibodies and methods of making same
SI2970449T1 (en) 2013-03-15 2019-11-29 Amgen Res Munich Gmbh Single chain binding molecules comprising n-terminal abp
UA118843C2 (en) 2013-03-15 2019-03-25 Дженентек, Інк. Il-22 polypeptides and il-22 fc fusion proteins and methods of use
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
PL3587448T3 (en) 2013-03-15 2021-11-29 Xencor, Inc. Heterodimeric proteins
CA2906909A1 (en) 2013-03-15 2014-09-18 Biological Mimetics, Inc. Immunogenic human rhinovirus (hrv) composition
TWI636064B (en) 2013-03-15 2018-09-21 安美基公司 Human pac1 antibodies
WO2014152006A2 (en) 2013-03-15 2014-09-25 Intrinsic Lifesciences, Llc Anti-hepcidin antibodies and uses thereof
EP2970446A1 (en) 2013-03-15 2016-01-20 Amgen Research (Munich) GmbH Antibody constructs for influenza m2 and cd3
WO2014144292A2 (en) 2013-03-15 2014-09-18 Sanofi Pasteur Biologics , Llc Antibodies against clostridium difficile toxins and methods of using the same
ES2759061T3 (en) 2013-03-15 2020-05-07 Biomolecular Holdings Llc Hybrid immunoglobulin containing non-peptidyl binding
EA201591806A1 (en) 2013-03-15 2016-01-29 Байоджен Ма Инк. TREATMENT AND PREVENTION OF ACUTE RENAL FAILURE WITH THE USE OF ANTI-ALPHA-V-BETA-5 ANTIBODIES
US10035860B2 (en) 2013-03-15 2018-07-31 Biogen Ma Inc. Anti-alpha V beta 6 antibodies and uses thereof
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
US10035859B2 (en) 2013-03-15 2018-07-31 Biogen Ma Inc. Anti-alpha V beta 6 antibodies and uses thereof
US10005839B2 (en) 2013-05-17 2018-06-26 Inserm (Institut National De La Sante Et De La Recherche Medicale) Antagonist of the BTLA/HVEM interaction for use in therapy
PL3004167T3 (en) 2013-05-30 2019-01-31 Kiniksa Pharmaceuticals, Ltd. Oncostatin m receptor antigen binding proteins
EP3036320B2 (en) 2013-08-19 2024-04-03 Biogen MA Inc. Control of protein glycosylation by culture medium supplementation and cell culture process parameters
US20160237399A1 (en) 2015-02-18 2016-08-18 Biogen Ma Inc. Control of Protein Glycosylation by Culture Medium Supplementation and Cell Culture Process Parameters
CA2921805C (en) 2013-08-22 2023-03-07 Acceleron Pharma, Inc. Tgf-beta receptor type ii variants and uses thereof
TW201605896A (en) 2013-08-30 2016-02-16 安美基股份有限公司 GITR antigen binding proteins
AR097648A1 (en) 2013-09-13 2016-04-06 Amgen Inc COMBINATION OF EPIGENETIC FACTORS AND BIESPECTIVE COMPOUNDS THAT HAVE LIKE DIANA CD33 AND CD3 IN THE TREATMENT OF MYELOID LEUKEMIA
EP3757130A1 (en) 2013-09-26 2020-12-30 Costim Pharmaceuticals Inc. Methods for treating hematologic cancers
DK3055331T3 (en) 2013-10-11 2021-03-22 Oxford Bio Therapeutics Ltd CONJUGATED ANTIBODIES TO LY75 FOR CANCER TREATMENT
WO2015057939A1 (en) 2013-10-18 2015-04-23 Biogen Idec Ma Inc. Anti-s1p4 antibodies and uses thereof
EP3851118A1 (en) 2013-10-25 2021-07-21 Acceleron Pharma Inc. Endoglin peptides to treat fibrotic diseases
WO2015066550A1 (en) 2013-10-31 2015-05-07 Resolve Therapeutics, Llc Therapeutic nuclease-albumin fusions and methods
CN104623637A (en) 2013-11-07 2015-05-20 健能隆医药技术(上海)有限公司 Application of IL-22 dimer in preparation of intravenous injection drugs
WO2015095809A1 (en) 2013-12-20 2015-06-25 Biogen Idec Ma Inc. Use of perfusion seed cultures to improve biopharmaceutical fed-batch production capacity and product quality
CN106661107B (en) 2013-12-24 2021-12-24 杨森制药公司 anti-VISTA antibodies and fragments
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
EP4008726A1 (en) 2014-02-20 2022-06-08 Allergan, Inc. Complement component c5 antibodies
RU2018135371A (en) 2014-02-27 2018-12-10 Аллерган, Инк. ANTIBODIES TO THE COMPLEX FACTOR Bb
KR20160127817A (en) 2014-03-07 2016-11-04 유니버시티 헬스 네트워크 Methods and compositions for modifying the immune response
AU2015229186B2 (en) 2014-03-14 2021-01-28 Biomolecular Holdings Llc Hybrid immunoglobulin containing non-peptidyl linkage
EP3122869B2 (en) 2014-03-24 2022-08-10 Biogen MA Inc. Methods for overcoming glutamine deprivation during mammalian cell culture
RS59907B1 (en) 2014-03-28 2020-03-31 Xencor Inc Bispecific antibodies that bind to cd38 and cd3
US10544231B2 (en) 2014-04-16 2020-01-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies for the prevention or the treatment of bleeding episodes
FR3020063A1 (en) 2014-04-16 2015-10-23 Gamamabs Pharma ANTI-HER4 HUMAN ANTIBODY
EP4001310A3 (en) 2014-05-02 2022-08-10 MedImmune Limited Ion channel modulators and uses thereof
US10023621B2 (en) 2014-06-04 2018-07-17 Acceleron Pharma Inc. Follistatin-related fusion proteins
JP6997619B2 (en) 2014-06-11 2022-01-17 キャシー・エイ・グリーン Use of VISTA agonists and VISTA antagonists for suppression or enhancement of humoral immunity
JP7158096B2 (en) 2014-07-09 2022-10-21 カデナ バイオ,インコーポレーテッド Oligosaccharide composition and method for producing same
TW201609811A (en) 2014-07-31 2016-03-16 安美基研究(慕尼黑)公司 Bispecific single chain antibody construct with enhanced tissue distribution
MX2017001401A (en) 2014-07-31 2017-08-07 Amgen Res (Munich) Gmbh Optimized cross-species specific bispecific single chain antibody constructs.
AR101669A1 (en) 2014-07-31 2017-01-04 Amgen Res (Munich) Gmbh ANTIBODY CONSTRUCTS FOR CDH19 AND CD3
AU2015306608B2 (en) 2014-08-27 2020-03-05 Amgen Inc. Variants of tissue inhibitor of metalloproteinase type three (TIMP-3), compositions and methods
WO2016040767A2 (en) 2014-09-12 2016-03-17 Amgen Inc. Chrdl-1 epitopes and antibodies
US10323088B2 (en) 2014-09-22 2019-06-18 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
IL278941B (en) 2014-09-30 2022-07-01 Neurimmune Holding Ag Human-derived anti-dipeptide repeats (dprs) antibody
MA41685A (en) 2014-10-17 2017-08-22 Biogen Ma Inc COPPER SUPPLEMENT FOR THE REGULATION OF GLYCOSYLATION IN A MAMMAL CELL CULTURE PROCESS
US20190194654A1 (en) 2014-10-24 2019-06-27 Astrazeneca Ab Combination
AU2015339134B2 (en) 2014-10-30 2021-06-17 Acceleron Pharma Inc. Methods and compositions using GDF15 polypeptides for increasing red blood cells
MA40864A (en) 2014-10-31 2017-09-05 Biogen Ma Inc HYPOTAURINE, GABA, BETA-ALANINE AND CHOLINE FOR THE REGULATION OF THE ACCUMULATION OF RESIDUAL BY-PRODUCTS IN MAMMAL CELL CULTURE PROCESSES
WO2016069889A1 (en) 2014-10-31 2016-05-06 Resolve Therapeutics, Llc Therapeutic nuclease-transferrin fusions and methods
EP3220900B1 (en) 2014-11-21 2020-09-23 University of Maryland, Baltimore Targeted structure-specific particulate delivery systems
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
CN116333153A (en) 2014-11-26 2023-06-27 森科股份有限公司 Heterodimeric antibodies that bind CD3 and tumor antigens
KR20170084327A (en) 2014-11-26 2017-07-19 젠코어 인코포레이티드 Heterodimeric antibodies that bind cd3 and cd38
PT3227675T (en) 2014-12-03 2023-05-30 Celgene Corp Activin-actrii antagonists and uses for treating anemia
AU2015357463B2 (en) 2014-12-05 2021-10-07 Immunext, Inc. Identification of VSIG8 as the putative vista receptor and its use thereof to produce vista/VSIG8 modulators
US11220545B2 (en) 2014-12-08 2022-01-11 Dana-Farber Cancer Institute, Inc. Methods for upregulating immune responses using combinations of anti-RGMb and anti-PD-1 agents
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
PL3247725T3 (en) 2015-01-23 2021-01-11 Sanofi Anti-cd3 antibodies, anti-cd123 antibodies and bispecific antibodies specifically binding to cd3 and/or cd123
WO2016122887A1 (en) 2015-01-26 2016-08-04 Midori Usa, Inc. Oligosaccharide compositions for use animal feed and methods of producing thereof
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
JP6901400B2 (en) 2015-04-03 2021-07-14 ゾーマ テクノロジー リミテッド Cancer treatment using TGF-β and PD-1 inhibitors
CR20170510A (en) 2015-04-10 2018-02-26 Amgen Inc INTERUQUINE MUTEINS 2 FOR THE EXPANSION OF REGULATORY T-CELLS
WO2016164937A2 (en) 2015-04-10 2016-10-13 Amgen Inc. Interleukin-2 muteins for the expansion of t-regulatory cells
DK3283524T3 (en) 2015-04-17 2023-05-30 Amgen Res Munich Gmbh BISPECIFIC ANTIBODY CONSTRUCTIONS AGAINST CDH3 and CD3
US20160347848A1 (en) 2015-05-28 2016-12-01 Medimmune Limited Therapeutic combinations and methods for treating neoplasia
CN107922497B (en) 2015-06-24 2022-04-12 詹森药业有限公司 anti-VISTA antibodies and fragments
US20180305451A1 (en) 2015-07-13 2018-10-25 Compugen Ltd. Hide1 compositions and methods
TWI829617B (en) 2015-07-31 2024-01-21 德商安美基研究(慕尼黑)公司 Antibody constructs for flt3 and cd3
TWI744242B (en) 2015-07-31 2021-11-01 德商安美基研究(慕尼黑)公司 Antibody constructs for egfrviii and cd3
TW202346349A (en) 2015-07-31 2023-12-01 德商安美基研究(慕尼黑)公司 Antibody constructs for dll3 and cd3
TWI717375B (en) 2015-07-31 2021-02-01 德商安美基研究(慕尼黑)公司 Antibody constructs for cd70 and cd3
TWI796283B (en) 2015-07-31 2023-03-21 德商安美基研究(慕尼黑)公司 Antibody constructs for msln and cd3
EP3331550B1 (en) 2015-08-04 2022-11-02 Acceleron Pharma Inc. Composition for treating myeloproliferative disorders
JP2018535655A (en) 2015-09-29 2018-12-06 アムジエン・インコーポレーテツド ASGR inhibitor
EP3362074B1 (en) 2015-10-16 2023-08-09 President and Fellows of Harvard College Regulatory t cell pd-1 modulation for regulating t cell effector immune responses
US11623957B2 (en) 2015-12-07 2023-04-11 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
TWI797073B (en) 2016-01-25 2023-04-01 德商安美基研究(慕尼黑)公司 Pharmaceutical composition comprising bispecific antibody constructs
MX2018009386A (en) 2016-02-03 2018-11-09 Amgen Res Munich Gmbh Psma and cd3 bispecific t cell engaging antibody constructs.
KR20180103084A (en) 2016-02-03 2018-09-18 암젠 리서치 (뮌헨) 게엠베하 BCMA and CD3 bispecific T cell engrafting antibody constructs
EA039859B1 (en) 2016-02-03 2022-03-21 Эмджен Рисерч (Мюник) Гмбх Bispecific antibody constructs binding egfrviii and cd3
EP3413910A1 (en) 2016-02-12 2018-12-19 Janssen Pharmaceutica NV Anti-vista (b7h5) antibodies
CN109328069B (en) 2016-04-15 2023-09-01 亿一生物医药开发(上海)有限公司 Use of IL-22 in the treatment of necrotizing enterocolitis
UA125382C2 (en) 2016-04-15 2022-03-02 Імьюнекст Інк. Anti-human vista antibodies and use thereof
JOP20170091B1 (en) 2016-04-19 2021-08-17 Amgen Res Munich Gmbh Administration of a bispecific construct binding to CD33 and CD3 for use in a method for the treatment of myeloid leukemia
WO2017189483A1 (en) 2016-04-25 2017-11-02 The Johns Hopkins University Znt8 assays for drug development and pharmaceutical compositions
KR102404717B1 (en) 2016-05-31 2022-05-31 재단법인 목암생명과학연구소 AB6 family designer ligands from the TGF-beta superfamily
RU2767357C2 (en) 2016-06-14 2022-03-17 Ксенкор, Инк. Bispecific checkpoint inhibitors antibodies
EP3475304B1 (en) 2016-06-28 2022-03-23 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
EP3478830B1 (en) 2016-07-01 2024-04-10 Resolve Therapeutics, LLC Optimized binuclease fusions and methods
MA45674A (en) 2016-07-15 2019-05-22 Takeda Pharmaceuticals Co METHODS AND MATERIALS FOR EVALUATING A RESPONSE TO PLASMOBLAST AND PLASMOCYTE DEPLÉTION TREATMENTS
TWI790206B (en) 2016-07-18 2023-01-21 法商賽諾菲公司 Bispecific antibody-like binding proteins specifically binding to cd3 and cd123
WO2018022479A1 (en) 2016-07-25 2018-02-01 Biogen Ma Inc. Anti-hspa5 (grp78) antibodies and uses thereof
CN109803680A (en) 2016-08-01 2019-05-24 佐马美国有限公司 (PTH1R) antibody of parathyroid hormone receptor 1 and its purposes
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
JP2019531070A (en) 2016-09-15 2019-10-31 アクセレロン ファーマ インコーポレーテッド Twisted gas torsion polypeptide and uses thereof
US10858428B2 (en) 2016-09-28 2020-12-08 Xoma (Us) Llc Antibodies that bind interleukin-2 and uses thereof
EP3519431A1 (en) 2016-09-28 2019-08-07 Cohbar Inc. Therapeutic mots-c related peptides
US10550185B2 (en) 2016-10-14 2020-02-04 Xencor, Inc. Bispecific heterodimeric fusion proteins containing IL-15-IL-15Rα Fc-fusion proteins and PD-1 antibody fragments
TW202300515A (en) 2016-10-20 2023-01-01 法商賽諾菲公司 Anti-chikv antibodies and uses thereof
HRP20220230T1 (en) 2017-01-05 2022-04-29 Kahr Medical Ltd. A sirp1 alpha-41bbl fusion protein and methods of use thereof
DK3565579T3 (en) 2017-01-05 2023-09-04 Kahr Medical Ltd PD1-41BBL FUSION PROTEIN AND METHODS OF USING THEREOF
JOP20190189A1 (en) 2017-02-02 2019-08-01 Amgen Res Munich Gmbh Low ph pharmaceutical composition comprising t cell engaging antibody constructs
WO2018152496A1 (en) 2017-02-17 2018-08-23 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Compositions and methods for the diagnosis and treatment of zika virus infection
US11117930B2 (en) 2017-02-23 2021-09-14 Adrx, Inc. Peptide inhibitors of transcription factor aggregation
CN110382544B (en) 2017-03-16 2023-12-22 先天制药公司 Compositions and methods for treating cancer
WO2018200742A1 (en) 2017-04-25 2018-11-01 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis and treatment of epstein barr virus infection
EP4241848A3 (en) 2017-05-04 2023-11-01 Acceleron Pharma Inc. Tgf-beta receptor type ii fusion proteins and uses thereof
UY37726A (en) 2017-05-05 2018-11-30 Amgen Inc PHARMACEUTICAL COMPOSITION THAT INCLUDES BISPECTIFIC ANTIBODY CONSTRUCTIONS FOR IMPROVED STORAGE AND ADMINISTRATION
US20230137562A1 (en) 2017-06-07 2023-05-04 Adrx, Inc. Tau aggregation inhibitors
WO2019006472A1 (en) 2017-06-30 2019-01-03 Xencor, Inc. Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and antigen binding domains
EP3652540A4 (en) 2017-07-12 2021-04-07 The Johns Hopkins University A proteoliposome-based znt8 self-antigen for type 1 diabetes diagnosis
EP3655430A1 (en) 2017-07-19 2020-05-27 The U.S.A. as represented by the Secretary, Department of Health and Human Services Antibodies and methods for the diagnosis and treatment of hepatitis b virus infection
DK3661954T3 (en) 2017-08-03 2022-04-19 Amgen Inc INTERLEUKIN-21 MUTEINS AND METHODS OF TREATMENT
US11453701B2 (en) 2017-08-18 2022-09-27 Adrx, Inc. Tau aggregation peptide inhibitors
CA3073537A1 (en) 2017-08-22 2019-02-28 Sanabio, Llc Soluble interferon receptors and uses thereof
IL293443A (en) 2017-09-08 2022-07-01 Amgen Inc Inhibitors of kras g12c and methods of using the same
CA3082383A1 (en) 2017-11-08 2019-05-16 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-pd-1 sequences
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
EP3724229A1 (en) 2017-12-11 2020-10-21 Amgen Inc. Continuous manufacturing process for bispecific antibody products
CN111655718A (en) 2017-12-19 2020-09-11 Xencor股份有限公司 Engineered IL-2 FC fusion proteins
UY38041A (en) 2017-12-29 2019-06-28 Amgen Inc CONSTRUCTION OF BIESPECFIC ANTIBODY DIRECTED TO MUC17 AND CD3
CR20200330A (en) 2018-01-12 2020-12-23 Amgen Inc Anti-pd-1 antibodies and methods of treatment
KR20200115546A (en) 2018-01-26 2020-10-07 제넨테크, 인크. IL-22 Fc fusion protein and method of use
BR112020015016A2 (en) 2018-01-26 2020-12-29 Genentech, Inc. PHARMACEUTICAL COMPOSITIONS, METHODS OF TREATMENT OF INFLAMMATORY INTESTINAL DISEASE, INHIBITION OF MICROBIAL INFECTION IN THE INTESTINE AND ACCELERATING OR IMPROVING WOUND HEALING
BR112020016400A2 (en) 2018-02-14 2020-12-15 Viela Bio, Inc. ANTIBODIES FOR THYROSINE KINASE 3 RECEPTOR BINDER SIMILAR TO MCDONOUGH FELINE SARCOMA (FMS) (FLT3L) AND THEIR USES FOR THE TREATMENT OF AUTOIMMUNE AND INFLAMMATORY DISEASES
AU2019226085A1 (en) 2018-02-21 2020-09-17 Genentech, Inc. Dosing for treatment with IL-22 Fc fusion proteins
US10982006B2 (en) 2018-04-04 2021-04-20 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
WO2019204655A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Tim-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and tim-3 antigen binding domains
JP2021521784A (en) 2018-04-18 2021-08-30 ゼンコア インコーポレイテッド PD-1 targeted heterodimer fusion proteins containing IL-15 / IL-15RaFc fusion proteins and PD-1 antigen binding domains and their use
EP3788071A1 (en) 2018-05-02 2021-03-10 The United States Of America, As Represented By The Secretary, Department of Health and Human Services Antibodies and methods for the diagnosis, prevention, and treatment of epstein barr virus infection
BR112020024412A8 (en) 2018-06-18 2023-03-21 Innate Pharma ANTIBODIES, PHARMACEUTICAL COMPOSITION, KIT, NUCLEIC ACID, HOST CELL, METHODS OF TREATMENT OR PREVENTION OF CANCER, OF REDUCING ACTIVITY, OF INCREASE OF ACTIVITY AND OF INCREASE OF ACTIVATION
JOP20200343A1 (en) 2018-07-02 2020-12-31 Xencor Inc Anti-steap1 antigen-binding protein
SG11202013167UA (en) 2018-07-11 2021-01-28 Kahr Medical Ltd SIRPalpha-4-1BBL VARIANT FUSION PROTEIN AND METHODS OF USE THEREOF
WO2020025532A1 (en) 2018-07-30 2020-02-06 Amgen Research (Munich) Gmbh Prolonged administration of a bispecific antibody construct binding to cd33 and cd3
CA3107192A1 (en) 2018-08-03 2020-02-06 Amgen Research (Munich) Gmbh Antibody constructs for cldn18.2 and cd3
WO2020037174A1 (en) 2018-08-16 2020-02-20 The Johns Hopkins University Antibodies to human znt8
SG11202103192RA (en) 2018-10-03 2021-04-29 Xencor Inc Il-12 heterodimeric fc-fusion proteins
CA3114802A1 (en) 2018-10-11 2020-04-16 Amgen Inc. Downstream processing of bispecific antibody constructs
KR20210113261A (en) 2019-01-04 2021-09-15 리졸브 테라퓨틱스, 엘엘씨 Treatment of Sjogren's Disease Using Nuclease Fusion Proteins
SG11202107761SA (en) 2019-01-28 2021-08-30 Cohbar Inc Therapeutic peptides
MX2021009514A (en) 2019-02-07 2021-11-04 Sanofi Sa Use of anti-ceacam5 immunoconjugates for treating lung cancer.
EP3693023A1 (en) 2019-02-11 2020-08-12 Sanofi Use of anti-ceacam5 immunoconjugates for treating lung cancer
JP2022520792A (en) 2019-02-12 2022-04-01 アンブルックス,インコーポレイテッド Compositions, Methods, and Uses Containing Antibody-TLR Agonist Conjugates
KR20210134725A (en) 2019-03-01 2021-11-10 젠코어 인코포레이티드 Heterodimeric Antibodies that Bind to ENPP3 and CD3
AU2020248645A1 (en) 2019-03-27 2021-10-28 Tigatx, Inc. Engineered IgA antibodies and methods of use
CA3136488A1 (en) 2019-04-08 2020-10-15 Biogen Ma Inc. Anti-integrin antibodies and uses thereof
CN114040800A (en) 2019-04-09 2022-02-11 阿波科有限责任公司 Killer cell lectin-like receptor subfamily G member 1(KLRG1) depleting antibodies
TW202045711A (en) 2019-06-13 2020-12-16 美商安進公司 Automated biomass-based perfusion control in the manufacturing of biologics
JP2022541742A (en) 2019-07-11 2022-09-27 カール メディカル リミテッド Heterodimers and methods of use thereof
US20210032370A1 (en) 2019-08-02 2021-02-04 Immatics Biotechnologies Gmbh Recruiting agent further binding an mhc molecule
DE102019121007A1 (en) 2019-08-02 2021-02-04 Immatics Biotechnologies Gmbh Antigen binding proteins that specifically bind to MAGE-A
US20220281967A1 (en) 2019-08-02 2022-09-08 Orega Biotech Novel il-17b antibodies
US20220289807A1 (en) 2019-08-13 2022-09-15 Amgen Inc. Interleukin-2 muteins for the expansion of t-regulatory cells
AU2020381536A1 (en) 2019-11-13 2022-04-21 Amgen Inc. Method for reduced aggregate formation in downstream processing of bispecific antigen-binding molecules
US20220395553A1 (en) 2019-11-14 2022-12-15 Cohbar, Inc. Cxcr4 antagonist peptides
IL293471A (en) 2019-12-17 2022-08-01 Amgen Inc Dual interleukin-2 /tnf receptor agonist for use in therapy
EP4090365A1 (en) 2020-01-15 2022-11-23 Immatics Biotechnologies GmbH Antigen binding proteins specifically binding prame
US20230093169A1 (en) 2020-01-22 2023-03-23 Amgen Research (Munch) Gmbh Combinations of antibody constructs and inhibitors of cytokine release syndrome and uses thereof
EP4118113A1 (en) 2020-03-12 2023-01-18 Amgen Inc. Method for treatment and prophylaxis of crs in patients comprising a combination of bispecifc antibodies binding to cds x cancer cell and tnfalpha or il-6 inhibitor
WO2021207662A1 (en) 2020-04-10 2021-10-14 Genentech, Inc. Use of il-22fc for the treatment or prevention of pneumonia, acute respiratory distress syndrome, or cytokine release syndrome
WO2021231976A1 (en) 2020-05-14 2021-11-18 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (psma) and cd3
AU2021275049A1 (en) 2020-05-19 2022-12-22 Amgen Inc. MAGEB2 binding constructs
JP2023527972A (en) 2020-05-29 2023-07-03 アムジエン・インコーポレーテツド Reduced Adverse Effect Administration of Bispecific Constructs that Bind CD33 and CD3
WO2021259227A1 (en) 2020-06-23 2021-12-30 江苏康缘药业股份有限公司 Anti-cd38 antibody and use thereof
CA3165342A1 (en) 2020-06-29 2022-01-06 James Arthur Posada Treatment of sjogren's syndrome with nuclease fusion proteins
TW202216778A (en) 2020-07-15 2022-05-01 美商安進公司 Tigit and cd112r blockade
CA3192204A1 (en) 2020-08-19 2022-02-24 Xencor, Inc. Anti-cd28 and/or anti-b7h3 compositions
JP2023538071A (en) 2020-08-20 2023-09-06 アンブルックス,インコーポレイテッド Antibody-TLR agonist conjugates, methods and uses thereof
KR20230062600A (en) 2020-09-04 2023-05-09 메르크 파텐트 게엠베하 Anti-CEACAM5 Antibodies and Conjugates and Uses Thereof
UY39508A (en) 2020-11-06 2022-05-31 Amgen Res Munich Gmbh BSPECIFIC ANTIGEN-BINDING MOLECULES WITH MULTIPLE TARGETS OF ENHANCED SELECTIVITY
CN116635421A (en) 2020-11-06 2023-08-22 安进公司 Polypeptide constructs that bind CD3
BR112023008629A2 (en) 2020-11-06 2023-10-03 Amgen Inc POLYPEPTIDE CONSTRUCTS THAT SELECTIVELY BIND CLDN6 AND CD3
KR20230098335A (en) 2020-11-06 2023-07-03 암젠 인크 Antigen binding domains with reduced clipping ratio
JP2024504696A (en) 2021-01-20 2024-02-01 バイオアントレ エルエルシー CTLA4-binding proteins and methods of treating cancer
IL305736A (en) 2021-03-09 2023-11-01 Xencor Inc Heterodimeric antibodies that bind cd3 and cldn6
EP4305065A1 (en) 2021-03-10 2024-01-17 Xencor, Inc. Heterodimeric antibodies that bind cd3 and gpc3
CA3215594A1 (en) 2021-04-02 2022-10-06 Agnieszka KIELCZEWSKA Mageb2 binding constructs
CA3213805A1 (en) 2021-04-03 2022-10-06 Feng Tian Anti-her2 antibody-drug conjugates and uses thereof
CN117279947A (en) 2021-05-06 2023-12-22 安进研发(慕尼黑)股份有限公司 Antigen binding molecules targeting CD20 and CD22 for use in proliferative diseases
WO2022261183A2 (en) 2021-06-08 2022-12-15 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating and/or identifying an agent for treating intestinal cancers
AU2022320627A1 (en) 2021-07-26 2024-02-08 Abcuro, Inc. Killer cell lectin-like receptor subfamily g member 1 (klrg1) depleting antibodies
WO2023097119A2 (en) 2021-11-29 2023-06-01 Dana-Farber Cancer Institute, Inc. Methods and compositions to modulate riok2
WO2023099682A1 (en) 2021-12-02 2023-06-08 Sanofi Ceacam5 adc–anti-pd1/pd-l1 combination therapy
TW202339804A (en) 2021-12-02 2023-10-16 法商賽諾菲公司 Cea assay for patient selection in cancer therapy
WO2023137161A1 (en) 2022-01-14 2023-07-20 Amgen Inc. Triple blockade of tigit, cd112r, and pd-l1
WO2023172968A1 (en) 2022-03-09 2023-09-14 Merck Patent Gmbh Anti-gd2 antibodies, immunoconjugates and therapeutic uses thereof
WO2023170239A1 (en) 2022-03-09 2023-09-14 Merck Patent Gmbh Methods and tools for conjugation to antibodies
TW202346368A (en) 2022-05-12 2023-12-01 德商安美基研究(慕尼黑)公司 Multichain multitargeting bispecific antigen-binding molecules of increased selectivity
WO2023240287A1 (en) 2022-06-10 2023-12-14 Bioentre Llc Combinations of ctla4 binding proteins and methods of treating cancer
WO2024059675A2 (en) 2022-09-14 2024-03-21 Amgen Inc. Bispecific molecule stabilizing composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847890A (en) * 1971-11-01 1974-11-12 A Green Acidic monosaccharide-substituted proteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847890A (en) * 1971-11-01 1974-11-12 A Green Acidic monosaccharide-substituted proteins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of WO8705330A1 *
W.J. LENNURZ: "Biochemistry of Glycoproteins and Proteglycans", 1981, pages 16-22, Plenum Press, New York, US; KORNFELD & KORNFELD, Chapter 1: "Structure of glycoproteins and their oligosaccharide units" *

Also Published As

Publication number Publication date
DK583087A (en) 1987-11-06
DK583087D0 (en) 1987-11-06
EP0272253A1 (en) 1988-06-29
WO1987005330A1 (en) 1987-09-11
JPS63502716A (en) 1988-10-13
AU5627186A (en) 1987-09-28
AU5133690A (en) 1990-08-23
AU624487B2 (en) 1992-06-11
AU597574B2 (en) 1990-06-07

Similar Documents

Publication Publication Date Title
US4925796A (en) Method for enhancing glycoprotein stability
US5272066A (en) Synthetic method for enhancing glycoprotein stability
AU597574B2 (en) Method for enhancing glycoprotein stability
Kornfeld et al. Assembly of asparagine-linked oligosaccharides
EP0799318B1 (en) Methods of modifying carbohydrate moieties
Schachter Glycoproteins: their structure, biosynthesis and possible clinical implications
Staneloni et al. The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins
Wagh et al. Sugar residues on protein
RU2597975C2 (en) Method for producing sialic acid-containing sugar chain
Trincone et al. Glycosyl hydrolases and glycosyltransferases in the synthesis of oligosaccharides
Chao et al. Recent progress in chemo-enzymatic methods for the synthesis of N-glycans
Nakata et al. Structural study of the sugar chains of CD36 purified from bovine mammary epithelial cells: Occurrence of novel hybrid-type sugar chains containing the Neu5Ac. alpha. 2. fwdarw. 6GalNAc. beta. 1. fwdarw. 4GlcNAc and the Man. alpha. 1. fwdarw. 2Man. alpha. 1. fwdarw. 3Man. alpha. 1. fwdarw. 6Man groups
Nilsson Synthesis with glycosidases
Schachter et al. Oligosaccharide branching of glycoproteins: biosynthetic mechanisms and possible biological functions
Endo et al. Structures of the asparagine-linked sugar chain of glucose transporter from human erythrocytes
Yoneda et al. Structures of the N‐linked oligosaccharides on porcine plasma vitronectin
Endo et al. Structure identification of the complex-type, asparagine-linked sugar chains of β-D-galactosyl-transferase purified from human milk
Bahl et al. Characterization of glycoproteins: carbohydrate structures of glycoprotein hormones
JP3811527B2 (en) Process for producing new glycoconjugates
Thayer et al. Enzymatic synthesis of glycopeptides and glycoproteins
Kent Exploration of glycoprotein structures: sequences and consequences
JP3732871B2 (en) Method for producing complex carbohydrate
Bouquelet Enzymatic cleavage
Savage 2.2 Glycosylation: A Post-Translational Modification
Ishimizu et al. Substrate Recognition by Sugar Chain-Related Enzymes Recognition of a Large Area of Substrates and Its Strictness and Tolerance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19900205

17Q First examination report despatched

Effective date: 19910125

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19921120