WO2018152496A1 - Compositions and methods for the diagnosis and treatment of zika virus infection - Google Patents

Compositions and methods for the diagnosis and treatment of zika virus infection Download PDF

Info

Publication number
WO2018152496A1
WO2018152496A1 PCT/US2018/018709 US2018018709W WO2018152496A1 WO 2018152496 A1 WO2018152496 A1 WO 2018152496A1 US 2018018709 W US2018018709 W US 2018018709W WO 2018152496 A1 WO2018152496 A1 WO 2018152496A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
sequence
seq id
zikv
ns
Prior art date
Application number
PCT/US2018/018709
Other languages
French (fr)
Inventor
Dennis BAGAROZZI
Jason M. GOLDSTEIN
Original Assignee
The Usa, As Represented By The Secretary, Dept. Of Health And Human Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201762460635P priority Critical
Priority to US62/460,635 priority
Application filed by The Usa, As Represented By The Secretary, Dept. Of Health And Human Services filed Critical The Usa, As Represented By The Secretary, Dept. Of Health And Human Services
Publication of WO2018152496A1 publication Critical patent/WO2018152496A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses, e.g. hepatitis E virus
    • C07K16/1081Togaviridae, e.g. flavivirus, rubella virus, hog cholera virus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/18Togaviridae; Flaviviridae
    • G01N2333/183Flaviviridae, e.g. pestivirus, mucosal disease virus, bovine viral diarrhoea virus, classical swine fever virus (hog cholera virus) or border disease virus
    • G01N2333/185Flaviviruses or Group B arboviruses, e.g. yellow fever virus, japanese encephalitis, tick-borne encephalitis, dengue
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • Y02A50/38Medical treatment of vector-borne diseases characterised by the agent
    • Y02A50/381Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a virus
    • Y02A50/384Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a virus of the genus Flavivirus
    • Y02A50/385Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a virus of the genus Flavivirus the disease being Dengue
    • Y02A50/386Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a virus of the genus Flavivirus the disease being Dengue the medicinal preparation containing antigens or antibodies, e.g. vaccines, antisera
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • Y02A50/38Medical treatment of vector-borne diseases characterised by the agent
    • Y02A50/381Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a virus
    • Y02A50/384Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a virus of the genus Flavivirus
    • Y02A50/391Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a virus of the genus Flavivirus the disease being Zika
    • Y02A50/392Medical treatment of vector-borne diseases characterised by the agent the vector-borne disease being caused by a virus of the genus Flavivirus the disease being Zika the medicinal preparation containing antigens or antibodies, e.g. vaccines, antisera
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • Y02A50/50Chemical or biological analysis of biological material for identifying the disease, e.g. blood or urine testing, rapid diagnostic tests [RTDs] or immunological testing
    • Y02A50/53Chemical or biological analysis of biological material for identifying the disease, e.g. blood or urine testing, rapid diagnostic tests [RTDs] or immunological testing the disease being Dengue fever

Abstract

Antibodies and compositions of matter useful for the detection, diagnosis, and treatment of Zika Virus infection in mammals, and to methods of using those compositions of matter for the same.

Description

COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT

OF ZIKA VIRUS INFECTION

CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. provisional patent application serial no. 62/460,635, filed February 17, 2017, which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention is directed to compositions of matter useful for the diagnosis and treatment of Zika infections in mammals and to methods of using those compositions of matter for the same.

BACKGROUND

Zika virus (ZIKV) is a mosquito-transmitted flavivirus that has emerged from relative obscurity to cause an epidemic of great public health concern. During the half- century that followed its discovery in the Zika forest in Uganda in 1947, Zika virus was rarely linked to disease in humans, despite considerable transmission. The emergence of a Zika virus epidemic was first reported in Yap island in 2007, followed by outbreaks in French Polynesia in 2013 and 2014, and regularly thereafter in other islands of the Pacific. The introduction of Zika virus into the Western Hemisphere occurred in 2014-2015 in Haiti and Brazil and spread rapidly to 33 or more countries. Historically, symptomatic Zika virus infection of humans was described as a self-limiting mild febrile illness associated with rash, arthralgia, and conjunctivitis. However, recent Zika virus infection has also been associated with neurological complications, including Guillain-Barre syndrome and meningoencephalitis. Of significant concern, Zika virus infection is now strongly linked to microcephaly and intrauterine growth retardation in the fetuses of women infected with the virus while pregnant. This association has recently been confirmed in murine models of Zika virus.

Flaviviruses are spherical virus particles that incorporate two structural proteins into their lipid envelope, precursor to membrane/membrane (prM/M) and envelope (E). Virions assemble on membranes of the endoplasmic reticulum as non-infectious immature virus particles that incorporate prM and E as heterotrimeric spikes arranged with icosahedral symmetry. In this configuration, E proteins are incapable of low pH-triggered conformational changes required to drive membrane fusion following virus entry. During transit through the secretory pathway, prM is cleaved by a cellular furin-like protease, resulting in the formation of an infectious mature virion that retains only the short M peptide. The high-resolution structure of the mature Zika virus virion and the ectodomain of the E protein have been solved. Similar to other flaviviruses, mature Zika virus virions are relatively smooth particles that incorporate 180 copies each of the E and cleaved M proteins. The E protein is arranged on mature virions as antiparallel dimers that lie relatively flat against the lipid envelope in a herringbone pattern. Each E protein is composed of three structural domains connected by flexible linkers and is anchored to the viral membrane by a helical structure and two antiparallel transmembrane domains.

The capsid (C) protein, at the amino terminus of the polyprotein, is separated from the prM protein by a signal sequence directing the translocation of prM. The NS2B-3 protease complex catalyzes cleavage at the carboxy terminus of the C protein on the cytoplasmic side of the ER membrane. This is the only site in the structural polyprotein region that is cleaved by this enzyme. The type I transmembrane protein prM is anchored in the lipid bilayer by a carboxy terminus membrane anchor, which is immediately followed by the signal sequence for translocation of the E protein, also a type I

transmembrane protein. Thus, the amino terminus of the prM and E proteins are generated by signal peptidase cleavages. However, it has been noted for a number of flaviviruses that when the entire structural polyprotein region is expressed from cDNA, the signal peptidase-mediated cleavage at the amino terminus of prM does not occur efficiently, in contrast to that at the amino terminus of the E protein. This inefficient production of prM is reflected in the deficiency of secretion of the prM-E heterodimer and, in turn, the lack of immunogenicity often observed when such constructs are used for vaccination.

Neutralizing antibodies play a critical role in protection against flavivirus infection and disease. All three E protein domains contain epitopes recognized by neutralizing antibodies. Additionally, potent neutralizing antibodies have been isolated that bind surfaces composed of more than one domain or E protein. These quaternary epitopes have been identified as components of the neutralizing antibody response to dengue (DEnv), yellow fever (YFV), West Nile (WNV), and tick-borne encephalitis (TBEV) viruses. Antibodies that bind prM have been isolated from infected humans, but have shown limited neutralizing capabilities in vitro.

ZIKV has a single positive sense RNA genome that encodes seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5). Six of the NS proteins (NS2A to NS5) form a replication complex on the cytoplasmic side of the endoplasmic reticulum membrane. The glycosylated NSl, which associates with lipids, forms a homodimer inside the cells and is necessary for viral replication and late in infection. NSl is also secreted into the extracellular space as a hexameric lipoprotein particle that is involved in immune evasion and pathogenesis by interacting with components from the innate and adaptive immune systems. NSl is the major antigenic marker for viral infection, and is believed to be a biomarker for early detection of dengue virus (DEnv) infection. The molecular mechanisms of NSl are relatively well established for DEnv and West Nile virus (WNV), and the NSl -encoding sequence is suspected to be a major genetic factor underlying the diverse clinical consequences of infections caused by flaviviruses (which encompass over 70 members). But the NSl of ZIKV, which displays different pathogenesis from that of typical flaviviruses, is not fully characterized.

Recently, the crystal structure of a C-terminal fragment of ZIKV NS-1, has been reported. Comparison with West Nile and dengue virus NSl proteins revealed conserved features but diverse electrostatic characteristics at host-interaction interfaces, suggesting different modes of flavivirus pathogenesis.

Flaviviruses circulate as genetically distinct genotypes or lineages, in part due to the high error rate associated with RNA virus replication. Zika virus strains have been grouped into two lineages, African and Asian, which differ by <5% at the amino acid level. The African lineage includes the historical MR-766 strain originally identified in 1947, whereas virus strains from the Asian lineage have been attributed to the recent outbreaks in Yap, French Polynesia, and the Americas. Understanding how sequence variation among Zika virus strains impacts antibody recognition is of particular importance. DEnv, for example, circulates as four distinct serotypes that differ by 25-40% at the amino acid level. These distinct Zika virus genotypes, as well as the homology in the Flavivirus proteins make accurate, early detection of ZIKV infection difficult. Cross- reactivity of flavivirus antibodies complicates interpretation of serologic results. For example, ZIKV and DEnv infection can be mistaken for each other. In Latin America, 90% of the population may have previous exposure to DEnv and therefore DEnv and ZIKV are typically co-circulating. Additionally, viremia generally occurs at a low level, which makes viral isolation from clinical samples difficult, and detection of viral nucleic acid in serum is currently taken as a definitive diagnosis. Because the viremia is transient, RT-PCR testing for viral nucleic acid is most successful within one week after the onset of symptoms.

Other currently available ZIKV testing procedures include the CDC's Zika IgM Antibody Capture Enzyme-Linked Immunosorbent Assay (Zika MAC-ELISA), which detects IgM antibodies that appear in the blood of a person infected with ZIKV beginning five days after the start of illness and last for about twelve weeks. The Plaque Reduction Neutralization Test (PRNT) is the most specific test used to differentiate antibodies of closely related viruses and verify MAC-ELISA results.

Despite the above identified advances in understanding flaviviruses, and the Zika virus in particular, there is a great need for additional diagnostic and therapeutic agents capable of detecting the presence of ZIKV in a mammal and for effectively inhibiting ZIKV infection and replication. Accordingly, it is an objective of the present invention to specifically identify ZIKV-associated polypeptides and to use that identification specificity to produce compositions of matter useful in the therapeutic treatment and diagnostic detection of ZIKV in mammals.

SUMMARY

The invention is in part based on a variety of antibodies to ZIKV nonstructural- 1 glycoprotein (NS-1 protein) and their use in the detection and diagnosis during active ZIKV infection. The inventors isolated monoclonal antibodies (mAbs) from BALB/c mice immunized with mammalian recombinant r-NSl that was recognized by ZIKV-positive serum. Characterization using multiple methods (indirect and fixed-cell ELISA, bio-layer interferometry (BLI), immunoblotting and immunofluorescence) with active virus and r- NS1 revealed the mAbs of this disclosure (including those monoclonal antibodies produced by the 6B1, 1F10, 4A11, 4B3, 6E1, 3C2, and 4C1 clones) were ZIKV-specific, having limited cross-reactivity with other flavivirus members, notably Dengue (DEnv), West Nile (WNV) and Yellow Fever (YFV). Immunoassays were developed using optimal m Ab pairings with high sensitivity for r-NS 1 and viral culture supernatant. Thus, the mAbs of this disclosure are capable of recognizing both cell-associated and secreted forms of native NS1 from infected cell culture and are therefore high value mAbs with potential uses in immunoassay development and as immunodiagnostic reagents for clinical sample and tissue confirmation of ZIKV, and differentiation between ZIKV and related Flavivirus members. This disclosure provides an antibody which binds, preferably specifically, to a ZIKV NS1 protein. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, single-chain antibody or antibody that competitively inhibits the binding of an anti-ZIKV NS-1 protein antibody to its respective antigenic epitope. The antibodies of this disclosure may optionally be produced in CHO cells or bacterial cells and preferably inhibit the growth or proliferation of or induce the death of a cell to which they bind. For diagnostic purposes, the antibodies of this disclosure may be detectably labeled, attached to a solid support, or the like, such as a lateral flow assay device which provides for point-of-care detection of ZIKV and/or diagnosis.

This disclosure also provides vectors comprising DNA encoding any of the herein described antibodies. Host cells comprising any such vector are also provided. By way of example, the host cells may be CHO cells, E. coli cells, or yeast cells. A process for producing any of the herein described antibodies is further provided and comprises culturing host cells under conditions suitable for expression of the desired antibody and recovering the desired antibody from the cell culture.

The disclosure also provides a composition of matter comprising an anti-ZIKV NS-1 antibody as described herein, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier. This disclosure also provides an article of manufacture comprising a container and a composition of matter contained within the container, wherein the composition of matter may comprise an anti-ZIKV NS-1 antibody as described herein. The article may optionally comprise a label affixed to the container, or a package insert included with the container, that refers to the use of the composition of matter for the therapeutic treatment or diagnostic detection of a ZIKV infection.

This disclosure also provides the use of an anti-ZIKV NS-1 polypeptide antibody as described herein, for the preparation of a medicament useful in the treatment of a condition which is responsive to the anti-ZIKV NS-1 protein antibody.

This disclosure also provides any isolated antibody comprising one or more of the complementary determining regions (CDRs), including a CDR-kappal, CDR-kappa2,

CDR-kappa3, CDR-H1, CDR-H2, or CDR-H3 sequence disclosed herein, or any antibody that binds to the same epitope as such antibody. Another embodiment of this disclosure is directed to a method for inhibiting the growth of a cell that expresses a ZIKV NS-1 protein, wherein the method comprises contacting the cell with an antibody that binds to the ZIKV NS-1 protein, and wherein the binding of the antibody to the ZIKV NS-1 protein causes inhibition of the growth of the cell expressing the ZIKV NS-1 protein. In preferred embodiments, the cell is one or more of a fibroblast such as a dermal fibroblast or an infected primary human fibroblast, a keratinocyte, or an immature dendritic cell, and binding of the antibody to the ZIKV NS-1 protein causes death of the cell expressing the ZIKV NS-1 protein. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies employed in the methods of this disclosure may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin. The antibodies employed in the methods of this disclosure may optionally be produced in CHO cells or bacterial cells.

This disclosure also provides a method of therapeutically treating a mammal having a ZIKV infection by administering to the mammal a therapeutically effective amount of an antibody that binds to the ZIKV NS-1 protein, thereby resulting in the effective therapeutic treatment of the infection in the mammal. In these therapeutic methods, the antibody may be a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies employed in these methods may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin. The antibodies employed in these methods of this disclosure may optionally be produced in CHO cells or bacterial cells.

Another embodiment of this disclosure is a method of determining the presence of a ZIKV NS-1 protein in a sample suspected of containing the ZIKV NS-1 protein, by exposing the sample to an antibody that binds to the ZIKV NS-1 protein and determining binding of the antibody to the ZIKV NS-1 protein in the sample, wherein the presence of such binding is indicative of the presence of the ZIKV NS-1 protein in the sample.

Optionally, the sample may contain cells (which may be fibroblasts, keratinocytes, or dendritic cells) suspected of expressing the ZIKV NS-1 protein. The antibody employed in these methods may optionally be detectably labeled, attached to a solid support, or the like. This disclosure is further directed to mAbs and related binding proteins that bind specifically to the NS-1 protein of the ZIKA virus and to the use of those mAbs and related binding proteins in epitope blocking ELISAs. Thus, this disclosure also provides methods for detecting ZIKA virus NS-1 protein in a biological sample by contacting the sample with an antigen which contains an epitope of an NS-1 protein and determining whether an antibody in the sample binds to the epitope. Preferably the binding

determination is made in an epitope blocking ELISA. These methods thereby provide highly sensitive and specific epitope blocking ELISAs (EB ELISA) for detecting ZIKA NS-1 subtypes. A further embodiment of this disclosure is directed to a method of diagnosing the presence of a ZIKV infection in a mammal, by detecting the level of expression of a gene encoding a ZIKV NS-1 protein in a test sample of tissue cells obtained from the mammal, wherein detection of expression of the ZIKV NS-1 protein in the test sample is indicative of the presence of ZIKV infection in the mammal from which the test sample was obtained.

Another embodiment of this disclosure is a method of diagnosing the presence of a ZIKV infection in a mammal, by contacting a test sample comprising tissue cells obtained from the mammal with an antibody that binds to a ZIKV NS-1 protein and detecting the formation of a complex between the antibody and the ZIKV NS-1 protein in the test sample, wherein the formation of a complex is indicative of the presence of a ZIKV infection in the mammal. Optionally, the antibody employed is detectably labeled, attached to a solid support, or the like. In these methods, the test sample of tissue cells may be obtained from an individual suspected of having a viral infection.

Another embodiment of this disclosure is directed to a method of treating or preventing a ZIKV infection-related disorder by administering to a subject in need of such treatment an effective amount of an antagonist of a ZIKV NS-1 protein. The ZIKV infection-related disorder may be fever, rash, myalgias, joint pain, conjunctivitis, and/or neurological disorders such as microcephaly or Guillain-Barre syndrome. In these methods, the antagonist of the ZIKV NS-1 protein is an anti-ZIKV NS-1 protein antibody of this disclosure. Effective treatment or prevention of the disorder may be a result of direct killing or growth inhibition of cells that express a ZIKV NS-1 protein or by antagonizing the production of ZIKV NS-1 protein. Another embodiment of this disclosure is a method of binding an antibody to a cell that expresses a ZIKV NS-1 protein, by contacting a cell that expresses a ZIKV NS-1 protein with the antibody of this disclosure under conditions which are suitable for binding of the antibody to the ZIKV NS-1 protein and allowing binding therebetween. In preferred embodiments, the antibody is labeled with a molecule or compound that is useful for qualitatively and/or quantitatively determining the location and/or amount of binding of the antibody to the cell.

Other embodiments of this disclosure include the use of a ZIKV NS-1 protein, a nucleic acid encoding a ZIKV NS-1 protein, or a vector or host cell comprising that nucleic acid, or an anti-ZIKV NS-1 protein antibody in the preparation of a medicament useful for (i) the therapeutic treatment or diagnostic detection of a ZIKV infection, or (ii) the therapeutic treatment or prevention of a ZIKV infection-related disorder.

This disclosure also provides a method for inhibiting the production of additional viral particles in a ZIKV-infected cell, wherein the growth of the ZIKV infected cell is at least in part dependent upon the expression of a ZIKV NS-1 protein (wherein the ZIKV NS-1 protein may be expressed either within the infected cell itself or a cell that produces polypeptide(s) that have a growth potentiating effect on the infected cells), by contacting the ZIKV NS-1 protein with an antibody that binds to the ZIKV NS-1 protein, thereby antagonizing the growth-potentiating activity of the ZIKV NS-1 protein and, in turn, inhibiting the growth of the infected cell. Preferably the growth of the infected cell is completely inhibited. More preferably, binding of the antibody to the ZIKV NS-1 protein induces the death of the infected cell. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies employed in these methods may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, or the like. The antibodies employed in the methods of this disclosure may optionally be produced in CHO cells or bacterial cells.

Yet another embodiment of this disclosure is directed to a method of

therapeutically treating a viral infection in a mammal, wherein the infection is at least in part dependent upon the expression of a ZIKV NS-1 protein, by administering to the mammal a therapeutically effective amount of an antibody that binds to the ZIKV NS-1 protein, thereby antagonizing the activity of the ZIKV NS-1 protein and resulting in the effective therapeutic treatment of the infection in the mammal. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies employed in these methods may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, or the like. The antibodies employed in the methods of this disclosure may optionally be produced in CHO cells or bacterial cells.

Further embodiments of the present invention will be evident to the skilled artisan upon a reading of the present specification.

This disclosure includes the following sequences

Figure imgf000011_0001
6B 1 clone Kappa Chain CDR3 QHFWGTPRT

4A11 clone Heavy Chain aa XXXLQESGAELVKPGASVKISCKASGYTFTDYTMD sequence WVMQSHGESLEWIGDISPNYDTTAYNQKFKGKATL

TVDKS SNTAYMELRSLTSEDAAVYYCARRDRRGGF AYWGQGTLVTVSA

4A 11 clone Heavy Chain nnnnnnnnnntgcaggagtctggagctgagctggtgaagcctggggcttcagtg nucleotide sequence aagatatcctgcaaggcttctggctacacattcactgactacaccatggactgggtg atgcagagccatggagagagccttgagtggattggagatattagtcctaactatgat actactgcctacaaccagaagttcaagggaaaggccacattgactgtggacaagtc ctccaacacagcctacatggagctccgcagcctgacatctgaggacgctgcagtct attactgtgcaagaagggataggagagggggctttgcttactggggccaagggac tctggtcactgtctctgcag

4A 11 clone Heavy Chain GYTFTDYT

CDR1

4A 11 clone Heavy Chain ISPNYDTT

CDR2

4A 11 clone Heavy Chain ARRDRRGGFAY

CDR3

4A11 clone Kappa Chain aa XXXXTQTPASLSVSVGETVTITCRASENIYSSLAWYQ sequence QKQGKSPHLLVYAATNLADGVPSRFSGSGSGTQYSL

KINSLQSEDFGSYFCQHFWGTPRTFGGGTKLEIK

4A 11 clone Kappa Chain nnnnnnnnnnngacccagactccagcctccctatctgtatctgtgggagaaactg nucleotide sequence tcaccatcacatgtcgagcaagtgagaatatttacagtagtttagcatggtatcagca gaaacagggaaaatctcctcacctcctggtctatgctgcaacaaacttagcagatg gtgtgccatcaaggttcagtggcagtggatcaggcacacagtattccctcaagatc aacagcctgcagtctgaagattttgggagttatttctgtcaacatttttggggtactcct cggacgttcggtggaggcaccaagctggaaatcaaac

4A 11 clone Kappa Chain ENIYSS

CDR1

4A 11 clone Kappa Chain AAT

CDR2

4A 11 clone Kappa Chain QHFWGTPRT

CDR3

4B3 clone Heavy Chain aa XXXLQESGPEVVKPGASVKMSCKASGYTFTDYVIS sequence WVKQRTGQGLEWIGEIYPGSGSTYYNEKFKGKATLT ADKSSNTAYMQLSSLTSEDSAGYFCAGSFLDYWGQ GTTLTVSS

4B3 clone Heavy Chain nnnnnnnnnctgcaggagtctggacctgaggtggtgaagcctggggcttcagtg nucleotide sequence aagatgtcctgcaaggcttctggatacacattcactgactatgttataagttgggtga agcagagaactggacagggccttgagtggattggagagatttatcctggaagtggt agtacttactacaatgagaagttcaagggcaaggccacactgactgcagacaaatc ctccaacacagcctacatgcagctcagcagcctgacatctgaggactctgcgggct atttctgcgccggtagtttccttgactactggggccaaggcaccactctcacagtctc ctcag

4B3 clone Heavy Chain CDR1 GYTFTDYV

4B3 clone Heavy Chain CDR2 IYPGSGST

4B3 clone Heavy Chain CDR3 AGSFLDY

4B3 clone Kappa Chain aa XXXXTQTPLTLSVTIGQPASISCKSSQSLLDSDGKTY sequence LNWLLQRPGQSPKRLIYLVSKLDSGVPDRFTGSGSG

TDFTLKISRVEAEDLGVYYCWQGTHFPYTFGGGTKL EIK

4B3 clone Kappa Chain nnnnnnnnnnngacccagactccactcactttgtcggttaccattggacaaccag nucleotide sequence cctccatctcttgcaagtcaagtcagagcctcttagatagtgatggaaagacatattt gaattggttgttacagaggccaggccagtctccaaagcgcctaatctatctggtgtct aaactggactctggagtccctgacaggttcactggcagtggatcagggacagattt cacactgaaaatcagcagagtggaggctgaggatttgggagtttattattgctggca aggtacacattttccgtacacgttcggaggggggaccaagctggaaataaagc

4B3 clone Kappa Chain CDR1 QSLLDS

4B3 clone Kappa Chain CDR2 KRL

4B3 clone Kappa Chain CDR3 WQGTHFPYT

3C2 clone Heavy Chain aa XXXLQESGPELVKPGSSVKISCKASGYTFTDYSVNW sequence VRQKPGQGLEWIGWISPGSGNTNYNEKFKGKATLT

VDTSSSTASMQLSSLTSEDTAVYFCARRGYVNYGRL NEWYFDVWGAGTTVTVS S

3C2 clone Heavy Chain nnnnnnnnnctgcaggagtctggacctgagctggtgaagcctgggtcttcagtg nucleotide sequence aagatatcctgcaaggcttctggctacactttcacagactactctgtaaactgggtga ggcagaagcctggacagggacttgagtggattggatggatttctcctggaagcgg aaatactaactacaatgagaagttcaagggcaaggccacattgactgtagacacat cgtccagcacagcctccatgcagctcagcagcctgacatctgaggacactgctgtc tatttctgtgcaagaaggggctatgttaattacgggagactgaatgagtggtacttcg atgtctggggcgcagggaccacggtcaccgtctcctcag 3C2 clone Heavy Chain CDR1 GYTFTDYS

3C2 clone Heavy Chain CDR2 ISPGSGNT

3C2 clone Heavy Chain CDR3 ARRGYVNYGRLNEWYFDV

3C2 clone Kappa Chain aa XXXXTQTPSSLSASLGDRVTISCSASQGISNYLNWYQ sequence QKPDGTVKLLIYYTSNSHSGVPSRFSGSGSGTDYSLT

ISNLEPEDIATYYCQQYSKLPYTFGGGTKLEIR

3C2 clone Kappa Chain nnnnnnnnnntgacccagactccatcctccctgtctgcctctctgggagacagag nucleotide sequence tcaccatcagttgcagtgcaagtcagggcattagcaattatttaaactggtatcagca gaaaccagatggaactgttaaactcctgatctattatacatcaaattcacactcagga gtcccatcaaggttcagtggcagtgggtctgggacagattattctctcaccatcagta acctggaacctgaagatattgccacttactattgtcagcaatatagtaagcttccgtac acgttcggaggggggaccaagttagaaataagac

3C2 clone Kappa Chain CDR1 QGISNY

3C2 clone Kappa Chain CDR2 YTS

3C2 clone Kappa Chain CDR3 QQYSKLPYT

IF 10 clone Heavy Chain aa XXXLQESGGGLVKLGGSLKLSCAASGFTFSTYYMS sequence WVRQTPEKRLELVAAINSNGGSTYYPDTVKGRFTIS

RDNAKNTLYLQMS SLKSEDTALYYCARRS SGYGGY LDFWGQGTSLTVSS

IF 10 clone Heavy Chain nnnnnnnnnctgcaggagtctgggggaggcttagtgaagcttggagggtccctg nucleotide sequence aaactctcctgtgcagcctctggattcactttcagtacctattacatgtcttgggttcgc cagactccagagaagaggctggagttggtcgcagccattaatagtaatggtggtag cacctactatccagacactgtgaagggccgattcaccatctccagagacaatgcca agaacaccctgtacctgcaaatgagcagtctgaagtctgaggacacagccttgtatt actgtgcaagacggtcctccggctacggaggttacttagacttctggggccaaggc accagtctcacagtctcctcag

IF 10 clone Heavy Chain GFTFSTYY

CDR1

IF 10 clone Heavy Chain INSNGGST

CDR2

IF 10 clone Heavy Chain ARRS SGYGGYLDF

CDR3

IF 10 clone Kappa Chain aa XXXXTQTPAIMSASPGEKVTMTCSASSSVSYMHWY sequence QQKSSTSPKLWIYDTSKLASGVPGRFSGSGSGNSYSL

TISSMEAEDVATYHCFQGTGYPLTFGGGTKLEIK 47 IF 10 clone Kappa Chain nnnnnnnnnnnnacccagactccagcaatcatgtctgcatctccaggggaaaa nucleotide sequence ggtcaccatgacctgcagtgccagttcaagtgtaagttacatgcactggtaccagca gaagtcaagcacctcccccaaactctggatttatgacacatccaaactggcttctgg agtcccaggtcgcttcagtggcagtgggtctggaaactcttactctctcacgatcag cagcatggaggctgaagatgttgccacttatcactgttttcaggggactgggtaccc actcacgttcggaggggggaccaagctggaaataaagc

48 IF 10 clone Kappa Chain SVSYMH

CDR1

49 IF 10 clone Kappa Chain TSK

CDR2

50 IF 10 clone Kappa Chain FQGTGYPLT

CDR3

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 A shows the results of indirect ELISA titration of ZIKV recombinant-NS 1 protein for seven hybridoma clones.

FIG. IB shows the results of indirect ELISA titration of DENV recombinant-NS 1 protein for seven hybridoma clones.

FIG. 1C shows the results of indirect ELISA of viral NS1 detection with mAbs against ZIKV cell lysate.

FIG. ID shows dot blots of viral NS1 detection by the mAbs.

FIG. IE shows native immunoblots that summarize the reactivity of the mAbs against r- NS1 isoforms.

FIG. 2A shows immunoblots of Anti-ZIKV NS1 mAbs.

FIG. 2B shows IHC staining of flavivirus-infected cells with anti-ZIKV NSl mAb clone 3C2.

FIG. 3 A shows the results of indirect ELISA titration of thirteen mAbs against ZIKV r- NS1 to determine detection limits (LOD).

FIG. 3B shows the results of mAb pair testing for development of immunoassay for ZIKV NS1 detection.

FIG. 3C shows the results of mAb testing as reporters in the DELFIA TRF assay platform to enhance sensitivity and lower LOD.

DETAILED DESCRIPTION

I. Definitions The terms "ZIKV NS-1 protein" and "NS-1" as used herein, refer to various Zika Virus polypeptides. The ZIKV NS-1 proteins described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. The term "ZIKV NS-1 protein" refers to each individual NS-1 polypeptide disclosed herein. All disclosures in this specification which refer to the "ZIKV NS-1 protein" refer to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of antibodies to or against, formation of NS-1 binding oligopeptides to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide of the disclosure individually. The term "ZIKV NS-1 protein" also includes variants of the NS-1 polypeptides disclosed herein.

A "native sequence ZIKV NS-1 protein" comprises a polypeptide having the same amino acid sequence as the corresponding ZIKV NS-1 protein derived from nature. Such native sequence ZIKV NS-1 proteins can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence ZIKV NS-1 protein" specifically encompasses naturally-occurring truncated or secreted forms of the specific ZIKV NS-1 protein (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In certain embodiments of the disclosure, the native sequence ZIKV NS-1 proteins disclosed herein are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences.

"ZIKV NS-1 protein variant" means a ZIKV NS-1 protein, preferably an active ZIKV NS-1 protein, as defined herein having at least about 80% amino acid sequence identity with a full-length native sequence ZIKV NS-1 protein sequence as disclosed herein, a ZIKV NS-1 protein sequence lacking the signal peptide as disclosed herein, an extracellular domain of a ZIKV NS-1 protein, with or without the signal peptide, as disclosed herein or any other fragment of a full-length ZIKV NS-1 protein sequence as disclosed herein (such as those encoded by a nucleic acid that represents only a portion of the complete coding sequence for a full-length ZIKV NS-1 protein). Such ZIKV NS-1 protein variants include, for instance, ZIKV NS-1 proteins wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a ZIKV NS-1 protein variant will have at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% amino acid sequence identity, to a full-length native sequence ZIKV NS-1 protein sequence as disclosed herein, or any other specifically defined fragment of a full-length ZIKV NS-1 protein sequence as disclosed herein. Optionally, NS-1 variant polypeptides will have no more than one conservative amino acid substitution as compared to the native ZIKV NS-1 protein sequence, alternatively no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitution as compared to the native ZIKV NS-1 protein sequence.

"Percent (%) amino acid sequence identity" with respect to the ZIKV NS-1 protein sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical to the amino acid residues in the specific ZIKV NS-1 protein sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in United States Patent No. 7, 160,985, which is herein incorporated by reference. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code thereof has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as 100 times the fraction X/Y, where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. "NS-1 variant polynucleotide" or "NS-1 variant nucleic acid sequence" means a nucleic acid molecule which encodes a ZIKV NS-1 protein, preferably an active ZIKV NS-1 protein, as defined herein and which has at least about 80% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence ZIKV NS-1 protein sequence as disclosed herein, an extracellular domain of a ZIKV NS-1 protein, as disclosed herein or any other fragment of a full-length ZIKV NS-1 protein sequence as disclosed herein (such as those encoded by a nucleic acid that represents only a portion of the complete coding sequence for a full-length ZIKV NS-1 protein). Ordinarily, a NS-1 variant polynucleotide will have at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence ZIKV NS-1 protein sequence as disclosed herein, an extracellular domain of a ZIKV NS-1 protein as disclosed herein or any other fragment of a full-length ZIKV NS-1 protein sequence as disclosed herein. Variants do not encompass the native nucleotide sequence. Ordinarily, NS-1 variant polynucleotides are at least about 5 nucleotides in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length.

"Isolated," when used to describe the various ZIKV NS-1 proteins disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non- proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the ZIKV NS-1 protein natural environment will not be present.

Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

An "isolated" ZIKV NS-1 protein-encoding nucleic acid or other polypeptide- encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures.

Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

"Stringent conditions" or "high stringency conditions", as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) overnight hybridization in a solution that employs 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt' s solution, sonicated salmon sperm DNA (50 μ ηύ), 0.1% SDS, and 10% dextran sulfate at 42°C, with a 10 minute wash at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) followed by a 10 minute high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.

"Moderately stringent conditions" may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

The term "epitope tagged" when used herein refers to a chimeric polypeptide comprising a ZIKV NS-1 protein or anti-NS-1 antibody fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).

"Active" or "activity" for the purposes herein refers to form(s) of a ZIKV NS-1 protein which retain a biological and/or an immunological activity of native or naturally- occurring NS-1, wherein "biological" activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring NS-1 other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring NS-1 and an "immunological" activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring NS-1. The term "antagonist" is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native ZIKV NS- 1 protein disclosed herein. In a similar manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity of a native ZIKV NS-1 protein disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native ZIKV NS-1 proteins, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for identifying agonists or antagonists of a ZIKV NS-1 protein may comprise contacting a ZIKV NS-1 protein with a candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the ZIKV NS-1 protein.

"Treating" or "treatment" or "alleviation" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented. A subject or mammal is successfully "treated" for a ZIKV NS-1 protein-expressing viral infection if, after receiving a therapeutic amount of an anti-NS-1 antibody or NS-1 binding oligopeptide according to the methods of this disclosure, the patient shows observable and/or measurable reduction in or absence of one or more of the following: reduction in the number of infected cells or absence of the infected cells; reduction in the number of infected cells; inhibition (i.e., slow to some extent and preferably stop) of ZIKV infection including the spread of infection into neurological tissues; inhibition (i.e., slow to some extent and preferably stop) of infection spread; inhibition, to some extent, and/or relief to some extent, of one or more of the symptoms associated with the viral infection; reduced morbidity and mortality, and improvement in quality of life issues. To the extent the anti-NS-1 antibody or NS-1 binding oligopeptide may prevent growth or infection and/or kill existing infected cells, it may be cytostatic and/or cytotoxic. Reduction of these signs or symptoms may also be felt by the patient. The above parameters for assessing successful treatment and improvement in the ZIKV-associated disorders are readily measurable by routine procedures familiar to a physician. "Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature. "Mammal" for purposes of the treatment of, alleviating the symptoms of or diagnosis of a viral infection refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.

Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.

"Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as

polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG), and PLURONICS®.

By "solid phase" or "solid support" is meant a non-aqueous matrix to which an antibody or NS-1 binding oligopeptide of this disclosure can adhere or attach. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate or a lateral flow assay device; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275, 149. A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a ZIKV NS-1 protein, an antibody thereto or a NS-1 binding oligopeptide) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.

A "small" molecule or "small" organic molecule is defined herein to have a molecular weight below about 500 Daltons.

An "effective amount" of a polypeptide, antibody or NS-1 binding oligopeptide, or an agonist or antagonist thereof as disclosed herein is an amount sufficient to carry out a specifically stated purpose. An "effective amount" may be determined empirically and in a routine manner, in relation to the stated purpose.

The term "therapeutically effective amount" refers to an amount of an antibody, polypeptide, or NS-1 binding oligopeptide, or other drug effective to "treat" a disease or disorder in a subject or mammal. In the case of a ZIKV infection, the therapeutically effective amount of the drug may reduce the number of infected cells; inhibit (i.e., slow to some extent and preferably stop) spread of the infection into other cells, such as lymphatic or neurological cells organs; and/or relieve to some extent one or more of the symptoms associated with the infection. See the definition herein of "treating." To the extent the drug may prevent growth and/or kill existing infected cells, it may be cytostatic, cytotoxic, anti- inflammatory, immunomodulatory, and/or immunosuppressing.

A "growth inhibitory amount" of an anti-NS-1 antibody or NS-1 binding oligopeptide is an amount capable of inhibiting the growth of a cell, especially virus infected cell, either in vitro or in vivo. A "growth inhibitory amount" of an anti-NS-1 antibody or NS-1 binding oligopeptide for purposes of inhibiting infected cell growth may be determined empirically and in a routine manner.

A "cytotoxic amount" of an anti-NS-1 antibody or NS-1 binding is an amount capable of causing the destruction of a cell, especially virus infected cell, either in vitro or in vivo. A "cytotoxic amount" of an anti-NS-1 antibody or NS-1 binding oligopeptide for purposes of inhibiting cell growth may be determined empirically and in a routine manner. The term "antibody" is used in the broadest sense and specifically covers, for example, single anti-NS-1 monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-NS-1 antibody compositions with polyepitopic specificity, polyclonal antibodies, single chain anti-NS-1 antibodies, and fragments of anti-NS-1 antibodies (see below) as long as they exhibit the desired biological or immunological activity or specificity. The term "immunoglobulin" (Ig) is used interchangeable with antibody herein.

An "isolated antibody" is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

The basic 4-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains (an IgM antibody consists of 5 of the basic heterotetramer unit along with an additional polypeptide called J chain, and therefore contain 10 antigen binding sites, while secreted IgA antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain). In the case of IgGs, the 4-chain unit is generally about 150,000 daltons. Each L chain is linked to a H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. Each H and L chain also has regularly spaced intrachain disulfide bridges. Each H chain has at the N-terminus, a variable domain (VH) followed by three constant domains (CH) for each of the a and γ chains and four CH domains for μ and ε isotypes. Each L chain has at the N-terminus, a variable domain (VL) followed by a constant domain (CL) at its other end. The VL is aligned with the VH and the CL is aligned with the first constant domain of the heavy chain (CHI). Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains. The pairing of a VH and VL together forms a single antigen-binding site. For the structure and properties of the different classes of antibodies, see, e.g., Basic and Clinical Immunology, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, CT, 1994, page 71 and Chapter 6.

The L chain from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains (CH), immunoglobulins can be assigned to different classes or isotypes. There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated α, δ, ε, γ, and μ, respectively. The γ and a classes are further divided into subclasses on the basis of relatively minor differences in CH sequence and function, e.g., humans express the following subclasses: IgGl, IgG2, IgG3, IgG4, IgAl, and IgA2.

The term "variable" refers to the fact that certain segments of the variable domains differ extensively in sequence among antibodies. The V domain mediates antigen binding and define specificity of a particular antibody for its particular antigen. However, the variability is not evenly distributed across the 110-amino acid span of the variable domains. Instead, the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called "hypervariable regions" that are each 9-12 amino acids long. The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier "monoclonal" is not to be construed as requiring production of the antibody by any particular method. For example, useful monoclonal antibodies of this disclosure may be prepared by the hybridoma methodology first described by Kohler et al., Nature, 256:495 (1975), or may be made using recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Patent No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example. The monoclonal antibodies herein include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with, or homologous to, corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (see U.S. Patent No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81 :6851-6855 (1984)). Chimeric antibodies of interest herein include "primatized" antibodies comprising variable domain antigen- binding sequences derived from a non-human primate (e.g. Old World Monkey, Ape, etc.), and human constant region sequences.

An "intact" antibody is one which comprises an antigen-binding site as well as a CL and at least heavy chain constant domains, CHI, CH2 and CH3. The constant domains may be native sequence constant domains (e.g. human native sequence constant domains) or amino acid sequence variant thereof. Preferably, the intact antibody has one or more effector functions.

"Antibody fragments" comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies (see U.S. Patent No. 5,641,870, Example 2; Zapata et al., Protein Eng. 8(10): 1057-1062 [1995]); single- chain antibody molecules; and multispecific antibodies formed from antibody fragments.

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, and a residual "Fc" fragment, a designation reflecting the ability to crystallize readily. The Fab fragment consists of an entire L chain along with the variable region domain of the H chain (VH), and the first constant domain of one heavy chain (CHI). Each Fab fragment is monovalent with respect to antigen binding, i.e., it has a single antigen-binding site. Pepsin treatment of an antibody yields a single large F(ab')2 fragment which roughly corresponds to two disulfide linked Fab fragments having divalent antigen-binding activity and is still capable of cross-linking antigen. Fab' fragments differ from Fab fragments by having additional few residues at the carboxy terminus of the CHI domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')2 antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

The Fc fragment comprises the carboxy -terminal portions of both H chains held together by disulfides. The effector functions of antibodies are determined by sequences in the Fc region, which region is also the part recognized by Fc receptors (FcR) found on certain types of cells.

"Fv" is the minimum antibody fragment which contains a complete antigen- recognition and -binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

"Single-chain Fv" (also abbreviated as "sFv" or "scFv") are antibody fragments that comprise the VH and VL antibody domains connected into a single polypeptide chain. Preferably, the sFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer- Verlag, New York, pp. 269-315 (1994);

Borrebaeck 1995, infra. The term "diabodies" refers to small antibody fragments prepared by constructing sFv fragments (see preceding paragraph) with short linkers (about 5-10 residues) between the VH and VL domains such that inter-chain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites. Bispecific diabodies are heterodimers of two "crossover" sFv fragments in which the VH and VL domains of the two antibodies are present on different polypeptide chains. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).

"Humanized" forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from the non-human antibody. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired antibody specificity, affinity, and capability. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by

corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human

immunoglobulin. For further details, see Jones et al., Nature 321 :522-525 (1986);

Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593- 596 (1992).

A "species-dependent antibody," e.g., a mammalian anti-human IgE antibody, is an antibody which has a stronger binding affinity for an antigen from a first mammalian species than it has for a homologue of that antigen from a second mammalian species. Normally, the species-dependent antibody "binds specifically" to a human antigen (i.e., has a binding affinity (Kd) value of no more than about 1 x 10-7 M, preferably no more than about 1 x 10-8 and most preferably no more than about 1 x 10-9 M) but has a binding affinity for a homologue of the antigen from a second non-human mammalian species which is at least about 50 fold, or at least about 500 fold, or at least about 1000 fold, weaker than its binding affinity for the human antigen. The species-dependent antibody can be of any of the various types of antibodies as defined above, but preferably is a humanized or human antibody. The term "variable domain residue numbering as in Kabat" or "amino acid position numbering as in Kabat", and variations thereof, refers to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991). Using this numbering system, the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or CDR of the variable domain. For example, a heavy chain variable domain may include a single amino acid insert (residue 52a according to Kabat) after residue 52 of H2 and inserted residues (e.g. residues 82a, 82b, and 82c, etc according to Kabat) after heavy chain FR residue 82. The Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a "standard" Kabat numbered sequence.

The phrase "substantially similar," or "substantially the same", as used herein, denotes a sufficiently high degree of similarity between two numeric values (generally one associated with an antibody of the disclosure and the other associated with a

reference/comparator antibody) such that one of skill in the art would consider the difference between the two values to be of little or no biological and/or statistical significance within the context of the biological characteristic measured by the values (e.g., Kd values). The difference between the two values is preferably less than about 50%, preferably less than about 40%, preferably less than about 30%, preferably less than about 20%), preferably less than about 10%> as a function of the value for the

reference/comparator antibody. "Binding affinity" generally refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, "binding affinity" refers to intrinsic binding affinity which reflects a 1 : 1 interaction between members of a binding pair (e.g., antibody and antigen). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured by common methods known in the art, including those described herein. Low-affinity antibodies generally bind antigen slowly and tend to dissociate readily, whereas high- affinity antibodies generally bind antigen faster and tend to remain bound longer. A variety of methods of measuring binding affinity are known in the art, any of which can be used for purposes of this disclosure. Specific illustrative embodiments are described in the following.

In one embodiment, the "Kd" or "Kd value" according to this disclosure is measured by a radiolabeled antigen binding assay (RIA) performed with the Fab version of an antibody of interest and its antigen as described by the following assay that measures solution binding affinity of Fabs for antigen by equilibrating Fab with a minimal concentration of (125I)-labeled antigen in the presence of a titration series of unlabeled antigen, then capturing bound antigen with an anti-Fab antibody-coated plate (Chen, et al., (1999) J. Mol Biol 293 :865-881). To establish conditions for the assay, microtiter plates (Dynex) are coated overnight with 5 ug/ml of a capturing anti-Fab antibody (Cappel Labs) in 50 mM sodium carbonate (pH 9.6), and subsequently blocked with 2% (w/v) bovine serum albumin in PBS for two to five hours at room temperature (approximately 23 °C). In a non-adsorbant plate, 100 pM or 26 pM [125I]-antigen are mixed with serial dilutions of a Fab of interest (e.g., consistent with assessment of an anti-VEGF antibody, Fab-12, in Presta et al., (1997) Cancer Res. 57:4593-4599). The Fab of interest is then incubated overnight; however, the incubation may continue for a longer period (e.g., 65 hours) to insure that equilibrium is reached. Thereafter, the mixtures are transferred to the capture plate for incubation at room temperature (e.g., for one hour). The solution is then removed and the plate washed eight times with 0.1% Tween-20 in PBS. When the plates have dried, 150 microliter/well of scintillant (MicroScint-20; Packard) is added, and the plates are counted on a Topcount gamma counter (Packard) for ten minutes. Concentrations of each Fab that give less than or equal to 20% of maximal binding are chosen for use in competitive binding assays. According to another embodiment the Kd or Kd value is measured by using surface plasmon resonance assays using a BIAcoreTM-2000 or a BIAcoreTM-3000 (BIAcore, Inc., Piscataway, NJ) at 25 °C with immobilized antigen CM5 chips at -10 response units (RU). Briefly, carboxymethylated dextran biosensor chips (CM5, BIAcore Inc.) are activated with N-ethyl-N'- (3-dimethylaminopropyl)- carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's instructions. Antigen is diluted with lOmM sodium acetate, pH 4.8, into 5ug/ml (~0.2uM) before injection at a flow rate of 5ul/minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of antigen, 1M

ethanolamine is injected to block unreacted groups. For kinetics measurements, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS with 0.05% Tween 20 (PBST) at 25°C at a flow rate of approximately 25ul/min. Association rates (kon) and dissociation rates (koff) are calculated using a simple one-to-one Langmuir binding model (BIAcore Evaluation Software version 3.2) by simultaneous fitting the association and dissociation sensorgram. The equilibrium dissociation constant (Kd) is calculated as the ratio koff/kon. See, e.g., Chen, Y., et al., (1999) J. Mol Biol 293 :865-881. If the on-rate exceeds 106 M-l S-l by the surface plasmon resonance assay above, then the on-rate can be determined by using a fluorescent quenching technique that measures the increase or decrease in fluorescence emission intensity (excitation = 295 nm; emission = 340 nm, 16 nm band-pass) at 25 °C of a 20nM anti-antigen antibody (Fab form) in PBS, pH 7.2, in the presence of increasing concentrations of antigen as measured in a spectrometer, such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000-series SLM-Aminco spectrophotometer (ThermoSpectronic) with a stir red cuvette.

An "on-rate" or "rate of association" or "association rate" or "kon" according to this disclosure can also be determined with the same surface plasmon resonance technique described above using a BIAcoreTM-2000 or a BIAcoreTM-3000 (BIAcore, Inc.,

Piscataway, NJ) at 25 °C with immobilized antigen CM5 chips at approx. lO response units (RU). Briefly, carboxymethylated dextran biosensor chips (CM5, BIAcore Inc.) are activated with N-ethyl-N- (3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's instructions. Antigen is diluted with lOmM sodium acetate, pH 4.8, into 5ug/ml (approx.0.2uM) before injection at a flow rate of 5ul/minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of 1M ethanolamine to block unreacted groups. For kinetics measurements, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS with 0.05% Tween 20 (PBST) at 25°C at a flow rate of approximately 25 microliter/min. Association rates (kon) and dissociation rates (koff) are calculated using a simple one-to-one Langmuir binding model (BIAcore Evaluation Software version 3.2) by simultaneous fitting the association and dissociation sensorgram. The equilibrium dissociation constant (Kd) was calculated as the ratio koff/kon. See, e.g., Chen, Y., et al., (1999) J. Mol Biol 293 :865-881. However, if the on-rate exceeds 106 M-l S-l by the surface plasmon resonance assay above, then the on-rate is preferably determined by using a fluorescent quenching technique that measures the increase or decrease in fluorescence emission intensity (excitation = 295 nm; emission = 340 nm, 16 nm band-pass) at 25°C of a 20nM anti-antigen antibody (Fab form) in PBS, pH 7.2, in the presence of increasing concentrations of antigen as measured in a spectrometer, such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000-series SLM-Aminco spectrophotometer (ThermoSpectronic) with a stirred cuvette. The "Kd" or "Kd value" according to this disclosure is in one embodiment measured by a radiolabeled antigen binding assay (RIA) performed with the Fab version of the antibody and antigen molecule as described by the following assay that measures solution binding affinity of Fabs for antigen by

equilibrating Fab with a minimal concentration of (125I)-labeled antigen in the presence of a titration series of unlabeled antigen, then capturing bound antigen with an anti-Fab antibody-coated plate (Chen, et al., (1999) J. Mol Biol 293 :865-881). To establish conditions for the assay, microtiter plates (Dynex) are coated overnight with 5 ug/ml of a capturing anti-Fab antibody (Cappel Labs) in 50 mM sodium carbonate (pH 9.6), and subsequently blocked with 2% (w/v) bovine serum albumin in PBS for two to five hours at room temperature (approximately 23°C). In a non-adsorbant plate, 100 pM or 26 pM

[125I]-antigen are mixed with serial dilutions of a Fab of interest (consistent with assessement of an anti-VEGF antibody, Fab-12, in Presta et al., (1997) Cancer Res.

57:4593-4599). The Fab of interest is then incubated overnight; however, the incubation may continue for a longer period (e.g., 65 hours) to insure that equilibrium is reached. Thereafter, the mixtures are transferred to the capture plate for incubation at room temperature for one hour. The solution is then removed and the plate washed eight times with 0.1%) Tween-20 in PBS. When the plates have dried, 150 microliter/well of scintillant (MicroScint-20; Packard) is added, and the plates are counted on a Topcount gamma counter (Packard) for ten minutes. Concentrations of each Fab that give less than or equal to 20%) of maximal binding are chosen for use in competitive binding assays. According to another embodiment, the Kd value is measured by using surface plasmon resonance assays using a BIAcoreTM-2000 or a BIAcoreTM-3000 (BIAcore, Inc., Piscataway, NJ) at 25°C with immobilized antigen CM5 chips at approx.10 response units (RU). Briefly, carboxymethylated dextran biosensor chips (CM5, BIAcore Inc.) are activated with N- ethyl -N'- (3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N- hydroxysuccinimide (NHS) according to the supplier's instructions. Antigen is diluted with lOmM sodium acetate, pH 4.8, into 5ug/ml (approx.0.2uM) before injection at a flow rate of 5ul/minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of antigen, 1M ethanolamine is injected to block unreacted groups. For kinetics measurements, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS with 0.05% Tween 20 (PBST) at 25°C at a flow rate of approximately 25 microliter/min. Association rates (kon) and dissociation rates (koff) are calculated using a simple one-to-one Langmuir binding model (BIAcore Evaluation Software version 3.2) by simultaneous fitting of the association and dissociation sensorgram. The equilibrium dissociation constant (Kd) is calculated as the ratio koff/kon. See, e.g., Chen, Y., et al., (1999) J. Mol Biol 293 :865-881. If the on-rate exceeds 106 M-l S-l by the surface plasmon resonance assay above, then the on-rate can be determined by using a fluorescent quenching technique that measures the increase or decrease in fluorescence emission intensity (excitation = 295 nm; emission = 340 nm, 16 nm band-pass) at 25°C of a 20nM anti-antigen antibody (Fab form) in PBS, pH 7.2, in the presence of increasing

concentrations of antigen as measured in a spectrometer, such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000-series SLM-Aminco spectrophotometer (ThermoSpectronic) with a stir red cuvette.

In one embodiment, an "on-rate" or "rate of association" or "association rate" or "kon" according to this disclosure is determined with the same surface plasmon resonance technique described above using a BIAcoreTM-2000 or a BIAcoreTM-3000 (BIAcore, Inc., Piscataway, NJ) at 25°C with immobilized antigen CM5 chips at approx.10 response units (RU). Briefly, carboxymethylated dextran biosensor chips (CM5, BIAcore Inc.) are activated with N-ethyl-N'- (3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's instructions. Antigen is diluted with lOmM sodium acetate, pH 4.8, into 5ug/ml (approx. 0.2uM) before injection at a flow rate of 5ul/minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of 1M ethanolamine to block unreacted groups. For kinetics measurements, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS with 0.05% Tween 20 (PBST) at 25°C at a flow rate of approximately 25 microliter/min. Association rates (kon) and dissociation rates (koff) are calculated using a simple one-to-one Langmuir binding model (BIAcore Evaluation Software version 3.2) by simultaneous fitting the association and dissociation sensorgram. The equilibrium dissociation constant (Kd) was calculated as the ratio koff/kon. See, e.g., Chen, Y., et al., (1999) J. Mol Biol 293 :865-881. However, if the on-rate exceeds 106 M-l S-l by the surface plasmon resonance assay above, then the on-rate is preferably determined by using a fluorescent quenching technique that measures the increase or decrease in fluorescence emission intensity (excitation = 295 nm; emission = 340 nm, 16 nm band-pass) at 25oC of a 20nM anti-antigen antibody (Fab form) in PBS, pH 7.2, in the presence of increasing concentrations of antigen as measured in a spectrometer, such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000-series SLM-Aminco spectrophotometer (ThermoSpectronic) with a stirred cuvette. The phrase "substantially reduced," or "substantially different", as used herein, denotes a sufficiently high degree of difference between two numeric values (generally one associated with an antibody of the disclosure and the other associated with a reference/comparator antibody) such that one of skill in the art would consider the difference between the two values to be of statistical significance within the context of the biological characteristic measured by the values (e.g., Kd values, HAMA response). The difference between the two values is preferably greater than about 10%, preferably greater than about 20%, preferably greater than about 30%, preferably greater than about 40%, preferably greater than about 50% as a function of the value for the reference/comparator antibody. An "antigen" is a predetermined antigen to which an antibody can selectively bind.

The target antigen may be polypeptide, carbohydrate, nucleic acid, lipid, hapten or other naturally occurring or synthetic compound. Preferably, the target antigen is a ZIKV NS l polypeptide. An "acceptor human framework" for the purposes herein is a framework comprising the amino acid sequence of a VL or VH framework derived from a human immunoglobulin framework, or from a human consensus framework. An acceptor human framework "derived from" a human immunoglobulin framework or human consensus framework may comprise the same amino acid sequence thereof, or may contain pre- existing amino acid sequence changes. Where pre-existing amino acid changes are present, preferably no more than 5 and preferably 4 or less, or 3 or less, pre-existing amino acid changes are present. Where pre-existing amino acid changes are present in a VH, preferably those changes are only at three, two, or one of positions 71H, 73H and 78H; for instance, the amino acid residues at those positions may be 71 A, 73T and/or 78A. In one embodiment, the VL acceptor human framework is identical in sequence to the VL human immunoglobulin framework sequence or human consensus framework sequence.

Antibodies of this disclosure may be able to compete for binding to the same epitope as is bound by a second antibody. Monoclonal antibodies are considered to share the "same epitope" if each blocks binding of the other by 40% or greater at the same antibody concentration in a standard in vitro antibody competition binding analysis.

A "human consensus framework" is a framework which represents the most commonly occurring amino acid residue in a selection of human immunoglobulin VL or VH framework sequences. Generally, the selection of human immunoglobulin VL or VH sequences is from a subgroup of variable domain sequences. Generally, the subgroup of sequences is a subgroup as in Kabat et al., supra. In one embodiment, for the VL, the subgroup is subgroup kappa I as in Kabat et al. In one embodiment, for the VH, the subgroup is subgroup III as in Kabat et al.

A "VH subgroup III consensus framework" comprises the consensus sequence obtained from the amino acid sequences in variable heavy subgroup III of Kabat et al.

A "VL subgroup I consensus framework" comprises the consensus sequence obtained from the amino acid sequences in variable light kappa subgroup I of Kabat et al.

An "unmodified human framework" is a human framework which has the same amino acid sequence as the acceptor human framework, e.g. lacking human to non-human amino acid substitution(s) in the acceptor human framework.

An "altered hypervariable region" for the purposes herein is a hypervariable region comprising one or more (e.g. one to about 16) amino acid substitution(s) therein.

An "un-modified hypervariable region" for the purposes herein is a hypervariable region having the same amino acid sequence as a non-human antibody from which it was derived, i.e. one which lacks one or more amino acid substitutions therein. The term "hypervariable region", "HVR", "HV" or "CDR", when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops. Generally, antibodies comprise six hypervariable regions; three in the VH (HI, H2, H3), and three in the VL (LI, L2, L3). A number of hypervariable region delineations are in use and are encompassed herein. The Kabat

Complementarity Determining Regions (CDRs) are based on sequence variability and are the most commonly used (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). Chothia refers instead to the location of the structural loops (Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). The "contact" hypervariable regions are based on an analysis of the available complex crystal structures. The residues from each of these hypervariable regions are noted below. Unless otherwise denoted, Kabat numbering is employed.

Hypervariable region locations are generally: amino acids 24-34 (HVR-L1), amino acids 49-56 (HVR-L2), amino acids 89-97 (HVR-L3), amino acids 26-35A (HVR-H1), amino acids 49-65 (HVR-H2), and amino acids 93-102 (HVR-H3).

Hypervariable regions may also comprise "extended hypervariable regions" as follows: amino acids 24-36 (LI), and amino acids 46-56 (L2) in the VL. The variable domain residues are numbered according to Kabat et al., supra for each of these definitions. A "human antibody" is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies as disclosed herein. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen-binding residues. An "affinity matured" antibody is one with one or more alterations in one or more

CDRs thereof which result in an improvement in the affinity or binding specificity of the antibody for antigen, compared to a parent antibody which does not possess those alteration(s). Preferred affinity matured antibodies will have nanomolar or even picomolar affinities for the target antigen. Affinity matured antibodies are produced by procedures known in the art. Marks et al. Bio/Technology 10:779-783 (1992) describes affinity maturation by VH and VL domain shuffling. Random mutagenesis of CDR and/or framework residues is described by: Barbas et al. Proc Nat. Acad. Sci, USA 91 :3809-3813 (1994) ; Schier et al. Gene 169: 147-155 (1995); Yelton et al. J. Immunol. 155: 1994-2004

(1995) ; Jackson et al., J. Immunol. 154(7):3310-9 (1995); and Hawkins et al, J. Mol. Biol. 226:889-896 (1992).

A "blocking" antibody or an "antagonist" antibody is one which inhibits or reduces biological activity of the antigen it binds. Preferred blocking antibodies or antagonist antibodies substantially or completely inhibit the biological activity of the antigen.

A "NS-1 binding oligopeptide" is an oligopeptide that binds, preferably specifically, to a ZIKV NS-1 protein. NS-1 binding oligopeptides may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. NS-1 binding oligopeptides are usually at least about 5 amino acids in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 amino acids in length or more, wherein such oligopeptides are capable of binding, preferably specifically, to a ZIKV NS- 1 protein. NS-1 binding oligopeptides of this disclosure preferably comprise or consist of at least one complementarity determining region (CDR) of the antibodies of this disclosure. NS-1 binding oligopeptides may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening oligopeptide libraries for oligopeptides that are capable of specifically binding to a polypeptide target are known in the art (see, e.g., U.S. Patent Nos. 5,556,762, 5,750,373, 4,708,871, 4,833,092, 5,223,409, 5,403,484, 5,571,689, 5,663,143; PCT Publication Nos. WO 84/03506 and WO84/03564; Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 81 :3998- 4002 (1984); Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 82: 178-182 (1985); Geysen et al., in Synthetic Peptides as Antigens, 130-149 (1986); Geysen et al., J. Immunol. Meth., 102:259-274 (1987); Schoofs et al., J. Immunol., 140:611-616 (1988), Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378; Lowman, H.B. et al. (1991) Biochemistry, 30: 10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363, and Smith, G. P. (1991) Current Opin. Biotechnol., 2:668). An antibody, oligopeptide or other organic molecule "which binds" an antigen of interest, e.g. a ZIKV polypeptide antigen target, is one that binds the antigen with sufficient affinity such that the antibody or oligopeptide is useful as a diagnostic and/or therapeutic agent in targeting a viral particle, or a cell or a tissue expressing the antigen, and does not significantly cross-react with other proteins, such as other flavivirus proteins, specifically other NS-1 flavivirus proteins, and specifically DEnv proteins. In such embodiments, the extent of binding of the antibody or oligopeptide to a "non-target" protein will be less than about 10% of the binding of the antibody or oligopeptide to its particular target protein as determined by fluorescence activated cell sorting (FACS) analysis or radioimmunoprecipitation (RIA). With regard to the binding of an antibody or oligopeptide to a target molecule, the term "specific binding" or "specifically binds to" or is "specific for" a particular polypeptide or an epitope on a particular polypeptide target means binding that is measurably different from a non-specific interaction. Specific binding can be measured, for example, by determining binding of a molecule compared to binding of a control molecule, which generally is a molecule of similar structure that does not have binding activity. For example, specific binding can be determined by competition with a control molecule that is similar to the target, for example, an excess of non-labeled target. In this case, specific binding is indicated if the binding of the labeled target to a probe is competitively inhibited by excess unlabeled target. The term "specific binding" or "specifically binds to" or is "specific for" a particular polypeptide or an epitope on a particular polypeptide target as used herein can be exhibited, for example, by a molecule having a Kd for the target of at least about 10"4 M, alternatively at least about 10"5 M, alternatively at least about 10"6 M, alternatively at least about 10"7 M, alternatively at least about 10"8 M, alternatively at least about 10"9 M, alternatively at least about 10"10 M, alternatively at least about 10"11 M, alternatively at least about 10"12 M, or greater. In one embodiment, the term "specific binding" refers to binding where a molecule binds to a particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope.

An antibody or oligopeptide that "inhibits the growth of infected cells expressing a ZIKV NS-1 protein" or a "growth inhibitory" antibody or oligopeptide is one which results in measurable growth inhibition of infected cells expressing or overexpressing the appropriate ZIKV NS-1 protein. The ZIKV NS-1 protein may be a transmembrane polypeptide expressed on the surface of an infected cell or may be a polypeptide that is produced and secreted by an infected cell. Preferred growth inhibitory anti-NS-1 antibodies or oligopeptides inhibit growth of NS-1 -expressing cells by greater than 20%, preferably from about 20% to about 50%, and even more preferably, by greater than 50% (e.g., from about 50% to about 100%) as compared to the appropriate control, the control typically being cells not treated with the antibody or oligopeptide being tested. In one embodiment, growth inhibition can be measured at an antibody concentration of about 0.1 to 30 μg/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the cells to the antibody. Growth inhibition of cells in vivo can be determined in various ways such as is described in the Experimental Examples section below. The antibody is growth inhibitory in vivo if administration of the anti-NS-1 antibody at about 1 μg/kg to about 100 mg/kg body weight results in reduction in infected cells or inhibited ZIKV proliferation within about 1 day to 3 months from the first administration of the antibody, preferably within about 1 to 5 days.

Antibody "effector functions" refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: Clq binding and complement dependent cytotoxicity; Fc receptor binding;

antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor); and B cell activation. "Antibody-dependent cell-mediated cytotoxicity" or "ADCC" refers to a form of cytotoxicity in which secreted Ig bound onto Fc receptors (FcRs) present on certain cytotoxic cells (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies "arm" the cytotoxic cells and are absolutely required for such killing. The primary cells for mediating ADCC, NK cells, express FcyRIII only, whereas monocytes express FcyRI, FcyRII and FCYRIII. FCR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in US Patent No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. (USA) 95:652-656 (1998).

"Fc receptor" or "FcR" describes a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcyRI, FcyRII and FcyRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcyRII receptors include FcyRIIA (an "activating receptor") and FcyRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcyRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain.

Inhibiting receptor FcyRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain, (see review M. in Daeron, Annu. Rev. Immunol.

15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol.

9:457-492 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)).

"Human effector cells" are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least FcyRIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source, e.g., from blood. "Complement dependent cytotoxicity" or "CDC" refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (Clq) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g., as described in Gazzano-Santoro et al., J. Immunol. Methods 202: 163 (1996), may be performed.

An antibody or oligopeptide which "induces cell death" is one which causes a viable cell to become nonviable. The cell is one which expresses a ZIKV NS-1 protein or is infected with ZIKV. Cell death in vitro may be determined in the absence of

complement and immune effector cells to distinguish cell death induced by antibody- dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC). Thus, the assay for cell death may be performed using heat inactivated serum (i.e., in the absence of complement) and in the absence of immune effector cells. To determine whether the antibody or oligopeptide is able to induce cell death, loss of membrane integrity as evaluated by uptake of propidium iodide (PI), trypan blue (see Moore et al. Cytotechnology 17: 1-11 (1995)) or 7AAD can be assessed relative to untreated cells.

A "NS-1 -expressing cell" is a cell which expresses an endogenous or transfected ZIKV NS-1 protein which may include expression either on the cell surface or in a secreted form.

As used herein, the term "immunoadhesin" designates antibody-like molecules which combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is "heterologous"), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD, or IgM.

The word "label" when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to an antibody or oligopeptide so as to generate a "labeled" antibody or oligopeptide. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., At211, 1131, 1125, Y90, Rel86, Rel88, Sml53, Bi212, P32 and radioactive isotopes of Lu), chemotherapeutic agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, immune suppressants, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. An antiviral agent causes destruction of virus-infected cells.

A "growth inhibitory agent" when used herein refers to a compound or

composition which inhibits growth of a cell, especially a ZIKV-infected cell, either in vitro or in vivo. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of ZIKV-infected cells in S phase. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce Gl arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest Gl also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5- fluorouracil, and ara-C.

The term "cytokine" is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-a and -β; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF-β; platelet-growth factor; transforming growth factors (TGFs) such as TGF-a and TGF-β; insulin-like growth factor-I and -II;

erythropoietin (EPO); osteoinductive factors; interferons such as interferon -α, -β, and -γ; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte- macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL- la, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12; a tumor necrosis factor such as TNF-a or TNF-B; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines.

The term "package insert" is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.

II. Compositions and Methods

A. Anti-NS-1 Antibodies

This disclosure provides anti-NS-1 antibodies which may find use herein as therapeutic and/or diagnostic agents. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies.

1. Polyclonal Antibodies

Polyclonal antibodies are preferably raised in animals by multiple subcutaneous or intraperitoneal injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen (especially when synthetic peptides are used) to a protein that is immunogenic in the species to be immunized. For example, the antigen can be conjugated to keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor, using a bifunctional or derivatizing agent, e.g.,

maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N- hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOC12, or R1N=C= R, where R and Rl are different alkyl groups.

Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 μg or 5 μg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later, the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to fourteen days later, the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.

2. Monoclonal Antibodies Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567).

In the hybridoma method, a mouse or other appropriate host animal, is immunized as described above to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. After immunization, lymphocytes are isolated and then fused with a myeloma cell line using a suitable fusing agent, such as

polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies:

Principles and Practice, pp.59-103 (Academic Press, 1986)).

The hybridoma cells thus prepared are seeded and grown in a suitable culture medium which medium preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells (also referred to as fusion partner). For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine

phosphoribosyl transferase (HGPRT or HPRT), the selective culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

Preferred fusion partner myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a selective medium that selects against the unfused parental cells. Preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 and derivatives e.g., X63-Ag8-653 cells available from the American Type Culture Collection, Manassas, Virginia, USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for producing human monoclonal antibodies (Kozbor, J. Immunol., 133 :3001 (1984); and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).

Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by

immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA). The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis described in Munson et al., Anal. Biochem., 107:220 (1980).

Once hybridoma cells that produce antibodies of the desired specificity, affinity, and/or activity are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal e.g, by i.p. injection of the cells into mice. The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, affinity chromatography (e.g., using protein A or protein G-Sepharose) or ion-exchange chromatography, hydroxylapatite chromatography, gel electrophoresis, dialysis, etc. DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5:256-262 (1993) and Pluckthun, Immunol. Revs. 130: 151-188 (1992). In a further embodiment, monoclonal antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in

McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio/Technology, 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res. 21 :2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.

The DNA that encodes the antibody may be modified to produce chimeric or fusion antibody polypeptides, for example, by substituting human heavy chain and light chain constant domain (CH and CL) sequences for the homologous murine sequences (U.S. Patent No. 4,816,567; and Morrison, et al., Proc. Natl Acad. Sci. USA, 81 :6851 (1984)), or by fusing the immunoglobulin coding sequence with all or part of the coding sequence for a non-immunoglobulin polypeptide (heterologous polypeptide). The non- immunoglobulin polypeptide sequences can substitute for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen. 3. Human and Humanized Antibodies

The anti-NS-1 antibodies of this disclosure may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321 :522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].

Methods for humanizing non-human antibodies are known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain.

Humanization can be essentially performed by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is important to reduce antigenicity and HAMA response (human anti-mouse antibody) when the antibody is intended for human therapeutic use. According to the "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences. The human V domain sequence which is closest to that of the rodent is identified and the human framework region (FR) within it accepted for the humanized antibody (Sims et al., J. Immunol. 151 :2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol. 151 :2623 (1993)).

It is further important that antibodies be humanized with retention of high binding affinity for the antigen and other favorable biological properties. To achieve this goal, humanized antibodies may be prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody

characteristic, such as increased affinity or specificity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.

Various forms of humanized anti-NS-1 antibodies are contemplated. For example, the humanized antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate. Alternatively, the humanized antibody may be an intact antibody, such as an intact IgGl antibody.

As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array into such germ- line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno. 7:33 (1993); U.S.

Patent Nos. 5,545,806, 5,569,825, 5,591,669 (all of GenPharm); 5,545,807; and WO 97/17852.

Alternatively, phage display technology (McCafferty et al., Nature 348:552-553 [1990]) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. Using this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as Ml 3 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the

filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats, reviewed in, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3 :564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al., Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol.

222:581-597 (1991), or Griffith et al., EMBO J. 12:725-734 (1993). See, also, U.S. Patent Nos. 5,565,332 and 5,573,905.

As discussed above, human antibodies may also be generated in vitro in activated B cells (see, for example, U.S. Patents 5,567,610 and 5,229,275). 4. Antibody Fragments

In certain circumstances, there are advantages to using antibody fragments, rather than whole antibodies. The smaller size of the fragments allows for rapid clearance, and may lead to improved access to ZIKV-infected cells or organs in a mammal.

Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24: 107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and ScFv antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab')2 fragments (Carter et al., Bio/Technology 10: 163-167 (1992)). According to another approach, F(ab')2 fragments can be isolated directly from recombinant host cell culture. Fab and F(ab')2 fragment with increased in vivo half-life comprising a salvage receptor binding epitope residues are described in U.S. Patent No. 5,869,046. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458. Fv and sFv are the only species with intact combining sites that are devoid of constant regions; thus, they are suitable for reduced nonspecific binding during in vivo use. sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody Engineering, ed.

Borrebaeck, supra. The antibody fragment may also be a "linear antibody", e.g., as described in U.S. Patent 5,641,870. Such linear antibody fragments may be monospecific or bispecific.

5. Bispecific Antibodies Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of a NS-1 protein. Other such antibodies may combine a NS-1 binding site with a binding site for another protein. Alternatively, an anti-NS-1 arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD3) (see, e.g., Baeuerle, et al., Curr. Opin. Mol. Ther. 1 l(l):22-30 (2009)), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD 16), so as to focus and localize cellular defense mechanisms to the NS-1 -expressing cell.

Bispecific antibodies may also be used to localize cytotoxic agents to ZIKV-infected cells which express NS-1. These antibodies possess a NS-1 -binding arm and an arm which binds the cytotoxic agent (e.g., saporin, anti-interferon-a, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g., F(ab')2 bispecific antibodies).

WO 96/16673 describes a bispecific anti-ErbB2/anti-FcYRIII antibody and U.S.

Patent No. 5,837,234 discloses a bispecific anti-ErbB2/anti-FcyRI antibody. A bispecific anti-ErbB2/Fca antibody is shown in WO98/02463. U.S. Patent Nos. 5,821,337 and

6,407,213 teach bispecific anti-ErbB2/anti-CD3 antibodies. Additional bispecific antibodies that bind an epitope on the CD3 antigen and a second epitope have been described. See, for example, U.S. Patent Nos. 5,078,998 (anti-CD3/tumor cell antigen);

5,601,819 (anti-CD3/IL-2R; anti-CD3/CD28; anti-CD3/CD45); 6,129,914 (anti- CD3/malignant B cell antigen); 7,112,324 (anti-CD3/CD19); 6,723,538 (anti-CD3/CCR5);

7,235,641 (anti-CD3/EpCAM); 7,262,276 (anti-CD3/ovarian tumor antigen); and

5,731,168 (anti-CD3/CD4IgG). Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J. 10:3655-3659 (1991).

According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. Preferably, the fusion is with an Ig heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CHI) containing the site necessary for light chain bonding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host cell. This provides for greater flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yield of the desired bispecific antibody. It is, however, possible to insert the coding sequences for two or all three polypeptide chains into a single expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios have no significant effect on the yield of the desired chain combination.

In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology 121 :210 (1986).

According to another approach described in U.S. Patent No. 5,731, 168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g., tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g., alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Patent No. 4,676,980, along with a number of cross-linking techniques.

Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')2 fragments. These fragments are reduced in the presence of the dithiol complexing agent, sodium arsenite, to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with

mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes. Recent progress has facilitated the direct recovery of Fab'-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')2 molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets. Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5): 1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a VH connected to a VL by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).

6. Heteroconjugate Antibodies

Heteroconjugate antibodies are also within the scope of this disclosure.

Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have been proposed to target immune system cells to unwanted cells [U.S. Patent No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed in U.S. Patent No. 4,676,980.

7. Multivalent Antibodies

A multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind. The antibodies of this disclosure can be multivalent antibodies (which are other than of the IgM class) with three or more antigen binding sites (e.g. tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody. The multivalent antibody can comprise a dimerization domain and three or more antigen binding sites. The preferred dimerization domain comprises (or consists of) an Fc region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region. The preferred multivalent antibody herein comprises (or consists of) three to about eight, but preferably four, antigen binding sites. The multivalent antibody comprises at least one polypeptide chain (and preferably two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains. For instance, the polypeptide chain(s) may comprise VDl-(Xl)n-VD2-(X2)n-Fc, wherein VDl is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, XI and X2 represent an amino acid or polypeptide, and n is 0 or 1. For instance, the polypeptide chain(s) may comprise: VH-CH1 -flexible linker-VH-CHl-Fc region chain; or VH-CH1- VH-CHl-Fc region chain. The multivalent antibody preferably further comprises at least two (and preferably four) light chain variable domain polypeptides. The multivalent antibody may comprise from about two to about eight light chain variable domain polypeptides. The light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, further comprise a CL domain.

8. Effector Function Engineering

It may be desirable to modify the antibody of the disclosure with respect to effector function, e.g., so as to enhance antigen-dependent cell-mediated cyotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176: 1191-1195 (1992) and Shopes, B. J. Immunol.

148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-viral activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al., Cancer Research 53 :2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design 3 :219-230 (1989).

To increase the serum half-life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in U.S. Patent 5,739,277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgGl, IgG2, IgG3, or IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule.

9. Immunoconjugates

The disclosure also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of

radioconjugated antibodies. Examples include 212Bi, 1311, 131In, 90Y, and 186Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as l,5-difluoro-2,4- dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon- 14-labeled l-isothiocyanatobenzyl-3- methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026.

This disclosure further contemplates an immunoconjugate formed between an antibody and a compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).

For selective destruction of the ZIKV-infected cell, the antibody may comprise a radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated anti-NS-1 antibodies. Examples include At211, 1131, 1125, Y90, Rel86, Rel88, Sml53, Bi212, P32, Pb212 and radioactive isotopes of Lu. When the conjugate is used for diagnosis, it may comprise a radioactive atom for scintigraphic studies, for example tc99m or 1123, or a spin label for nuclear magnetic resonance ( MR) imaging (also known as magnetic resonance imaging, MRI), such as iodine-123 again, iodine-131, indium-I l l, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.

The radio- or other labels may be incorporated in the conjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as tc99m or 1123, Rel86, Rel88 and Inl 11 can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. "Monoclonal Antibodies in Immunoscintigraphy" (Chatal, CRC Press 1989) describes other methods in detail.

Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidom ethyl) cyclohexane-l-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as l,5-difluoro-2,4- dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238: 1098 (1987). Carbon- 14-labeled l-isothiocyanatobenzyl-3- methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026. The linker may be a "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chan et al., Cancer Research 52: 127-131 (1992); U.S. Patent No. 5,208,020) may be used.

The compounds of the disclosure expressly contemplate, but are not limited to, an ADC prepared with cross-linker reagents: BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MPBH, SBAP, SIA, SIAB, SMCC, SMPB, SMPH, sulfo-EMCS, sulfo-GMBS, sulfo-KMUS, sulfo-MBS, sulfo-SIAB, sulfo-SMCC, and sulfo-SMPB, and SVSB

(succinimidyl-(4-vinylsulfone) benzoate) which are commercially available from Pierce Biotechnology, Inc., Rockford, IL).

Alternatively, a fusion protein comprising the anti-ZIKV NS-1 antibody and cytotoxic agent may be made, e.g., by recombinant techniques or peptide synthesis. The length of DNA may comprise respective regions encoding the two portions of the conjugate either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate.

In yet another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in pre-targeting of viral infected cells, wherein the antibody- receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) which is conjugated to a cytotoxic agent (e.g., a radionucleotide).

10. Immunoliposomes

The anti-NS-1 antibodies disclosed herein may also be formulated as

immunoliposomes. A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA 77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and W097/38731 published October 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG- derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of this disclosure can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem. 257:286-288 (1982) via a disulfide interchange reaction. A

chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst. 81(19): 1484 (1989).

B. NS-1 Binding Oligopeptides

NS-1 binding oligopeptides of this disclosure are oligopeptides that bind, preferably specifically, to a ZIKV NS-1 protein. NS-1 binding oligopeptides may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. NS-1 binding oligopeptides are usually at least about 5 amino acids in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 amino acids in length or more, wherein such oligopeptides that are capable of binding, preferably specifically, to a ZIKV NS-1 protein. NS-1 binding oligopeptides may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening oligopeptide libraries for oligopeptides that are capable of specifically binding to a polypeptide target are well known in the art (see, e.g., U.S. Patent Nos. 5,556,762, 5,750,373, 4,708,871, 4,833,092, 5,223,409, 5,403,484, 5,571,689, 5,663, 143; PCT

Publication Nos. WO 84/03506 and WO84/03564; Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 81 :3998-4002 (1984); Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 82: 178-182 (1985); Geysen et al., in Synthetic Peptides as Antigens, 130-149 (1986); Geysen et al., J. Immunol. Meth., 102:259-274 (1987); Schoofs et al., J. Immunol., 140:611-616 (1988), Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378; Lowman, H.B. et al. (1991) Biochemistry, 30: 10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363, and Smith, G. P. (1991) Current Opin. Biotechnol., 2:668).

In this regard, bacteriophage (phage) display is one well known technique which allows one to screen large oligopeptide libraries to identify member(s) of those libraries which are capable of specifically binding to a polypeptide target. Phage display is a technique by which variant polypeptides are displayed as fusion proteins to the coat protein on the surface of bacteriophage particles (Scott, J.K. and Smith, G. P. (1990) Science 249: 386). The utility of phage display lies in the fact that large libraries of selectively randomized protein variants (or randomly cloned cDNAs) can be rapidly and efficiently sorted for those sequences that bind to a target molecule with high affinity. Display of peptide (Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378) or protein (Lowman, H.B. et al. (1991) Biochemistry, 30: 10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363) libraries on phage have been used for screening millions of polypeptides or oligopeptides for ones with specific binding properties (Smith, G. P. (1991) Current Opin. Biotechnol., 2:668). Sorting phage libraries of random mutants requires a strategy for constructing and propagating a large number of variants, a procedure for affinity purification using the target receptor, and a means of evaluating the results of binding enrichments. U.S. Patent Nos. 5,223,409, 5,403,484, 5,571,689, and 5,663, 143.

Although most phage display methods have used filamentous phage, lambdoid phage display systems (WO 95/34683; U.S. 5,627,024), T4 phage display systems (Ren et al., Gene, 215: 439 (1998); Zhu et al., Cancer Research, 58(15): 3209-3214 (1998); Jiang et al., Infection & Immunity, 65(11): 4770-4777 (1997); Ren et al., Gene, 195(2):303-311 (1997); Ren, Protein Sci., 5: 1833 (1996); Efimov et al., Virus Genes, 10: 173 (1995)) and T7 phage display systems (Smith and Scott, Methods in Enzymology, 217: 228-257 (1993); U.S. 5,766,905) are also known.

Many other improvements and variations of the basic phage display concept have now been developed. These improvements enhance the ability of display systems to screen peptide libraries for binding to selected target molecules and to display functional proteins with the potential of screening these proteins for desired properties. Combinatorial reaction devices for phage display reactions have been developed (WO 98/14277) and phage display libraries have been used to analyze and control bimolecular interactions (WO 98/20169; WO 98/20159) and properties of constrained helical peptides (WO

98/20036). WO 97/35196 describes a method of isolating an affinity ligand in which a phage display library is contacted with one solution in which the ligand will bind to a target molecule and a second solution in which the affinity ligand will not bind to the target molecule, to selectively isolate binding ligands. WO 97/46251 describes a method of biopanning a random phage display library with an affinity purified antibody and then isolating binding phage, followed by a micropanning process using microplate wells to isolate high affinity binding phage. The use of Staphylococcus aureus protein A as an affinity tag has also been reported (Li et al. (1998) Mol Biotech., 9: 187). WO 97/47314 describes the use of substrate subtraction libraries to distinguish enzyme specificities using a combinatorial library which may be a phage display library. A method for selecting enzymes suitable for use in detergents using phage display is described in WO 97/09446. Additional methods of selecting specific binding proteins are described in U.S. Patent Nos. 5,498,538, 5,432,018, and WO 98/15833.

Methods of generating peptide libraries and screening these libraries are also disclosed in U.S. Patent Nos. 5,723,286, 5,432,018, 5,580,717, 5,427,908, 5,498,530, 5,770,434, 5,734,018, 5,698,426, 5,763,192, and 5,723,323.

C. Screening for Anti-NS-1 Antibodies and NS-1 Binding Oligopeptides with the Desired Properties

Techniques for generating antibodies or oligopeptides that bind to ZIKV NS-1 proteins have been described above. One may further select antibodies or oligopeptides with certain biological characteristics, as desired.

The growth inhibitory effects of an anti-NS-1 antibody or oligopeptide of this disclosure may be assessed by methods known in the art, e.g., using cells which express a ZIKV NS-1 protein either endogenously or following transfection with the NS-1 gene. For example, appropriate ZIKV infected cells may be treated with an anti-NS-1 monoclonal antibody or oligopeptide of this disclosure at various concentrations for a few days (e.g., 2-7) and stained with crystal violet or MTT or analyzed by some other colorimetric assay. Another method of measuring proliferation would be by comparing 3H-thymidine uptake by the cells treated in the presence or absence an anti-NS-1 antibody, or NS-1 binding oligopeptide of the disclosure. After treatment, the cells are harvested and the amount of radioactivity incorporated into the DNA quantitated in a scintillation counter. Appropriate positive controls include treatment of a selected cell line with a growth inhibitory antibody known to inhibit growth of that cell line. Growth inhibition of infected cells in vivo can be determined in various ways known in the art. Preferably, the anti-NS-1 antibody, or NS-1 binding oligopeptide will inhibit cell proliferation of a ZIKV infected cell in vitro or in vivo by about 25-100% compared to the untreated infected cell, more preferably, by about 30-100%, and even more preferably by about 50-100% or 70-100%. Growth inhibition can be measured at an antibody concentration of about 0.5 to 30 μg/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the cells to the antibody. The antibody is growth inhibitory in vivo if administration of the anti-NS-1 antibody at about 1 μg/kg to about 100 mg/kg body weight results in reduction in cell growth or proliferation within about 5 days to 3 months from the first

administration of the antibody, preferably within about 5 to 30 days.

To select for an anti-NS-1 antibody, NS-1 binding oligopeptide which induces cell death, loss of membrane integrity as indicated by, e.g., propidium iodide (PI), trypan blue or 7AAD uptake may be assessed relative to control. A PI uptake assay can be performed in the absence of complement and immune effector cells. ZIKV NS-1 protein-expressing cells are incubated with medium alone or medium containing the appropriate anti-NS-1 antibody (e.g, at about 10μg/ml), NS-1 binding oligopeptide. The cells are incubated for a 3-day time period. Following each treatment, cells are washed and aliquoted into 35 mm strainer-capped 12 x 75 tubes (1ml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10μg/ml). Samples may be analyzed using a

FACSCAN® flow cytometer and FACSCONVERT® CellQuest software (Becton Dickinson). Those anti-NS-1 antibodies, or NS-1 binding oligopeptides that induce statistically significant levels of cell death as determined by PI uptake may be selected as cell death-inducing anti-NS-1 antibodies or NS-1 binding oligopeptides. To screen for antibodies or oligopeptides which bind to an epitope on a ZIKV NS-

1 protein bound by an antibody of interest, a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. This assay can be used to determine if a test antibody or oligopeptide binds the same site or epitope as a known anti-NS-1 antibody. Alternatively, or additionally, epitope mapping can be performed by methods known in the art. For example, the antibody sequence can be mutagenized such as by alanine scanning, to identify contact residues. The mutant antibody is initailly tested for binding with polyclonal antibody to ensure proper folding. In a different method, peptides corresponding to different regions of a ZIKV NS-1 protein can be used in competition assays with the test antibodies or with a test antibody and an antibody with a characterized or known epitope. D. Anti-NS-1 Antibody and ZIKV NS-1 binding Oligopeptide Variants

In addition to the anti-NS-1 antibodies described herein, it is contemplated that anti-NS-1 antibody variants can be prepared. Anti-NS-1 antibody variants can be prepared by introducing appropriate nucleotide changes into the encoding DNA, and/or by synthesis of the desired antibody or polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the anti-NS-1 antibody, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.

Variations in the anti-NS-1 antibodies described herein can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion, or insertion of one or more codons encoding the antibody or polypeptide that results in a change in the amino acid sequence as compared with the native sequence antibody or polypeptide. Optionally, the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the anti- NS-1 antibody. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the anti-NS-1 antibody with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements.

Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions, or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence.

Anti-NS-1 antibody fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native antibody. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the anti-NS-1 antibody.

Anti-NS-1 antibody fragments may be prepared by any of a number of

conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating antibody or polypeptide fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired antibody or polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5' and 3' primers in the PCR. Preferably, anti-NS-1 antibody fragments share at least one biological and/or

immunological activity with the native anti-NS-1 antibodies disclosed herein.

Conservative substitutions of interest are shown in Table 1 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 1, or as further described below in reference to amino acid classes, are introduced and the products screened.

Table 1

Figure imgf000064_0001
Glu (E) Asp; Gin Asp

Gly (G) Ala Ala

His (H) Asn; Gin; Lys; Arg Arg lie (I) Leu; Val; Met; Ala; Phe; Norleucine Leu

Leu (L) Norleucine; lie; Val; Met; Ala; Phe lie

Lys (K) Arg; Gin; Asn Arg

Met (M) Leu;Phe;Ile Leu

Phe (F) Trp; Leu; Val; lie; Ala; Tyr Tyr

Pro (P) Ala Ala

Ser (S) Thr Thr

Thr (T) Val; Ser Ser

Trp (W) Tyr; Phe Tyr

Tyr (Y) Trp; Phe; Thr; Ser Phe

Val (V) lie; Leu; Met; Phe; Ala; Norleucine Leu

Substantial modifications in function or immunological identity of the anti-NS-1 antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:

(1) hydrophobic: Norleucine, Met, Ala, Val, Leu, He;

(2) neutral hydrophilic: Cys, Ser, Thr; Asn; Gin

(3) acidic: Asp, Glu;

(4) basic: His, Lys, Arg;

(5) residues that influence chain orientation: Gly, Pro; and

(6) aromatic: Trp, Tyr, Phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites. The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13 :4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells et al., Gene, 34:315 (1985)], restriction selection mutagenesis [Wells et al., Philos. Trans. R. Soc.

London SerA, 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the anti-NS-1 antibody variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, Science, 244: 1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The

Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150: 1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.

Any cysteine residue not involved in maintaining the proper conformation of the anti-NS-1 antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the anti-NS-1 antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).

A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g., a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g., 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of Ml 3 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g., binding affinity) as herein disclosed. To identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and ZIKV NS-1 protein. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.

Nucleic acid molecules encoding amino acid sequence variants of the anti-NS-1 antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site- directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the anti-NS-1 antibody.

E. Modifications of Anti-NS-1 Antibodies

Covalent modifications of anti-NS-1 antibodies and ZIKV NS-1 proteins are included within the scope of this disclosure. One type of covalent modification includes reacting targeted amino acid residues of an anti-NS-1 antibody with an organic

derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of the anti-NS-1 antibody. Derivatization with bifunctional agents is useful, for instance, for crosslinking anti-NS-1 antibody to a water-insoluble support matrix or surface for use in purifying anti-NS-1 antibodies, or detection of NS-1 protein in biological samples, or ZIKV diagnostic assays. Commonly used crosslinking agents include, e.g., l, l-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis (succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-l,8-octane and agents such as methyl-3 - [(p-azidophenyl)dithio]propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the a-amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79- 86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the anti-NS-1 antibody included within the scope of this disclosure comprises altering the native glycosylation pattern of the antibody or polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence anti-NS-1 antibody (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence anti-NS-1 antibody. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.

Glycosylation of antibodies and other polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X- threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N- acetyl galactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used. Addition of glycosylation sites to the anti-NS-1 antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original anti-NS-1 antibody (for O-linked glycosylation sites). The anti-NS-1 antibody amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the anti-NS-1 antibody at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the anti-NS-1 antibody is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the anti-NS-1 antibody may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by

Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118: 131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987). Another type of covalent modification of anti-NS-1 antibody comprises linking the antibody or polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301, 144; 4,670,417; 4,791, 192 or 4, 179,337. The antibody or polypeptide also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).

The anti-NS-1 antibody of this disclosure may also be modified in a way to form chimeric molecules comprising an anti-NS-1 antibody fused to another, heterologous polypeptide or amino acid sequence.

In one embodiment, such a chimeric molecule comprises a fusion of the anti-NS-1 antibody with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- terminus of the anti-NS-1 antibody. The presence of such epitope-tagged forms of the anti- NS-1 antibody can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the anti-NS-1 antibody to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his- gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein

Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6: 1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255: 192-194 (1992)]; an a-tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266: 15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)]. In an alternative embodiment, the chimeric molecule may comprise a fusion of the anti-NS-1 antibody with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of an anti-NS-1 antibody in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CHI, CH2 and CH3 regions of an IgGl molecule. For the production of immunoglobulin fusions see also US Patent No. 5,428,130 issued June 27, 1995. F. Preparation of Anti-NS-1 Antibodies and ZDCV NS-1 binding

Oligopeptides

The description below relates primarily to production of anti-NS-1 antibodies and ZIKV NS-1 binding oligopeptides by culturing cells transformed or transfected with a vector containing anti-NS-1 antibody- or ZIKV NS-1 binding oligopeptide-encoding nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare anti-NS-1 antibodies and ZIKV NS-1 binding oligopeptides. For instance, the appropriate amino acid sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969);

Merrifield, J. Am. Chem. Soc, 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of the anti-NS-1 antibody may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the desired anti-NS-1 antibody.

1. Isolation of DNA Encoding Anti-NS-1 Antibody

DNA encoding anti-NS-1 antibody may be obtained from a cDNA library prepared from tissue believed to possess the anti-NS-1 antibody mRNA and to express it at a detectable level. Accordingly, human anti-NS-1 antibody DNA can be conveniently obtained from a cDNA library prepared from human tissue. The anti-NS-1 antibody- encoding gene may also be obtained from a genomic library or by known synthetic procedures (e.g., automated nucleic acid synthesis).

Libraries can be screened with probes (such as oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it.

Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A

Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding anti-NS-1 antibody is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].

Techniques for screening a cDNA library are well known in the art. The oligonucleotide sequences selected as probes should be of sufficient length and

sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like 32P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra. Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein.

Nucleic acids having protein coding sequences may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

2. Selection and Transformation of Host Cells

Host cells are transfected or transformed with expression or cloning vectors described herein for anti-NS-1 antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra. Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaC12, CaP04, liposome-mediated, and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23 :315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transfections have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact, 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988). Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1 A2, which has the complete genotype tonA ; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA El 5 (argF-lac)169 degP ompT kanr; E. coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kanr; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.

Full length antibody, antibody fragments, and antibody fusion proteins can be produced in bacteria, in particular when glycosylation and Fc effector function are not needed, such as when the therapeutic antibody is conjugated to a cytotoxic agent (e.g., a toxin) and the immunoconjugate by itself shows effectiveness in ZIKV or ZIKV-infected cell destruction. Full length antibodies have greater half-life in circulation. Production in E. coli is faster and more cost efficient. For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. 5,648,237 (Carter et. al.), U.S. 5,789, 199 (Joly et al.), and U.S. 5,840,523 (Simmons et al.) which describes translation initiation region (TIR) and signal sequences for optimizing expression and secretion, these patents incorporated herein by reference. After expression, the antibody is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., a protein A or G column depending on the isotype. Final purification can be carried out similar to the process for purifying antibody expressed, e.g., in CHO cells. In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for anti-NS-1 antibody-encoding vectors.

Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Patent No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C,

CBS683, CBS4574; Louvencourt et al., J. Bacterid., 154(2): 737-742 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24, 178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8: 135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 October 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81 : 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Tomlopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982). Suitable host cells for the expression of glycosylated anti-NS-1 antibody are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells, such as cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito),

Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-l variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to this disclosure, particularly for transfection of Spodoptera frugiperda cells.

However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse Sertoli cells (TM4, Mather, Biol. Reprod. 23 :243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75);

human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383 :44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).

Host cells are transformed with the above-described expression or cloning vectors for anti-NS-1 antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. 3. Selection and Use of a Replicable Vector

The nucleic acid (e.g., cDNA or genomic DNA) encoding anti-NS-1 antibody may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan. The anti-NS-1 monoclonal antibodies may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the anti-NS-1 antibody-encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion, the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces a- factor leaders, the latter described in U.S. Patent No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders. Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.

Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.

An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the anti-NS-1 antibody-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980). A suitable selection gene for use in yeast is the trpl gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7: 141 (1979);

Tschemper et al., Gene, 10: 157 (1980)]. The trpl gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-l (Jones, Genetics, 85: 12 (1977)).

Expression and cloning vectors usually contain a promoter operably linked to the anti-NS-1 antibody-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281 :544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding anti-NS-1 antibody.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3 -phosphogly cerate kinase [Hitzeman et al., J. Biol. Chem., 255:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv. Enzyme Reg., 7: 149 (1968); Holland, Biochemistry, 17:4900 (1978)], such as enolase, glyceraldehyde-3 -phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6- phosphate isomerase, 3 -phosphogly cerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3 -phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Anti-NS-1 antibody transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.

Transcription of a DNA encoding the anti-NS-1 antibody by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis- acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, a-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the anti- NS-1 antibody coding sequence, but is preferably located at a site 5' from the promoter.

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding anti-NS-1 antibody .

Still other methods, vectors, and host cells suitable for adaptation to the synthesis of anti-NS-1 antibody in recombinant vertebrate cell culture are described in Gething et al., Nature, 293 :620-625 (1981); Mantei et al., Nature, 281 :40-46 (1979); EP 117,060; and EP 117,058. 4. Culturing the Host Cells

The host cells used to produce the anti-NS-1 antibody of this disclosure may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz. 58:44 (1979), Barnes et al., Anal. Biochem.102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762;

4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as gentamycin), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

5. Detecting Gene Amplification/Expression Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence ZIKV NS-1 protein or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to NS-1 DNA and encoding a specific antibody epitope.

6. Purification of Anti-NS-1 Antibodies and NS-1 binding oligopeptides

Forms of anti-NS-1 antibody may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of anti-NS-1 antibody can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents.

It may be desired to purify anti-NS-1 antibody from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the anti-NS-1 antibody and ZIKV NS-1 protein. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer- Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular anti-NS-1 antibody produced. When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al.,

Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.

The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human γΐ, γ2 or γ4 heavy chains (Lindmark et al., J.

Immunol. Meth. 62: 1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ3 (Guss et al., EMBO J. 5: 15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a CH3 domain, the Bakerbond ABX™resin (J. T. Baker,

Phillipsburg, NJ) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column),

chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.

Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).

G. Pharmaceutical Formulations

Therapeutic formulations of the anti-NS-1 antibodies or NS-1 binding

oligopeptides of this disclosure are prepared for storage by mixing the antibody, polypeptide, or oligopeptide having the desired degree of purity with optional

pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as acetate, Tris, phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben;

catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, di saccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; tonicifiers such as trehalose and sodium chloride; sugars such as sucrose, mannitol, trehalose or sorbitol; surfactant such as polysorbate; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non- ionic surfactants such as TWEEN®, PLURONICS® or polyethylene glycol (PEG). The antibody preferably comprises the antibody at a concentration of between 5-200 mg/ml, preferably between 10-100 mg/ml.

The formulations herein may also contain more than one active compound as necessary for the indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, in addition to an anti-NS-1 antibody or NS-1 binding oligopeptide, it may be desirable to include in the one formulation, an additional antibody, e.g., a second anti-NS-1 antibody which binds a different epitope on the ZIKV NS-1 protein. Alternatively, or additionally, the composition may further comprise a cytokine, an aniti-inflammatory agent, or an interferon. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Osol, A. Ed. (1980).

Sustained-release preparations may be prepared. Suitable examples of sustained- release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non- degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT® (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid.

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

H. Diagnosis and Treatment with Anti-NS-1 Antibodies or NS-1 Binding Oligopeptides

NS-1 expression may be evaluated using an in vivo diagnostic assay, e.g., by administering a molecule (such as an anti NS-1 antibody or NS-1 binding oligopeptide) which binds the molecule to be detected and is tagged with a detectable label (e.g., a radioactive isotope or a fluorescent label) and externally scanning the patient for localization of the label.

As described above, the anti-NS-1 antibodies or oligopeptides of this disclosure have various non-therapeutic applications. The anti-NS-1 antibodies or oligopeptides of this disclosure are useful for diagnosis and staging of ZIKV infections. The antibodies or oligopeptides are also useful for purification or immunoprecipitation of ZIKV NS-1 protein from cells, for detection and quantitation of ZIKV NS-1 protein in vitro, e.g., in an ELISA or a Western blot, to kill and eliminate NS-1 -expressing cells from a population of mixed cells as a step in the purification of other cells.

Exemplary methods of detection of ZIKV NS-1 protein in a biological sample, (which method may therefore be diagnostic of ZIKV infection) is an epitope blocking ELISA (EB ELISA), in which methods, specific antibodies from positive sera inhibit a selected mAb from recognizing its specific epitope such that color development is inhibited when a color-producing reagent which binds to the selected mAb is added to the sample. Negative sera, however, allow a strong color reaction. The assay depends on the ability of anti-ZIKA NS-1 protein antibodies present in the biological sample to block binding of a selected NS-1 mAb to NS-1 antigens or recombinant antigens adsorbed on a micro titer plate. More specifically, in an EB ELISA of this disclosure, ELISA plates are coated with an optimal concentration of recombinant NS-1 or an inactivated ZIKA strain in a coating buffer. An optimal concentration can be determined by using a checkerboard titration by two- dimensional serial dilution of coating antigen and a known positive antibody and selecting the most favorable concentration which gives maximal optical density (O.D.) value in the ELISA reading. Test sera samples are added to each well of the coated plates and incubated, washed and then incubated with supernatant from an anti- ZIKA NS-1 mAb of this disclosure. Plates are washed again and the bound mAb is detected by the addition of diluted horseradish peroxidase (HRP)-labeled antibody, such as an HRP-labeled rabbit anti -mouse antibody, which binds to the mAb. The plates are washed and then incubated with 3,3',5,5'-tetramethyl benzidine or other color-producing reagent, such as 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid or o- phenylenediamine dihydrochloride. The reaction is stopped and the color development read. The percent inhibition of the colorimetric reaction caused by antibodies in the sample which block the binding of the mAb to the antigen is calculated for each serum sample. These EB ELISA testing methods provide a convenient, highly specific and sensitive means for detecting ZIKA virus and may detect lower levels of antibody than can be consistently detected in other tests.

Currently, ZIKV infection prevention and treatment involves preventing transmission of the virus, vaccination, or administration of interferons. Anti -NS-1 antibody or oligopeptide therapy (such as by passive immunotherapy) may be especially desirable in elderly patients or immunocompromised patients or pregnant patients who may not tolerate the side effects of vaccination or vaccine components or interferons, or who cannot mount an immunological response.

A conjugate comprising an anti -NS-1 antibody or oligopeptide conjugated with a cytotoxic agent may be administered to the patient. Preferably, the immunoconjugate bound to the anti -NS-1 antibody is internalized by the cell, resulting in increased therapeutic efficacy of the immunoconjugate in killing the infected cell to which it binds. In a preferred embodiment, the cytotoxic agent targets or interferes with the nucleic acid in the infected cell. The anti-NS-1 antibodies or oligopeptides or conjugates thereof are administered to a human patient, in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. Intravenous or subcutaneous administration of the antibody or oligopeptide is preferred.

Other therapeutic regimens may be combined with the administration of the anti- NS-1 antibody or oligopeptide. The combined administration includes co-administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities. Preferably such combined therapy results in a synergistic therapeutic effect.

It may also be desirable to combine administration of the anti-NS-1 antibody or antibodies or oligopeptides with administration of an antibody directed against another ZIKV antigen.

The therapeutic treatment methods of this disclosure may include the combined administration of an anti-NS-1 antibody (or antibodies) or oligopeptides and an interferon.

For the prevention or treatment of ZIKV infection or ZIKV-associated disease, the dosage and mode of administration of these antibodies and therapeutic proteins will be chosen by the medical provider according to known criteria. The appropriate dosage of antibody or oligopeptide will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the antibody or oligopeptide is

administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody or oligopeptide and the discretion of the medical provider. The antibody or oligopeptide is suitably administered to the patient at one time or over a series of treatments. Preferably, the antibody or oligopeptide is administered by intravenous infusion or by subcutaneous injections. Depending on the type and severity of the disease, about 1 μg/kg to about 50 mg/kg body weight (e.g., about 0.1-15mg/kg/dose) of antibody can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A dosing regimen can comprise administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of the anti-NS-1 antibody. However, other dosage regimens may be useful. A typical daily dosage might range from about 1 μg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated

administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. The progress of this therapy can be readily monitored by conventional methods and assays and based on criteria known to medical providers of skill in the art.

Aside from administration of the anti-NS-1 antibody to a patient, this disclosure contemplates administration of the antibody by gene therapy. Such administration of nucleic acid encoding the antibody is encompassed by the expression "administering a therapeutically effective amount of an antibody." See, for example, WO96/07321 published March 14, 1996 concerning the use of gene therapy to generate intracellular antibodies.

There are two major approaches to getting the nucleic acid (optionally contained in a vector) into the patient's cells; in vivo and ex vivo. For in vivo delivery, the nucleic acid is injected directly into the patient, usually at the site where the antibody is required. For ex vivo treatment, the patient's cells are removed, the nucleic acid is introduced into these isolated cells and the modified cells are administered to the patient either directly or, for example, encapsulated within porous membranes which are implanted into the patient (see, e.g., U.S. Patent Nos. 4,892,538 and 5,283, 187). There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. A commonly used vector for ex vivo delivery of the gene is a retroviral vector.

The currently preferred in vivo nucleic acid transfer techniques include transfection with viral vectors (such as adenovirus, Herpes simplex I virus, or adeno-associated virus) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Choi, for example). For review of the currently known gene marking and gene therapy protocols see Anderson et al., Science 256:808-813 (1992). See also WO 93/25673 and the references cited therein. The anti-NS-1 antibodies of the disclosure can be in the different forms encompassed by the definition of "antibody" herein. Thus, the antibodies include full length or intact antibody, antibody fragments, native sequence antibody or amino acid variants, humanized, chimeric or fusion antibodies, immunoconjugates, and functional fragments thereof. In fusion antibodies an antibody sequence is fused to a heterologous polypeptide sequence. The antibodies can be modified in the Fc region to provide desired effector functions. As discussed in more detail above, with the appropriate Fc regions, the naked antibody bound on the cell surface can induce cytotoxicity, e.g., via antibody- dependent cellular cytotoxicity (ADCC) or by recruiting complement in complement dependent cytotoxicity, or some other mechanism. Alternatively, where it is desirable to eliminate or reduce effector function, so as to minimize side effects or therapeutic complications, certain other Fc regions may be used.

These antibodies may include an antibody that competes for binding or binds substantially to, the same epitope as the antibodies of the disclosure. Antibodies having the biological characteristics of the present anti-NS-1 antibodies of this disclosure are also contemplated, specifically including the in vivo targeting, and infection inhibiting or preventing, or cytotoxic characteristics.

The present anti-NS-1 antibodies or oligopeptides are useful for treating a ZIKV infection or alleviating one or more symptoms of the infection in a mammal. The antibody or oligopeptide is able to bind to at least a portion of an infected cell that express ZIKV NS-1 protein in the mammal. In a preferred embodiment, the antibody or oligopeptide is effective to destroy or kill NS-1 -expressing cells or inhibit the growth of such cells, in vitro or in vivo, upon binding to ZIKV NS-1 protein on the cell. Such an antibody includes a naked anti-NS-1 antibody (not conjugated to any agent). Naked antibodies that have cytotoxic or cell growth inhibition properties can be further harnessed with a cytotoxic agent to render them even more potent in ZIKV or ZIKV-infected-cell destruction.

Cytotoxic properties can be conferred to an anti-NS-1 antibody by, e.g., conjugating the antibody with a cytotoxic agent, to form an immunoconjugate as described herein. The cytotoxic agent or a growth inhibitory agent is preferably a small molecule. This disclosure also provides a composition comprising an anti-NS-1 antibody or oligopeptide of the disclosure, and a carrier. For the purposes of treating ZIKV infection, compositions can be administered to the patient in need of such treatment, wherein the composition can comprise one or more anti-NS-1 antibodies present as an immunoconjugate or as the naked antibody. In a further embodiment, the compositions can comprise these antibodies or oligopeptides in combination with other therapeutic agents. In one embodiment, the formulation is a therapeutic formulation comprising a pharmaceutically acceptable carrier.

This disclosure also provides isolated nucleic acids encoding the anti-NS-1 antibodies. Nucleic acids encoding both the H and L chains and especially the

hypervariable region residues, chains which encode the native sequence antibody as well as variants, modifications and humanized versions of the antibody, are encompassed. The disclosure also provides methods useful for treating a ZIKV infection or alleviating one or more symptoms of the infection in a mammal, comprising administering a therapeutically effective amount of an anti-NS-1 antibody or oligopeptide of this disclosure to the mammal. The antibody or oligopeptide therapeutic compositions can be administered short term (acutely) or chronically, or intermittently as directed by a medical professional. Also provided are methods of inhibiting the growth of, and killing a ZIKV NS-1 protein-expressing cell.

J. Articles of Manufacture and Kits

This disclosure also provides assay devices, kits, and articles of manufacture comprising at least one anti-NS-1 antibody or oligopeptide of this disclosure, optionally linked to a label, such as a fluorescent or radiolabel. The articles of manufacture may contain materials useful for the detection, diagnosis, or treatment of ZIKV infection. A preferred device is a lateral flow assay device which provides for point-of-care detection and/or diagnosis of a ZIKV infection. The article of manufacture comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for detecting or treating the ZIKV infection and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an anti-NS-1 antibody or oligopeptide of this disclosure. The label or package insert indicates that the composition is used for detecting or treating ZIKV infection. The label or package insert may further comprise instructions for using the antibody or oligopeptide composition, e.g., in the testing or treating of the infected patient. Additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically- acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.

Kits are also provided that are useful for various purposes, e.g., for ZIKV-infected cell killing assays, for purification, or immunoprecipitation of ZIKV NS-1 protein from cells. For isolation and purification of ZIKV NS-1 protein, the kit can contain an anti-NS- 1 antibodies or oligopeptides coupled to beads (e.g., sepharose beads). Kits can be provided which contain the antibodies or oligopeptides for detection and quantitation of ZIKV NS-1 protein in vitro, e.g., in an ELISA or a Western blot. As with the article of manufacture, the kit comprises a container and a label or package insert on or associated with the container. The container holds a composition comprising at least one anti-NS-1 antibody or oligopeptide of the disclosure. Additional containers may be included that contain, e.g., diluents and buffers, control antibodies. The label or package insert may provide a description of the composition as well as instructions for the intended in vitro or diagnostic use.

Exemplary kits of this disclosure will contain at least one anti-ZIKA NS-1 mAb or related binding protein of this disclosure, components for detecting immunospecific binding of the mAb or related binding protein to NS-1 in a biological sample, and instructions for use, depending upon the method selected, such as epitope blocking, competitive, sandwich, and the like. These kits also may contain positive and negative controls. They may also be configured to be used with automated analyzers or automated immunohistochemical slide staining instruments. A preferred kit is one to be used in an epitope blocking ELISA. Such a kit comprises a mAb or related binding protein which binds to an NS-1 epitope, and reagents for detecting binding of said binding protein to said epitope.

The anti-NS-1 antibody or oligopeptide of this disclosure may also be provided as part of an assay device. Such assay devices include lateral flow assay devices. A common type of disposable lateral flow assay device includes a zone or area for receiving the liquid sample, a conjugate zone, and a reaction zone. These assay devices are commonly known as lateral flow test strips. They employ a porous material, e.g., nitrocellulose, defining a path for fluid flow capable of supporting capillary flow. Examples include those described in U.S. Pat. Nos. 5,559,041, 5,714,389, 5, 120,643, and 6,228,660 all of which are incorporated herein by reference in their entireties. The anti-NS-1 antibody or oligopeptide of this disclosure may also be used in a lateral flow assay device in conjunction with other antibodies to detect multiple ZIKV proteins or other flavivirus proteins using a single biological sample from a subject or patient being tested on one portable, point-of-care device.

Another type of assay device is a non-porous assay device having projections to induce capillary flow. Examples of such assay devices include the open lateral flow device as disclosed in PCT International Publication Nos. WO 2003/103835, WO 2005/089082, WO 2005/118139, and WO 2006/137785, all of which are incorporated herein by reference in their entireties.

All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.

EXAMPLES

Commercially available reagents referred to in these examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, VA.

Example 1 : Development and Characterization of Mouse Monoclonal Antibodies against Zika Virus Non- Structural Glycoprotein 1 (NS1)

ZIKV nonstructural- 1 glycoprotein (NS1) is a glycosylated 48-kDa protein that plays a role in both viral replication and immune evasion. NS1 is initially translated as a monomer into the endoplasmic reticulum but rapidly forms multimers with distinct fates in the cell. It has been shown to be a candidate biomarker during active infection based on studies with Dengue virus. In this example, seven monoclonal antibodies (mAbs) were isolated from BALB/c mice immunized with mammalian recombinant r-NSl recognized by ZIKV positive human serum. Characterization using multiple biochemical and cellular methods (ELISA, bio-layer interferometry and immunoblotting) with active virus and r- NSl revealed certain mAbs were ZIKV-specific with limited cross-reactivity among other flavivirus members, notably Dengue.

To produce the mAb clones, immunization of BALB/C Mice occurred with 5C^g antigen (r-NSl derived from ZIKV Suriname Zl 106033) /adjuvant twice followed by final boost with antigen/saline). Fusion between B-cells and sp2-IL6 myelomas (ATCC) provided hybridomas cloned by automated selection in semi-solid media with HAT and CloneDetect using ClonePix II (Molecular Devices, Sunnyvale, CA). We selected 350 IgG-positive clones and screened against r-NSl by indirect ELISA. Expansion of 39 clones with the highest OD occurred in static flasks. Purification of mAb via HiTrap Protein G Sepharose was performed for biochemical studies. Analysis via IsoStrip, SDS- PAGE and Superdex-200 size exclusion chromatography provided the top 7 mAbs selected based on assay performance in ELISA and BLI platforms. Label free-BLI (biolayer interferometry) was performed on Octet Red96 (Forte Bio). For relative mAb binding studies, anti-His tag (HIS2) coated sensors were used to capture Histag r-NSl and for kinetic analysis of mAbs, anti-mouse (AMC) biosensors were used to capture IgG. ZIKV cell lysate was prepared by obtaining ZIKV strain PVRABC59 (GenBank

Accession #KU501215) from Arbovirus Reference Collection at DVBD/CDC in Fort Collins, CO. Vero cells were infected with the virus at MOI of 0.01 and cultured. Mock- infected cells were prepared as a control. Indirect ELISA measured the titrations of r-NSl ZIKV and DEnvNVl-4 from 500 to 6ng/mL in 96-well high-binding microtiter plate binding of 5μg/mL mAbs in blocking buffer followed by HRP-goat anti-mouse IgG at 1 :5000. For immunoblots, non-denatured r-NSl (ZIKV and DEnvl; 2μg) were separated on NativePAGE bis-Tris gels without reduction or heat using native sample buffer.

Proteins were transferred to PVDF and probed with 2μg/mL mAbs in blocking buffer and detected with goat anti-mouse atl :5000.

From 350 IgG positive clones selected, seven clones were identified based on their unique assay performance in ELISA and BLI. The following table summarizes the properties of the top seven mAbs in isotype, binding rates, limit-of-detection,

crossreactivity, and ability to detect native ZIKV NSl in cells.

Figure imgf000091_0001
1F10 IgG3 k none <18 nd 0.15 ++ 7.1 626

3C2 IgG2a k JEV 6 nd 1.16 ++++ 22.8 >1000

4A11 IgG2a k None <56 166 0.25 + 2.9 75.5

4B3 IgG2b k DEnv <56 56 0 +++ 4.0 3.89

4C1 IgGl k DEnv 200 18 0 + 38.6 0.54

6B1 IgG2a k None <56 nd 0.24 +++ 2.4 382

6E1 IgGl k none <56 nd 0.1 - 22.2 >1000

Indirect ELISA was the titration providing OD>0.2 above background); LOD, limit of detection; nd, not detected, IF, immunofluorescence acetone-fixed ZIKV-infected Vera E6 cell staining (++++, strong; +, weak; -, none), KD, equilibrium dissociation rate constant, 7-point curve of r-NSl monomer determined by BLI;

Label -free relative binding of anti-ZIKV mAbs to r-NSl : the clones showing the highest affinity to r-NSl ZIKV were selected for label -free binding studies with mAbs that were among the highest OD in the ELISA. Although two clones, IF 10 and 4C1, have a low affinity, these were selected as an IgG3 mAb and DEnvl NSl binder, respectively. The top seven clones (1F10, 3C2, 4A11, 4B3, 4C1, 6B1, and 6E1) were selected for further characterization. Seven mAbs were tested in BLI with r-NSl from multiple Flavivirus species (Yellow Fever (YFV), West Nile (WNV), Tick-Borne Encephalitis (TBE), and Japanese Encephalitis (JEV)). The 3C2 mAb had a measurable binding with JEV r-NS 1. None of the other mAbs had cross-reactivity to any of the other Flavivirus species.

Indirect ELISA showed that the mAb from the 3C2 clone was the most sensitive, down to 6ng/mL followed by 1F10 (18ng/mL), and 4A11, 4B3, and 6E1 (18-56ng/mL) (FIG. 1A). The r-NSl was undetectable with 4C1. Indirect ELISA showed that the 6B 1, 6E1, and 3C2 clones had low detectable levels at the highest DEnvl r-NSl concentration (FIG. IB). Clones from IF 10 and 4A11 had cross-reactivity with 15% and 64% of ZIKV response at 500ng/mL levels. 4B3 had equivalent binding between ZIKV and DEnvl r- NS1. 4C1 was specific for DEnvl NSl . Indirect ELISA measuring viral NSl detection of the mAbs against ZIKV cell lysate showed that the mAb from clone 3C2 had the highest reactivity (FIG. 1C). Viral NSl detection of dot blots with mAbs against ZIKV cell lysate was consistent with the ELISA data showing 3C2, 4A11 and 6B1 able to detect NSl from ZIKV-infected cell lysate with the most sensitivity (FIG. ID). FIG. IE shows native immunoblots that provide a summary of the reactivity of the mAbs against r-NSl isoforms. The sizes of monomeric, dimeric, and trimeric r-NSl forms are between 66kDa and 242 kDa. The trimer was the most abundant form detected with all mAbs.

These data demonstrate that we have developed seven mAbs that can be utilized for development of immunoassay to detect ZIKV infection. The 3C2 clone was the most reactive to the native antigen, the 4C1 clone is clearly preferential for DEnvl r-NSl and may therefore be useful in assays used to differentiate Flavivirus species.

Example 2: Immunofluorescence and Immunohistochemical Studies of Zika Virus Targeting Non-structural Glycoprotein 1 (NS1) Nonstructural- 1 glycoprotein (NS1) is a biomarker for diagnosis during active infection based on its dissemination during flavivirus virus infection. This example describes a recently developed panel of 16 monoclonal antibodies (mAbs) raised against ZIKV NS1 and their testing for their utility by immunofluorescence (IF) and immunohistochemical (IHC) methods.

Cell culture and Zika virus infection: E6 cells were seeded onto Falcon chambered

8-well cell culture slides, and grown in EMEM with 10% FBS at 37°C with 5% C02. The cells were infected with ZIKV at the MOI of 0.01 when above 95% confluent.

Immunofluorescence Staining: Cells were fixed in pre-cooled acetone for 20 minutes in the biosafety cabinet. After air drying, anti-NSl mAbs at 5 μg/ml diluted in blocking buffer was added into each well and incubated for 30 minutes at 37°C. The FITC-conjugated goat anti -mouse IgG (MP) mixed with 0.0025% of Evans Blue counterstain was used as the secondary antibody. For co-staining with ER-Golgi markers (Abeam), FITC goat anti-mouse IgG (MP) and Alexa Fluor 647 donkey anti-rabbit IgG (Abeam) were used as secondary antibody at 1 : 100 dilution. Cells were mounted with Prolong Gold Anti-fade Reagent with DAPI (Life Technologies).

Immunohistochemistry Analysis: Cell culture material and tissue samples were fixed in 10% neutral -buffered formalin and underwent routine processing for

histopathologic evaluation and IHC testing. IHC was performed using an established polymer-based indirect immune alkaline phosphatase detection system with colorimetric detection of antibody-polymer complex with Fast Red Chromogen (Biocare Medical, Concord, CA). Antibodies tested included ZIKV, dengue, Yellow fever, West Nile, Japanese encephalitis, and chikungunya viruses. Appropriate negative controls were run in parallel.

Immunoblotting: 2 μg of ZIKV r-NSl and DEnvl r-NSl were loaded side by side in each lane on SDS-PAGE gel and followed by the immunoblotting against anti-ZIKV NSl mAbs. Anti-ZIKV NSl mAbs were evaluated for staining of infected Vero E6 cells. We observed a diffuse cytoplasmic reactivity and sharper staining of

membrane/cytoskeletal structures for the 3C2 and 4B3 clones, as well as punctate staining adjacent to the nucleus. Fluorescence was more intense for the 6B1 clone with

enhancement of punctate and whole-cell body staining. Minimal background was observed in mock-infected cells.

After translation of viral RNA genome within infected mammalian cells, flavivirus NSl is initially synthesized as a soluble monomer which dimerizes in the lumen of endoplasmic reticulum (ER) followed by association with membrane. Co-staining of the infected cells with mAb produced by the 3C2 clone and ER marker showed ZUCV NSl with an expected reticular ER staining pattern and extensive colocalization with calreticulin at the perinuclear region. An additional feature was reactivity concentrated at the surface of large spherical structures that appeared to be lipid droplets.

It has been reported that dimers of flavivirus NSl are transported to the Golgi complex and assembled into hexamers and secreted into extracellular space as soluble hexameric lipoprotein particles (Muller DA and Young PR, Antiviral Res, 2013; Winkler G. et al., Virology, 1989). In DEnv colocalization studies, NSl was found within vesicle packets (VPs) and ER-associated bags containing arrays of DEnv particles (Marc-Antoine de La Vega et al., PLOS Pathogens, 2015). Here, similar co-localization patterns were observed with Golgi marker GM130 that visualized TGN network and vesicle staining. NSl and Golgi marker co-localized at the perinuclear region and putative Vesicle Packets (VPs).

The binding of ZIKV NSl mAbs to r-NSl were detected by immunoblotting (FIG. 2A). All purified mAbs specifically reacted with ZIKV r-NSl without cross-reactivity against DEnvl r-NSl, except for the 4C1 clone. In addition, clone 3C2 showed no cross reactivity by IHC with dengue, Yellow fever, West Nile, or chikungunya viruses.

A panel of mAbs against ZIKV NS 1 was identified to recognize ZIKV antigen in the virus infected cells. The monoclonal ZIKV antibody produced by the 3C2 clone was highly specific and did not cross-react with dengue, Yellow fever, West Nile,

chikungunya, and Japanese encephilitis infected cells/tissue by IHC.

IHC staining of infected cell control, placenta and fetal brain tissue in PCR positive ZIKV cases, confirmed the reactivity between the 3C2 antibody and Zika viral antigen (FIG. 2B). These binding data demonstrate that these ZIKV mAbs have sufficient sensitivity and specificity to warrant use as standard immunological reagents for improved serological and immuno-histological assays.

Example 3 : Novel Immunological Assays for Detection of Zika Virus Non- Structural Glycoprotein 1 (NSl)

ZIKV and its link to birth defects and neurological symptoms has prompted the development of novel immunoassays for diagnostic support. ZIKV NSl is a candidate biomarker for diagnosis during active infection based on prior assays for Dengue virus. NSl is secreted from infected cells and circulates at high levels in serum of infected patients (Flammand M, et al (1999). J Virol 73 : 6104.; Alcon S, et al. (2002). J Clin

Microbiol 40: 376-81; Young PR, et al, (2000). J Clin Microbiol 38: 1053-57). Detection of NSl in serum or plasma is the basis for commercial enzyme-linked immunosorbent assays (ELISAs) and immunochromatographic rapid tests widely used for early diagnosis of dengue (Peeling RW et.al. (2010) Nat Rev Microbiol 8: S30-S38; Shu PY et.al. (2004). Clin Diagn Lab Immunol 11 : 642-50). NSl serum levels vary among individuals during the course of the disease, ranging from several ng/mL to several μg/mL. NSl

concentrations did not differ significantly in serum specimens obtained from patients experiencing primary or secondary dengue infections, indicating NSl detection may allow early diagnosis of infection (Alcon S, et al. (2002), supra).

In this example, immunoassay platforms were developed using the panel of monoclonal antibodies (mAbs) described in Example 1, which are specific for ZIKV NSl . Using optimal mAb pairings with high sensitivity for r-NSl, we tested indirect ELISA, sandwich ELISA and time-resolved fluorescence (TRF).

To investigate detection limits (LOD), a titration of ZIKV r-NSl was coated on 96- well microplates (500 to 6 ng/ml) and measured by indirect ELISA. ZIKV r-NSl (The Native Antigen, Oxford, UK) was titrated (500nM-6nM) in lOOmM sodium bicarbonate pH 9.0 in 96-well high-binding microtiter plates overnight at 4°C, washed with PBST and incubated in blocking buffer for lhr/25°C. Wells were washed with PBST and 5μg/ml of mAb in blocking buffer was incubated for lhr/25°C. Three PBST washes were followed by incubation with HRP-Goat anti-mouse IgG (1 :5000) in blocking buffer (lhr/25°C), 3x PBST and ΙΟΟμΙ TMB substrate. ΙΟΟμΙ of stop solution (5min) and absorbance monitored at 450 nm on Spectramax 384 microplate reader (Molecular Devices, Sunnyvale, CA). Experiments were performed in triplicate and averaged.

Thirteen mAbs from hybridoma discovery were tested at 5μg/ml and ranked. High value clones (OD>0.4) were selected as well as other mAbs with desirable properties. The 3C2 clone was the most sensitive clone with detection of r-NSl down to 6ng/ml, followed by the 1F10 clone (18ng/ml) and the 4A11, 4B3, 6B 1, and 6E1 clones (18-56nM). DEnv- preferential clone, 4C1, was unable to detect ZIKV r-NSl in this assay (FIG. 3 A). Among the 350 hybridoma colonies isolated from semi-solid cloning of fusion material

(immortalized B-cells isolated after ZIKV r-NSl BALB/C immunizations), these 7 clones were selected for further assay development based on ELISA performance.

Optimal mAb pairs were studied for the development of a sandwich ELISA immunoassay for detection of ZIKV NS1 in clinical samples. For capture, ^g/ml of mAb (from clones 6B 1, 4B3, 3C2, 6B6C-1) or anti-NSl pAb (Meridian, Memphis, TN) coated in lOOmM sodium bicarbonate pH 9.0 in 96-well HB microtiter plates overnight at 4°C, washed with PBST and shaken 600rpm in blocking buffer (PBST/2% BSA) for lhr/25°C. Wells were washed with PBST and a titration of ZIKV r-NSl (100-0.8 ng/ml) was shaken for lhr/25°C followed by three PBST washes. Reporter mAbs (from clones 6B1, 4B3 and 3C2) were conjugated to EZ-Link NHS-PEG4-biotin (Thermo) at 1 : 1 molar ratio per manufacturer instructions and dialyzed against PBS 7.2 using micro-concentrator.

Biotinylated mAbs (^g/ml) in blocking buffer, washed 3x PBST, shaken with

Streptavidin-HRP (1 :5000) in blocking buffer for lhr/25°C. Plates were treated with ΙΟΟμΙ TMB substrate, ΙΟΟμΙ of stop was added after 5min, and absorbance monitored at 450nm. Experiments were performed in triplicate and averaged.

Using a fixed concentration of capture mAb coated to 96-well microplate, we prepared a titration curve (100 to 0.8 ng/ml) followed by biotinylated reporter mAb/SA- HRP. The pairings with highest sensitivity included pAb+6B l and 6B1+4B3 (FIG. 3B). These orientations could detect r-NSl down to 4ng/mL (>10x above background) without any optimization of mAb concentrations or buffer conditions. Clones 6B1 and 4B3 became the focus in subsequent assay development activities in pursuit of laboratory developed test (LDT) manufacturing. To enhance sensitivity and lower LOD, mAbs were used as reporters in the DELFIA Time Resolved Fluorescence (TRF) assay platform. For capture, ^g/ml of pAb anti-ZIKV NSl was coated in lOOmM NaC03 pH 9.0 in 96-well low-FL microtiter plates covered overnight at 4°C, washed 4X with DELFIA wash buffer. 50μΕ of reporter mAb (anti-NSl at 50ng/well) and 50μΕ r-NSltitration (lOng-O.OOlng) was added to each well. Plates were shaken for lhr/25°C. Wells were washed 8X with DELFIA wash, and 50μΕ of Eu-labeled anti-mouse IgG (lOOng/well) was added and incubated for lhr/25°C. Wells were washed 8X with DELFIA wash and ΙΟΟμΕ DELFIA Enhancement was added and incubated lOmin at 600rpm /25°C. Fluorescence was monitored at 615 nm on VICTOR X4 (Perkin Elmer, Waltham, MA). Experiments were performed triplicate and averaged.

Using anti-ZIKV NSl pAb to capture r-NSl, a titration of r-NSl (50 to 0.005 ng/ml) was measured. mAbs from both the 6B 1 and 4B3 clones displayed similar curves with significant counts (10,000) down to 100 pg/mL (FIG. 3C). Equivalent counts were observed at lng/mL (lOx less sensitive) for the 3C2, 1F10, and 4C2 clones. DEnv- preferential clone 4C1 was unable to detect r-ZIKV NSl . These data further reinforced the development of mAbs from clones 6B1 and 4B3 for immunoassays.

The TRF assay was used for the established sandwich pair (6B1+4B3) to enhance sensitivity and lower LOD beyond the measurement obtained by ELISA. The

concentration of capture mAb was varied to optimize signal. Using mAb from the 6B 1 clone to capture, a titration of r-NSl (50 to 0.01 ng/ml) was measured using the mAb from the 4B3 clone and Eu-anti-mouse IgG as reporter complex. Detection down to 2ng/mL was readily achieved and could be decreased to sub-ng/mL at optimal mAb concentration. The use of pAb capture improved signal at higher r-NSl concentrations yet had limited effect at lower levels. In preparation of testing clinical sera from active ZIKV infections, we spiked known concentrations of r-NSl in healthy human donor sera. Comparison of signal between assay buffer- and sera-spiked r-NSl was similar at lower concentrations indicating mAb functionality in complex sera matrix. A linear response curve was observed between 500-1 ng/ml suggesting saturation of NSl protein for this mAb pair below ^g/mL in sera.

These data demonstrate the identification of a panel of mAbs against ZIKV NSl with suitability for low-level detection of NSl in active infection immunoassay. Indirect ELISA determined 6 mAbs with limit-of-detection below 56ng/mL and the mAb from the 3C2 clone was capable of detecting less than 6ng/ml r-NSl . Sandwich ELISA identified an optimal pair of mAbs (6B1+4B3) capable of detecting 4ng/mL r-NSl . Transition of the iELISA to a TRF platform with the 6B1 and 4B3 clones achieved detection levels below lOOpg/mL r-NSl . TRF sandwich mAbs were optimized for detection below 2ng/mL in buffer and spiked sera to establish a prototype assay for clinical assay development.

Example 4: Characterization of anti-ZIKV NS1 mAbs by immunofluorescence

Vero cells were infected with the ZIKV strains indiciated in the following table (MOI, 0.1). At 72 hours postinfection, cells were fixed, permeabilized, and incubated with 2 μg/ml of the tested mAbs. After washes with PBS, cells were incubated with secondary anti-mouse FITC. An anti-Env mAb was included as control of infection. DAPI (no included in the ppt) was used for nuclear staining. Cells were visualized using a fluorescent microscope at 40X magnification. Scale bars, 50μπι.

Figure imgf000098_0001

The foregoing disclosure is sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the constructs described, because the described embodiments are intended as illustrations of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention.

Claims

WHAT IS CLAIMED IS:
1. An isolated antibody that binds ZIKV NS-1 protein comprising:
(a) a complementary determining region (CDR) - heavy 1 sequence of any one of SEQ ID NOS:3, 13, 23, 33, or 43;
(b) a CDR-heavy 2 sequence of any one of SEQ ID NOS:4, 14, 24, 34, or 44;
(c) a CDR-heavy 3 sequence of any one of SEQ ID NOS: 5, 15, 25, 35, or 45.
(d) a CDR-kappa 1 sequence of any one of SEQ ID NOS: 8, 18, 28, 38, or 48;
(b) a CDR-kappa 2 sequence of any one of SEQ ID NOS:9, 19, 29, 39, or 49; and
(c) a CDR-kappa 3 sequence of any one of SEQ ID NOS: 10, 20, 30, 40, or 50;
2. The isolated antibody (6B 1) of Claim 1 comprising:
(a) the CDR-heavy 1 sequence of SEQ ID NO : 3 ;
(b) the CDR-heavy 2 sequence of SEQ ID NO: 4;
(c) the CDR-heavy 3 sequence of SEQ ID NO : 5 ;
(d) the CDR-kappa 1 sequence of SEQ ID NO: 8;
(e) the CDR-kappa 2 sequence of SEQ ID NO: 9; and
(f) the CDR-kappa 3 sequence of SEQ ID NO : 10.
3. The isolated antibody (4A11) of Claim 1 comprising:
(a) the CDR-heavy 1 sequence of SEQ ID NO : 13 ;
(b) the CDR-heavy 2 sequence of SEQ ID NO: 14;
(c) the CDR-heavy 3 sequence of SEQ ID NO : 15 ;
(d) the CDR-kappa 1 sequence of SEQ ID NO : 18 ;
(e) the CDR-kappa 2 sequence of SEQ ID NO: 19; and
(f) the CDR-kappa 3 sequence of SEQ ID NO : 20.
4. The isolated antibody (4B3) of Claim 1 comprising: (a) the CDR-heavy 1 sequence of SEQ ID NO :23 ; (b) the CDR-heavy 2 sequence of SEQ ID NO:24;
(c) the CDR-heavy 3 sequence of SEQ ID NO:25;
(d) the CDR-kappa 1 sequence of SEQ ID NO: 28;
(e) the CDR-kappa 2 sequence of SEQ ID NO:29; and
(f) the CDR-kappa 3 sequence of SEQ ID NO:30.
The isolated antibody (3C2) of Claim 1 comprising:
(a) the CDR-heavy 1 sequence of SEQ ID NO:33;
(b) the CDR-heavy 2 sequence of SEQ ID NO: 34;
(c) the CDR-heavy 3 sequence of SEQ ID NO : 35 ;
(d) the CDR-kappa 1 sequence of SEQ ID NO : 38 ;
(e) the CDR-kappa 2 sequence of SEQ ID NO: 39; and
(f) the CDR-kappa 3 sequence of SEQ ID NO:40.
The isolated antibody (1F10) of Claim 1 comprising:
(a) the CDR-heavy 1 sequence of SEQ ID NO :43 ;
(b) the CDR-heavy 2 sequence of SEQ ID NO:44;
(c) the CDR-heavy 3 sequence of SEQ ID NO:45;
(d) the CDR-kappa 1 sequence of SEQ ID NO:48;
(e) the CDR-kappa 2 sequence of SEQ ID NO:49; and
(f) the CDR-kappa 3 sequence of SEQ ID NO:50.
An isolated antibody comprising a VL sequence of any one of SEQ ID NOS:6, 16, 26, 36, or 46.
An isolated antibody comprising a VH sequence of any one of SEQ ID NOS: 1, 11, 21, 31, or 41.
9. An isolated antibody (6B 1) comprising the VH sequence of SEQ ID NO: 1 and a VL sequence of SEQ ID NO: 6.
10. An isolated antibody (4A11) comprising the VH sequence of SEQ ID NO: 11 and a VL sequence of SEQ ID NO: 16.
1 1. An isolated antibody (4B3) comprising the VH sequence of SEQ ID NO:21 and a VL sequence of SEQ ID NO: 26.
12. An isolated antibody (3C2) comprising the VH sequence of SEQ ID NO:31 and a VL sequence of SEQ ID NO: 36.
13. An isolated antibody (1F10) comprising the VH sequence of SEQ ID NO:41 and a VL sequence of SEQ ID NO: 46.
14. An isolated antibody comprising a VL sequence encoded by the nucleotide sequence of any one of SEQ ID NOS:7, 17, 27, 37, or 47.
15. An isolated antibody comprising a VH sequence encoded by the nucleotide sequence of any one of SEQ ID NOS:2, 12, 22, 32, or 42.
16. An isolated antibody (6B 1) comprising the VH sequence encoded by the nucleotide sequence of SEQ ID NO:2 and a VL sequence encoded by the nucleotide sequence of SEQ ID NO:7.
17. An isolated antibody (4A1 1) comprising the VH sequence encoded by the nucleotide sequence of SEQ ID NO: 12 and a VL sequence encoded by the nucleotide sequence of SEQ ID NO: 17.
18. An isolated antibody (4B3) comprising the VH sequence encoded by the nucleotide sequence of SEQ ID NO: 27 and a VL sequence encoded by the nucleotide sequence of SEQ ID NO:27.
19. An isolated antibody (3C2) comprising the VH sequence encoded by the nucleotide sequence of SEQ ID NO: 32 and a VL sequence encoded by the nucleotide sequence of SEQ ID NO:37.
20. An isolated antibody (1F10) comprising the VH sequence encoded by the nucleotide sequence of SEQ ID NO:42 and a VL sequence encoded by the nucleotide sequence of SEQ ID NO:47.
21. An isolated antibody that binds to a polypeptide having at least 90% amino acid
sequence identity to ZIKV NS-1 protein.
22. An isolated antibody that binds to a polypeptide having the amino acid sequence of ZIKV NS-1 protein.
23. The isolated antibody of any one of claims 1-22, wherein the antibody does not bind to the NS-1 protein of any Flavivirus except ZIKV NS-1.
24. The isolated antibody of any one of claims 1-22, wherein the antibody does not bind to a dengue (DEnv) protein.
25. The antibody of any one of claims 1-22, which is a monoclonal antibody.
26. The antibody of any one of claims 1-22, which is an antibody fragment.
27. The antibody of any one of claims 1-22, which is a chimeric or a humanized antibody.
28. The antibody of any one of claims 1-22, which is a bispecific antibody.
29. The antibody of any one of claims 1-22, which is conjugated to a growth inhibitory agent.
30. The antibody of any one of claims 1-22, which is conjugated to a cytotoxic agent.
31. The antibody of any one of claims 1-22, which is conjugated to a label selected from a radioisotope, and a fluorescent label.
32. The antibody of any one of claims 1-22, which is conjugated to a solid support
selected from a support formed partially or entirely of glass, a polysaccharide, a polyacrylamide, a polystyrene, a polyvinyl alcohol, a silicone, an assay plate, and a purification column.
33. The isolated antibody of any one of claims 1-22, which is produced in bacteria.
34. The isolated antibody of any one of claims 1-22, which is produced in CHO cells.
35. The antibody of any one of claims 1-22, which induces death of a cell to which it binds.
36. An isolated nucleic acid having a nucleotide sequence that encodes the antibody of any one of claims 1-22.
37. An expression vector comprising the nucleic acid of Claim 36 operably linked to control sequences recognized by a host cell transformed with the vector.
38. A host cell comprising the expression vector of Claim 37.
39. The host cell of Claim 38 which is a CHO cell, an E. coli cell, or a yeast cell.
40. A process for producing an antibody comprising culturing the host cell of Claim 39 under conditions suitable for expression of the antibody and recovering the antibody from the cell culture.
41. A composition of matter comprising an antibody of any one of claim 1-22, in
combination with a carrier.
42. The composition of matter of Claim 41, wherein the carrier is a pharmaceutically acceptable carrier.
43. An article of manufacture comprising a container, and the composition of matter of Claim 41 contained within the container.
44. The article of manufacture of Claim 43 further comprising a label affixed to the container, or a package insert included with the container, referring to the use of the composition of matter for the therapeutic treatment of or the diagnostic detection of a ZIKV infection.
45. A method of inhibiting the growth of a cell that expresses a ZIKV NS-1 protein, comprising contacting the cell with an antibody of any one of claims 1-22, wherein the binding of the antibody to the NS-1 protein causes an inhibition of growth of the cell.
46. The method of Claim 36, wherein the cell is a ZIKV-infected cell.
47. The method of Claim 36, wherein the cell is a primary human fibroblast.
48. The method of Claim 36, wherein the cell is a keratinocyte.
49. The method of Claim 36, wherein the cell is an immature dendritic cell.
50. The method of Claim 36, wherein the cell is a neurological cell.
51. The method of any one of Claims 45-50, wherein the cell is further exposed to antiinflammatory or interferon treatment.
52. A method of treating a mammal having a ZIKV infection comprising administering to the mammal a therapeutically effective amount of an antibody of any one of claims 1- 22.
53. A method of determining the presence of a ZIKV NS-1 protein in a sample suspected of containing the protein, comprising exposing the sample to an antibody of any one of claims 1-15 and detecting binding of the antibody to a protein in the sample, wherein binding of the antibody to a protein is indicative of the presence of ZIKV NS-1 protein in the sample.
54. The method of Claim 53, wherein the sample comprises a cell suspected of expressing the ZIKV NS-1 protein.
55. The method of Claim 53, wherein the antibody is detectably labeled.
56. The method of claim 55, wherein the label is selected from a radioisotope and a fluorescent label.
57. The method of Claim 53, wherein the antibody is conjugated to a solid support
selected from a support formed partially or entirely of glass, a polysaccharide, a polyacrylamide, a polystyrene, a polyvinyl alcohol, a silicone, an assay plate, and a purification column.
58. The method of Claim 53, wherein the cell is a ZIKV-infected cell.
59. The method of Claim 53, wherein the cell is a primary human fibroblast.
60. The method of Claim 53, wherein the cell is a keratinocyte.
61. The method of Claim 53, wherein the cell is an immature dendritic cell.
62. The method of Claim 53, wherein the cell is a neurological cell.
63. A method of diagnosing the presence of a ZIKV infection in a mammal, comprising detecting the presence of a ZIKV NS-1 protein in a sample of cells obtained from the mammal, wherein detection of binding of the antibody to a ZIKV NS-1 binding to a protein in the sample is indicative of the presence of ZIKV infection in the mammal.
64. The method of Claim 63, wherein the mammal is suspected of having a ZIKV
infection.
65. The method of Claim 63, wherein the antibody is detectably labeled.
66. The method of claim 65, wherein the label is selected from a radioisotope and a fluorescent label.
67. The method of Claim 63, wherein the antibody is conjugated to a solid support
selected from a support formed partially or entirely of glass, a polysaccharide, a polyacrylamide, a polystyrene, a polyvinyl alcohol, a silicone, an assay plate, and a purification column.
68. The method of Claim 63, wherein the sample of cells comprises a primary human fibroblast.
69. The method of Claim 63, wherein the sample of cells comprises a keratinocyte.
70. The method of Claim 63, wherein the sample of cells comprises an immature
dendritic cell.
71. The method of Claim 63, wherein the sample of cells comprises a neurological cell.
72. A method of diagnosing the presence of a ZIKV infection in a mammal, comprising determining the level of expression of a gene encoding a ZIKV NS-1 protein in a test sample of tissue cells obtained from a mammal and in a control sample of known normal cells of the same tissue origin, wherein a higher level of expression of the ZIKV NS-1 protein in the test sample, as compared to the control sample, is indicative of the presence of a ZIKV infection in the mammal from which the test sample was obtained.
73. The method of Claim 72, wherein the mammal is suspected of having a ZIKV
infection.
74. The method of Claim 72, wherein the antibody is detectably labeled.
75. The method of claim 74, wherein the label is selected from a radioisotope and a
fluorescent label.
76. The method of Claim 72, wherein the antibody is conjugated to a solid support
selected from a support formed partially or entirely of glass, a polysaccharide, a polyacrylamide, a polystyrene, a polyvinyl alcohol, a silicone, an assay plate, and a purification column.
77. The method of Claim 72, wherein the test sample of cells comprises a primary human fibroblast.
78. The method of Claim 72, wherein the test sample of cells comprises a keratinocyte.
79. The method of Claim 72, wherein the test sample of cells comprises an immature dendritic cell.
80. The method of Claim 72, wherein the test sample of cells comprises a neurological cell.
81. The method of Claim 72, wherein the control sample of cells comprises a cell infected with a flavivirus other than ZIKV.
82. The method of Claim 72, wherein the control sample of cells comprises a cell infected with DEnv.
83. The method of any one of claims 63-83, wherein the mammal is a human.
84. The method of any one of claims 63-83, wherein the mammal is a pregnant female.
85. The method of any one of claims 63-83, wherein the mammal is a female of child- bearing age.
86. The method of any one of claims 63-83, wherein the mammal is an infant.
87. The method of any one of claims 63-83, wherein the mammal is a fetus.
88. A monoclonal antibody produced by a clone selected from the group consisting of 6B1, 1F10, 4A11, 4B3, 6E1, 3C2, and 4Cl .
89. An antibody that binds to the same ZIKV NS-1 epitope as does an antibody of claim 88.
90. Use of an antibody as claimed in any of one Claims 1 to 22 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a ZIKV infection.
91. Use of an antibody as claimed in any one of Claims 1 to 22 in the preparation of a medicament for treatment or prevention of ZIKV infection-related disorder.
92. Use of an antibody as claimed in any one of Claims 1 to 22 in the preparation of a medicament for treatment or prevention of ZIKV infection-related microcephaly.
93. Use of a nucleic acid of claim 36 in the preparation of a medicament for the
therapeutic treatment or diagnostic detection of a ZIKV infection.
94. Use of a nucleic acid of claim 36 in the preparation of a medicament for treating or preventing a ZIKV infection-related disorder.
95. Use of a nucleic acid of claim 36 in the preparation of a medicament for treatment or prevention of a ZIKV infection-related microcephaly.
96. Use of an expression vector of claim 37 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a ZIKV infection.
97. Use of an expression vector of claim 37 in the preparation of a medicament for
treating or preventing a ZIKV infection-related disorder.
98. Use of an expression vector of claim 37 in the preparation of a medicament for
treatment or prevention of a ZIKV infection-related microcephaly.
99. Use of a host cell of claim 38 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a ZIKV infection.
100. Use of a host cell of claim 38 in the preparation of a medicament for treating or
preventing a ZIKV infection-related disorder.
101. Use of a host cell of claim 38 in the preparation of a medicament for treatment or prevention of a ZIKV infection-related microcephaly.
102. Use of a composition of matter of claim 41 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a ZIKV infection.
103. Use of a composition of matter of claim 41 in the preparation of a medicament for treating or preventing a ZIKV infection-related disorder.
104. Use of a composition of matter of claim 41 in the preparation of a medicament for treatment or prevention of a ZIKV infection-related microcephaly.
105. Use of an article of manufacture of claim 43 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a ZIKV infection.
106. Use of an article of manufacture of claim 43 in the preparation of a medicament for treating or preventing a ZIKV infection-related disorder.
107. Use of an article of manufacture of claim 43 in the preparation of a medicament for treatment or prevention of a ZIKV infection-related microcephaly.
108. A method of detecting ZIKA virus in a biological sample comprising contacting the sample with an antigen which comprises an epitope of the ZIKA NS-1 protein and determining whether an antibody in the sample binds to the epitope.
109. The method of claim 108, further comprising contacting the sample and antigen with a binding protein having substantially the immunological binding characteristics of an isolated antibody of any one of claims 1-22 and determining how much of said binding protein binds to said antigen.
110. The method of claim 108, wherein the determination is made in an epitope blocking assay.
PCT/US2018/018709 2017-02-17 2018-02-20 Compositions and methods for the diagnosis and treatment of zika virus infection WO2018152496A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201762460635P true 2017-02-17 2017-02-17
US62/460,635 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018152496A1 true WO2018152496A1 (en) 2018-08-23

Family

ID=61521850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/018709 WO2018152496A1 (en) 2017-02-17 2018-02-20 Compositions and methods for the diagnosis and treatment of zika virus infection

Country Status (1)

Country Link
WO (1) WO2018152496A1 (en)

Citations (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
EP0003089A1 (en) 1978-01-06 1979-07-25 Bernard David Drier for silkscreen printed sheets
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4275149A (en) 1978-11-24 1981-06-23 Syva Company Macromolecular environment control in specific receptor assays
EP0036776A2 (en) 1980-03-24 1981-09-30 Genentech, Inc. A method of creating an expression plasmid
US4301144A (en) 1979-07-11 1981-11-17 Ajinomoto Company, Incorporated Blood substitute containing modified hemoglobin
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
EP0073657A1 (en) 1981-08-31 1983-03-09 Genentech, Inc. Preparation of hepatitis B surface antigen in yeast
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
EP0117060A2 (en) 1983-01-19 1984-08-29 Genentech, Inc. Methods of screening and amplification in eukaryotic host cells, and nucleotide sequences and expression vectors for use therein
EP0117058A2 (en) 1983-01-19 1984-08-29 Genentech, Inc. Methods for producing mature protein in vertebrate host cells
WO1984003506A1 (en) 1983-03-08 1984-09-13 Commw Serum Lab Commission Antigenically active amino acid sequences
WO1984003564A1 (en) 1983-03-08 1984-09-13 Commw Serum Lab Commission Method of determining antigenically active amino acid sequences
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
EP0139383A1 (en) 1983-08-16 1985-05-02 Zymogenetics, Inc. Method for expressing foreign genes in schizosaccharomyces pombe and the use in therapeutic formulations of the products, DNA constructs and transformant strains of schizosaccharomyces pombe usable in such method and their preparation
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
EP0183070A2 (en) 1984-10-30 1986-06-04 Phillips Petroleum Company Transformation of yeasts of the genus pichia
WO1987000195A1 (en) 1985-06-28 1987-01-15 Celltech Limited Animal cell culture
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4670417A (en) 1985-06-19 1987-06-02 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
WO1987005330A1 (en) 1986-03-07 1987-09-11 Michel Louis Eugene Bergh Method for enhancing glycoprotein stability
EP0244234A2 (en) 1986-04-30 1987-11-04 Alko Group Ltd. Transformation of trichoderma
US4708871A (en) 1983-03-08 1987-11-24 Commonwealth Serum Laboratories Commission Antigenically active amino acid sequences
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
DD266710A3 (en) 1983-06-06 1989-04-12 Ve Forschungszentrum Biotechnologie A process for the biotechnical preparation van alkaline phosphatase
US4833092A (en) 1985-04-22 1989-05-23 Commonwealth Serum Laboratories Commission Method for determining mimotopes
WO1989005859A1 (en) 1987-12-21 1989-06-29 The Upjohn Company Agrobacterium mediated transformation of germinating plant seeds
GB2211504A (en) 1987-10-23 1989-07-05 Nat Res Dev Fowlpox virus promoters
US4892538A (en) 1987-11-17 1990-01-09 Brown University Research Foundation In vivo delivery of neurotransmitters by implanted, encapsulated cells
EP0362179A2 (en) 1988-08-25 1990-04-04 Smithkline Beecham Corporation Recombinant saccharomyces
WO1990003430A1 (en) 1988-09-23 1990-04-05 Cetus Corporation Cell culture medium for enhanced cell growth, culture longevity and product expression
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
US4943529A (en) 1982-05-19 1990-07-24 Gist-Brocades Nv Kluyveromyces as a host strain
US4946783A (en) 1987-01-30 1990-08-07 President And Fellows Of Harvard College Periplasmic protease mutants of Escherichia coli
EP0394538A1 (en) 1989-04-28 1990-10-31 Rhein Biotech Gesellschaft Fur Neue Biotechnologische Prozesse Und Produkte Mbh A yeast cell of the genus schwanniomyces
WO1990013646A1 (en) 1989-04-28 1990-11-15 Transgene S.A. Application of novel dna fragments as a coding sequence for a signal peptide for the secretion of mature proteins by recombinant yeast, expression cassettes, transformed yeasts and corresponding process for the preparation of proteins
EP0402226A1 (en) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Transformation vectors for yeast yarrowia
EP0404097A2 (en) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof
WO1991000360A1 (en) 1989-06-29 1991-01-10 Medarex, Inc. Bispecific reagents for aids therapy
WO1991000357A1 (en) 1989-06-30 1991-01-10 Cayla New strain with filamentous fungi mutants, process for the production of recombinant proteins using said strain, and strains and proteins produced by said process
US5010182A (en) 1987-07-28 1991-04-23 Chiron Corporation DNA constructs containing a Kluyveromyces alpha factor leader sequence for directing secretion of heterologous polypeptides
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5078998A (en) 1985-08-02 1992-01-07 Bevan Michael J Hybrid ligand directed to activation of cytotoxic effector T lymphocytes and target associated antigen
WO1992000373A1 (en) 1990-06-29 1992-01-09 Biosource Genetics Corporation Melanin production by transformed microorganisms
US5120643A (en) 1987-07-13 1992-06-09 Abbott Laboratories Process for immunochromatography with colloidal particles
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5229275A (en) 1990-04-26 1993-07-20 Akzo N.V. In-vitro method for producing antigen-specific human monoclonal antibodies
WO1993016185A2 (en) 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Biosynthetic binding protein for cancer marker
WO1993025673A1 (en) 1992-06-04 1993-12-23 The Regents Of The University Of California In vivo gene therapy with intron-free sequence of interest
US5283187A (en) 1987-11-17 1994-02-01 Brown University Research Foundation Cell culture-containing tubular capsule produced by co-extrusion
WO1994004690A1 (en) 1992-08-17 1994-03-03 Genentech, Inc. Bispecific immunoadhesins
WO1994011026A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma
US5364934A (en) 1991-02-01 1994-11-15 Genentech, Inc. Plasma carboxypeptidase
US5428130A (en) 1989-02-23 1995-06-27 Genentech, Inc. Hybrid immunoglobulins
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
US5432018A (en) 1990-06-20 1995-07-11 Affymax Technologies N.V. Peptide library and screening systems
WO1995034683A1 (en) 1994-06-10 1995-12-21 Symbiotech, Inc. Method of detecting compounds utilizing genetically modified lambdoid bacteriophage
US5498538A (en) 1990-02-15 1996-03-12 The University Of North Carolina At Chapel Hill Totally synthetic affinity reagents
US5498530A (en) 1991-10-16 1996-03-12 Affymax Technologies, N.V. Peptide library and screening method
WO1996007321A1 (en) 1994-09-06 1996-03-14 The Uab Research Foundation Methods for modulating protein function in cells using intracellular antibody homologues
US5500362A (en) 1987-01-08 1996-03-19 Xoma Corporation Chimeric antibody with specificity to human B cell surface antigen
WO1996016673A1 (en) 1994-12-02 1996-06-06 Chiron Corporation Method of promoting an immune response with a bispecific antibody
US5545807A (en) 1988-10-12 1996-08-13 The Babraham Institute Production of antibodies from transgenic animals
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5556762A (en) 1990-11-21 1996-09-17 Houghten Pharmaceutical Inc. Scanning synthetic peptide combinatorial libraries: oligopeptide mixture sets having a one predetermined residue at a single, predetermined position, methods of making and using the same
US5559041A (en) 1989-12-18 1996-09-24 Princeton Biomeditech Corporation Immunoassay devices and materials
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5567610A (en) 1986-09-04 1996-10-22 Bioinvent International Ab Method of producing human monoclonal antibodies and kit therefor
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
US5571689A (en) 1988-06-16 1996-11-05 Washington University Method of N-acylating peptide and proteins with diheteroatom substituted analogs of myristic acid
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
US5591669A (en) 1988-12-05 1997-01-07 Genpharm International, Inc. Transgenic mice depleted in a mature lymphocytic cell-type
US5601819A (en) 1988-08-11 1997-02-11 The General Hospital Corporation Bispecific antibodies for selective immune regulation and for selective immune cell binding
WO1997009446A1 (en) 1995-09-07 1997-03-13 Novo Nordisk A/S Phage display for detergent enzyme activity
US5627024A (en) 1994-08-05 1997-05-06 The Scripps Research Institute Lambdoid bacteriophage vectors for expression and display of foreign proteins
WO1997017852A1 (en) 1995-11-15 1997-05-22 Hoechst Schering Agrevo Gmbh Synergetic herbicidal mixtures
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5648237A (en) 1991-09-19 1997-07-15 Genentech, Inc. Expression of functional antibody fragments
US5663143A (en) 1988-09-02 1997-09-02 Dyax Corp. Engineered human-derived kunitz domains that inhibit human neutrophil elastase
WO1997035196A1 (en) 1996-03-20 1997-09-25 Dyax Corp. Engineering affinity ligands for macromolecules
WO1997038731A1 (en) 1996-04-18 1997-10-23 The Regents Of The University Of California Immunoliposomes that optimize internalization into target cells
WO1997046251A1 (en) 1996-06-06 1997-12-11 Lajolla Pharmaceutical Company aPL IMMUNOREACTIVE PEPTIDES, CONJUGATES THEREOF AND METHODS OF TREATMENT FOR aPL ANTIBODY-MEDIATED PATHOLOGIES
US5698426A (en) 1990-09-28 1997-12-16 Ixsys, Incorporated Surface expression libraries of heteromeric receptors
WO1997047314A1 (en) 1996-06-10 1997-12-18 The Scripps Research Institute Use of substrate subtraction libraries to distinguish enzyme specificities
WO1998002463A1 (en) 1996-07-11 1998-01-22 Medarex, Inc. THERAPEUTIC MULTISPECIFIC COMPOUNDS COMPRISED OF ANTI-FCα RECEPTOR ANTIBODIES
US5714389A (en) 1988-06-27 1998-02-03 Carter-Wallace, Inc. Test device and method for colored particle immunoassay
US5723323A (en) 1985-03-30 1998-03-03 Kauffman; Stuart Alan Method of identifying a stochastically-generated peptide, polypeptide, or protein having ligand binding property and compositions thereof
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5734018A (en) 1988-05-02 1998-03-31 The Regents Of The University Of California Peptide mixtures
WO1998014277A1 (en) 1996-10-04 1998-04-09 Whatman, Inc. Device and method for simultaneous multiple chemical syntheses
US5739277A (en) 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
WO1998015833A1 (en) 1996-10-08 1998-04-16 Universiteit Utrecht Methods and means for selecting peptides and proteins having specific affinity for a target
US5750373A (en) 1990-12-03 1998-05-12 Genentech, Inc. Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants
WO1998020036A1 (en) 1996-11-06 1998-05-14 Genentech, Inc. Constrained helical peptides and methods of making same
WO1998020169A1 (en) 1996-11-07 1998-05-14 Ramot University Authority For Applied Research & Industrial Development Ltd. Determination and control of bimolecular interactions
WO1998020159A1 (en) 1996-11-07 1998-05-14 Ramot University Authority For Applied Research & Industrial Development Ltd. Representations of bimolecular interactions
US5763192A (en) 1986-11-20 1998-06-09 Ixsys, Incorporated Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique
US5766905A (en) 1996-06-14 1998-06-16 Associated Universities Inc. Cytoplasmic bacteriophage display system
US5770434A (en) 1990-09-28 1998-06-23 Ixsys Incorporated Soluble peptides having constrained, secondary conformation in solution and method of making same
US5789199A (en) 1994-11-03 1998-08-04 Genentech, Inc. Process for bacterial production of polypeptides
US5821337A (en) 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
US5837234A (en) 1995-06-07 1998-11-17 Cytotherapeutics, Inc. Bioartificial organ containing cells encapsulated in a permselective polyether suflfone membrane
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6129914A (en) 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
US6228660B1 (en) 1908-04-27 2001-05-08 Conopco Inc. Capillary immunoassay and device therefor comprising mobilizable particulate labelled reagents
WO2003103835A1 (en) 2002-06-07 2003-12-18 Åmic AB Micro fluidic structures
US6723538B2 (en) 1999-03-11 2004-04-20 Micromet Ag Bispecific antibody and chemokine receptor constructs
WO2005089082A2 (en) 2004-03-24 2005-09-29 Åmic AB Assay device and method
WO2005118139A1 (en) 2004-06-02 2005-12-15 Åmic AB Controlled flow assay device and method
US7112324B1 (en) 1998-04-21 2006-09-26 Micromet Ag CD 19×CD3 specific polypeptides and uses thereof
WO2006137785A1 (en) 2005-06-20 2006-12-28 Åmic AB Method and means for creating fluid transport
US7160985B2 (en) 1997-10-29 2007-01-09 Genentech, Inc. Pro180 polypeptide
US7235641B2 (en) 2003-12-22 2007-06-26 Micromet Ag Bispecific antibodies
US7262276B2 (en) 2001-05-24 2007-08-28 Beijing Abt Genetic Engineering Technology Co. Ltd. Anti human ovarian cancer-anti CD3 bispecific antibody

Patent Citations (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228660B1 (en) 1908-04-27 2001-05-08 Conopco Inc. Capillary immunoassay and device therefor comprising mobilizable particulate labelled reagents
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
EP0003089A1 (en) 1978-01-06 1979-07-25 Bernard David Drier for silkscreen printed sheets
US4275149A (en) 1978-11-24 1981-06-23 Syva Company Macromolecular environment control in specific receptor assays
US4301144A (en) 1979-07-11 1981-11-17 Ajinomoto Company, Incorporated Blood substitute containing modified hemoglobin
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
EP0036776A2 (en) 1980-03-24 1981-09-30 Genentech, Inc. A method of creating an expression plasmid
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
EP0073657A1 (en) 1981-08-31 1983-03-09 Genentech, Inc. Preparation of hepatitis B surface antigen in yeast
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4943529A (en) 1982-05-19 1990-07-24 Gist-Brocades Nv Kluyveromyces as a host strain
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
EP0117060A2 (en) 1983-01-19 1984-08-29 Genentech, Inc. Methods of screening and amplification in eukaryotic host cells, and nucleotide sequences and expression vectors for use therein
EP0117058A2 (en) 1983-01-19 1984-08-29 Genentech, Inc. Methods for producing mature protein in vertebrate host cells
US4708871A (en) 1983-03-08 1987-11-24 Commonwealth Serum Laboratories Commission Antigenically active amino acid sequences
WO1984003564A1 (en) 1983-03-08 1984-09-13 Commw Serum Lab Commission Method of determining antigenically active amino acid sequences
WO1984003506A1 (en) 1983-03-08 1984-09-13 Commw Serum Lab Commission Antigenically active amino acid sequences
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
DD266710A3 (en) 1983-06-06 1989-04-12 Ve Forschungszentrum Biotechnologie A process for the biotechnical preparation van alkaline phosphatase
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
EP0139383A1 (en) 1983-08-16 1985-05-02 Zymogenetics, Inc. Method for expressing foreign genes in schizosaccharomyces pombe and the use in therapeutic formulations of the products, DNA constructs and transformant strains of schizosaccharomyces pombe usable in such method and their preparation
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
EP0183070A2 (en) 1984-10-30 1986-06-04 Phillips Petroleum Company Transformation of yeasts of the genus pichia
US5723323A (en) 1985-03-30 1998-03-03 Kauffman; Stuart Alan Method of identifying a stochastically-generated peptide, polypeptide, or protein having ligand binding property and compositions thereof
US4833092A (en) 1985-04-22 1989-05-23 Commonwealth Serum Laboratories Commission Method for determining mimotopes
US4670417A (en) 1985-06-19 1987-06-02 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
WO1987000195A1 (en) 1985-06-28 1987-01-15 Celltech Limited Animal cell culture
US5078998A (en) 1985-08-02 1992-01-07 Bevan Michael J Hybrid ligand directed to activation of cytotoxic effector T lymphocytes and target associated antigen
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
WO1987005330A1 (en) 1986-03-07 1987-09-11 Michel Louis Eugene Bergh Method for enhancing glycoprotein stability
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
EP0244234A2 (en) 1986-04-30 1987-11-04 Alko Group Ltd. Transformation of trichoderma
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
US5567610A (en) 1986-09-04 1996-10-22 Bioinvent International Ab Method of producing human monoclonal antibodies and kit therefor
US5763192A (en) 1986-11-20 1998-06-09 Ixsys, Incorporated Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique
US5500362A (en) 1987-01-08 1996-03-19 Xoma Corporation Chimeric antibody with specificity to human B cell surface antigen
US4946783A (en) 1987-01-30 1990-08-07 President And Fellows Of Harvard College Periplasmic protease mutants of Escherichia coli
US5120643A (en) 1987-07-13 1992-06-09 Abbott Laboratories Process for immunochromatography with colloidal particles
US5010182A (en) 1987-07-28 1991-04-23 Chiron Corporation DNA constructs containing a Kluyveromyces alpha factor leader sequence for directing secretion of heterologous polypeptides
GB2211504A (en) 1987-10-23 1989-07-05 Nat Res Dev Fowlpox virus promoters
US5283187A (en) 1987-11-17 1994-02-01 Brown University Research Foundation Cell culture-containing tubular capsule produced by co-extrusion
US4892538A (en) 1987-11-17 1990-01-09 Brown University Research Foundation In vivo delivery of neurotransmitters by implanted, encapsulated cells
WO1989005859A1 (en) 1987-12-21 1989-06-29 The Upjohn Company Agrobacterium mediated transformation of germinating plant seeds
US5734018A (en) 1988-05-02 1998-03-31 The Regents Of The University Of California Peptide mixtures
US5571689A (en) 1988-06-16 1996-11-05 Washington University Method of N-acylating peptide and proteins with diheteroatom substituted analogs of myristic acid
US5714389A (en) 1988-06-27 1998-02-03 Carter-Wallace, Inc. Test device and method for colored particle immunoassay
US5601819A (en) 1988-08-11 1997-02-11 The General Hospital Corporation Bispecific antibodies for selective immune regulation and for selective immune cell binding
EP0362179A2 (en) 1988-08-25 1990-04-04 Smithkline Beecham Corporation Recombinant saccharomyces
US5403484A (en) 1988-09-02 1995-04-04 Protein Engineering Corporation Viruses expressing chimeric binding proteins
US5663143A (en) 1988-09-02 1997-09-02 Dyax Corp. Engineered human-derived kunitz domains that inhibit human neutrophil elastase
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
WO1990003430A1 (en) 1988-09-23 1990-04-05 Cetus Corporation Cell culture medium for enhanced cell growth, culture longevity and product expression
US5545807A (en) 1988-10-12 1996-08-13 The Babraham Institute Production of antibodies from transgenic animals
US5591669A (en) 1988-12-05 1997-01-07 Genpharm International, Inc. Transgenic mice depleted in a mature lymphocytic cell-type
US5428130A (en) 1989-02-23 1995-06-27 Genentech, Inc. Hybrid immunoglobulins
EP0394538A1 (en) 1989-04-28 1990-10-31 Rhein Biotech Gesellschaft Fur Neue Biotechnologische Prozesse Und Produkte Mbh A yeast cell of the genus schwanniomyces
WO1990013646A1 (en) 1989-04-28 1990-11-15 Transgene S.A. Application of novel dna fragments as a coding sequence for a signal peptide for the secretion of mature proteins by recombinant yeast, expression cassettes, transformed yeasts and corresponding process for the preparation of proteins
EP0402226A1 (en) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Transformation vectors for yeast yarrowia
EP0404097A2 (en) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof
WO1991000360A1 (en) 1989-06-29 1991-01-10 Medarex, Inc. Bispecific reagents for aids therapy
WO1991000357A1 (en) 1989-06-30 1991-01-10 Cayla New strain with filamentous fungi mutants, process for the production of recombinant proteins using said strain, and strains and proteins produced by said process
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
US5559041A (en) 1989-12-18 1996-09-24 Princeton Biomeditech Corporation Immunoassay devices and materials
US5498538A (en) 1990-02-15 1996-03-12 The University Of North Carolina At Chapel Hill Totally synthetic affinity reagents
US5229275A (en) 1990-04-26 1993-07-20 Akzo N.V. In-vitro method for producing antigen-specific human monoclonal antibodies
US5580717A (en) 1990-05-01 1996-12-03 Affymax Technologies N.V. Recombinant library screening methods
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
US5723286A (en) 1990-06-20 1998-03-03 Affymax Technologies N.V. Peptide library and screening systems
US5432018A (en) 1990-06-20 1995-07-11 Affymax Technologies N.V. Peptide library and screening systems
WO1992000373A1 (en) 1990-06-29 1992-01-09 Biosource Genetics Corporation Melanin production by transformed microorganisms
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5698426A (en) 1990-09-28 1997-12-16 Ixsys, Incorporated Surface expression libraries of heteromeric receptors
US5770434A (en) 1990-09-28 1998-06-23 Ixsys Incorporated Soluble peptides having constrained, secondary conformation in solution and method of making same
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
US5556762A (en) 1990-11-21 1996-09-17 Houghten Pharmaceutical Inc. Scanning synthetic peptide combinatorial libraries: oligopeptide mixture sets having a one predetermined residue at a single, predetermined position, methods of making and using the same
US5750373A (en) 1990-12-03 1998-05-12 Genentech, Inc. Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants
US5364934A (en) 1991-02-01 1994-11-15 Genentech, Inc. Plasma carboxypeptidase
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
US6407213B1 (en) 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
US5821337A (en) 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
US5648237A (en) 1991-09-19 1997-07-15 Genentech, Inc. Expression of functional antibody fragments
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
US5498530A (en) 1991-10-16 1996-03-12 Affymax Technologies, N.V. Peptide library and screening method
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993016185A2 (en) 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Biosynthetic binding protein for cancer marker
US6129914A (en) 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
WO1993025673A1 (en) 1992-06-04 1993-12-23 The Regents Of The University Of California In vivo gene therapy with intron-free sequence of interest
WO1994004690A1 (en) 1992-08-17 1994-03-03 Genentech, Inc. Bispecific immunoadhesins
WO1994011026A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma
WO1995034683A1 (en) 1994-06-10 1995-12-21 Symbiotech, Inc. Method of detecting compounds utilizing genetically modified lambdoid bacteriophage
US5627024A (en) 1994-08-05 1997-05-06 The Scripps Research Institute Lambdoid bacteriophage vectors for expression and display of foreign proteins
WO1996007321A1 (en) 1994-09-06 1996-03-14 The Uab Research Foundation Methods for modulating protein function in cells using intracellular antibody homologues
US5789199A (en) 1994-11-03 1998-08-04 Genentech, Inc. Process for bacterial production of polypeptides
WO1996016673A1 (en) 1994-12-02 1996-06-06 Chiron Corporation Method of promoting an immune response with a bispecific antibody
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US5739277A (en) 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5837234A (en) 1995-06-07 1998-11-17 Cytotherapeutics, Inc. Bioartificial organ containing cells encapsulated in a permselective polyether suflfone membrane
WO1997009446A1 (en) 1995-09-07 1997-03-13 Novo Nordisk A/S Phage display for detergent enzyme activity
WO1997017852A1 (en) 1995-11-15 1997-05-22 Hoechst Schering Agrevo Gmbh Synergetic herbicidal mixtures
WO1997035196A1 (en) 1996-03-20 1997-09-25 Dyax Corp. Engineering affinity ligands for macromolecules
WO1997038731A1 (en) 1996-04-18 1997-10-23 The Regents Of The University Of California Immunoliposomes that optimize internalization into target cells
WO1997046251A1 (en) 1996-06-06 1997-12-11 Lajolla Pharmaceutical Company aPL IMMUNOREACTIVE PEPTIDES, CONJUGATES THEREOF AND METHODS OF TREATMENT FOR aPL ANTIBODY-MEDIATED PATHOLOGIES
WO1997047314A1 (en) 1996-06-10 1997-12-18 The Scripps Research Institute Use of substrate subtraction libraries to distinguish enzyme specificities
US5766905A (en) 1996-06-14 1998-06-16 Associated Universities Inc. Cytoplasmic bacteriophage display system
WO1998002463A1 (en) 1996-07-11 1998-01-22 Medarex, Inc. THERAPEUTIC MULTISPECIFIC COMPOUNDS COMPRISED OF ANTI-FCα RECEPTOR ANTIBODIES
WO1998014277A1 (en) 1996-10-04 1998-04-09 Whatman, Inc. Device and method for simultaneous multiple chemical syntheses
WO1998015833A1 (en) 1996-10-08 1998-04-16 Universiteit Utrecht Methods and means for selecting peptides and proteins having specific affinity for a target
WO1998020036A1 (en) 1996-11-06 1998-05-14 Genentech, Inc. Constrained helical peptides and methods of making same
WO1998020159A1 (en) 1996-11-07 1998-05-14 Ramot University Authority For Applied Research & Industrial Development Ltd. Representations of bimolecular interactions
WO1998020169A1 (en) 1996-11-07 1998-05-14 Ramot University Authority For Applied Research & Industrial Development Ltd. Determination and control of bimolecular interactions
US7160985B2 (en) 1997-10-29 2007-01-09 Genentech, Inc. Pro180 polypeptide
US7112324B1 (en) 1998-04-21 2006-09-26 Micromet Ag CD 19×CD3 specific polypeptides and uses thereof
US6723538B2 (en) 1999-03-11 2004-04-20 Micromet Ag Bispecific antibody and chemokine receptor constructs
US7262276B2 (en) 2001-05-24 2007-08-28 Beijing Abt Genetic Engineering Technology Co. Ltd. Anti human ovarian cancer-anti CD3 bispecific antibody
WO2003103835A1 (en) 2002-06-07 2003-12-18 Åmic AB Micro fluidic structures
US7235641B2 (en) 2003-12-22 2007-06-26 Micromet Ag Bispecific antibodies
WO2005089082A2 (en) 2004-03-24 2005-09-29 Åmic AB Assay device and method
WO2005118139A1 (en) 2004-06-02 2005-12-15 Åmic AB Controlled flow assay device and method
WO2006137785A1 (en) 2005-06-20 2006-12-28 Åmic AB Method and means for creating fluid transport

Non-Patent Citations (175)

* Cited by examiner, † Cited by third party
Title
"Antibodies, A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
"Basic and Clinical Immunology", 1994, APPLETON & LANGE, pages: 71
"Mammalian Cell Biotechnology: a Practical Approach", 1991, IRL PRESS
"Remington's Pharmaceutical Sciences", 1980
ALCON S ET AL., J CLIN MICROBIOL, vol. 40, 2002, pages 376 - 81
ANDERSON ET AL., SCIENCE, vol. 256, 1992, pages 808 - 813
APLIN; WRISTON, CRC CRIT. REV. BIOCHEM., 1981, pages 259 - 306
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1995, WILEY INTERSCIENCE PUBLISHERS
BAEUERLE ET AL., CURR. OPIN. MOL. THER., vol. 11, no. 1, 2009, pages 22 - 30
BALLANCE ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 112, 1983, pages 284 - 289
BARBAS ET AL., PROC NAT. ACAD. SCI, USA, vol. 91, 1994, pages 3809 - 3813
BARNES ET AL., ANAL. BIOCHEM., vol. 102, 1980, pages 255
BEACH; NURSE, NATURE, vol. 290, 1981, pages 140
BRENNAN ET AL., SCIENCE, vol. 229, 1985, pages 81
BRODEUR ET AL.: "Monoclonal Antibody Production Techniques and Applications", 1987, MARCEL DEKKER, INC., pages: 51 - 63
BRUGGEMANN ET AL., YEAR IN IMMUNO., vol. 7, 1993, pages 33
C. ANTHONY, THE BIOCHEMISTRY OF METHYLOTROPHS, vol. 269, 1982
CAPEL ET AL., IMMUNOMETHODS, vol. 4, 1994, pages 25 - 34
CARON ET AL., J. EXP MED., vol. 176, 1992, pages 1191 - 1195
CARTER ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 163 - 167
CARTER ET AL., NUCL. ACIDS RES., vol. 13, 1986, pages 4331
CARTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4285
CASE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 76, 1979, pages 5259 - 5263
CHANG ET AL., NATURE, vol. 275, 1978, pages 615
CHARI ET AL., CANCER RESEARCH, vol. 52, 1992, pages 127 - 131
CHATAL: "Monoclonal Antibodies in Immunoscintigraphy", 1989, CRC PRESS
CHEN ET AL., J. MOL BIOL, vol. 293, 1999, pages 865 - 881
CHEN, Y. ET AL., J. MOL BIOL, vol. 293, 1999, pages 865 - 881
CHOTHIA ET AL., J. MOL. BIOL., vol. 196, 1987, pages 901
CHOTHIA, J. MOL. BIOL., vol. 150, 1976, pages 1
CHOTHIA; LESK, J. MOL. BIOL., vol. 196, 1987, pages 901 - 917
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
CLACKSON, T. ET AL., NATURE, vol. 352, 1991, pages 624
CLYNES ET AL., USA, vol. 95, 1998, pages 652 - 656
CREIGHTON: "The Proteins", W.H. FREEMAN & CO.
CUNNINGHAM; WELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085
CWIRLA, S. E. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 6378
DE HAAS ET AL., J. LAB. CLIN. MED., vol. 126, 1995, pages 330 - 41
DEBOER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 80, 1983, pages 21 - 25
DEUTSCHER, METHODS IN ENZYMOLOGY, vol. 182, 1990
DIEFFENBACH ET AL.: "PCR Primer: A Laboratory Manual", 1995, COLD SPRING HARBOR LABORATORY PRESS
EDGE ET AL., ANAL. BIOCHEM., vol. 118, 1981, pages 131
EFIMOV ET AL., VIRUS GENES, vol. 10, 1995, pages 173
EPSTEIN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 3688
EVAN ET AL., MOLECULAR AND CELLULAR BIOLOGY, vol. 5, 1985, pages 3610 - 3616
FIELD ET AL., MOL. CELL. BIOL., vol. 8, 1988, pages 2159 - 2165
FLAMMAND M ET AL., J VIROL, vol. 73, 1999, pages 6104
FLEER ET AL., BIO/TECHNOLOGY, vol. 9, 1991, pages 968 - 975
FRAKER ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 80, 1978, pages 49 - 57
GABIZON ET AL., J. NATIONAL CANCER INST., vol. 81, no. 19, 1989, pages 1484
GAZZANO-SANTORO ET AL., J. IMMUNOL. METHODS, vol. 202, 1996, pages 163
GETHING ET AL., NATURE, vol. 293, 1981, pages 620 - 625
GEYSEN ET AL., J. IMMUNOL. METH., vol. 102, 1987, pages 259 - 274
GEYSEN ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 81, 1984, pages 3998 - 4002
GEYSEN ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 82, 1985, pages 178 - 182
GEYSEN ET AL., SYNTHETIC PEPTIDES AS ANTIGENS, 1986, pages 130 - 149
GIOVANNA BARBA-SPAETH ET AL: "Structural basis of potent Zika-dengue virus antibody cross-neutralization", NATURE, vol. 536, no. 7614, 23 June 2016 (2016-06-23), pages 48 - 53, XP055328133, ISSN: 0028-0836, DOI: 10.1038/nature18938 *
GODING: "Monoclonal Antibodies: Principles and Practice", 1986, ACADEMIC PRESS, pages: 59 - 103
GOEDDEL ET AL., NATURE, vol. 281, 1979, pages 544
GOEDDEL, NUCLEIC ACIDS RES., vol. 8, 1980, pages 4057
GRAHAM ET AL., J. GEN VIROL., vol. 36, 1977, pages 59
GRAHAM; VAN DER EB, VIROLOGY, vol. 52, 1978, pages 456 - 457
GRIFFITH ET AL., EMBO J., vol. 12, 1993, pages 725 - 734
GRUBER ET AL., J. IMMUNOL., vol. 152, 1994, pages 5368
GUSS ET AL., EMBO J., vol. 5, 1986, pages 15671575
GUYER ET AL., J. IMMUNOL., vol. 117, 1976, pages 587
HAKIMUDDIN ET AL., ARCH. BIOCHEM. BIOPHYS., vol. 259, 1987, pages 52
HAM ET AL., METH. ENZ., vol. 58, 1979, pages 44
HAWKINS ET AL., J. MOL. BIOL., vol. 226, 1992, pages 889 - 896
HESS ET AL., J. ADV. ENZYME REG., vol. 7, 1968, pages 149
HITZEMAN ET AL., J. BIOL. CHEM., vol. 255, 1980, pages 2073
HOLLAND, BIOCHEMISTRY, vol. 17, 1978, pages 4900
HOLLINGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HOPP ET AL., BIOTECHNOLOGY, vol. 6, 1988, pages 1204 - 1210
HSIAO ET AL., PROC. NATL. ACAD. SCI. (USA, vol. 76, 1979, pages 3829
HWANG ET AL., PROC. NATL ACAD. SCI. USA, vol. 77, 1980, pages 4030
JACKSON ET AL., J. IMMUNOL., vol. 154, no. 7, 1995, pages 3310 - 9
JAKOBOVITS ET AL., NATURE, vol. 362, 1993, pages 255 - 258
JAKOBOVITS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 2551
JIANG ET AL., INFECTION & IMMUNITY, vol. 65, no. 11, 1997, pages 4770 - 4777
JOHNSON, KEVIN S.; CHISWELL, DAVID J., CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 3, 1993, pages 564 - 571
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525
JONES, GENETICS, vol. 85, 1977, pages 12
K. STETTLER ET AL: "Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection", SCIENCE, vol. 353, no. 6301, 19 August 2016 (2016-08-19), pages 823 - 826, XP055352097, ISSN: 0036-8075, DOI: 10.1126/science.aaf8505 *
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, PUBLIC HEALTH SERVICE, NATIONAL INSTITUTES OF HEALTH
KANG, A.S. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 88, 1991, pages 8363
KELLY; HYNES, EMBO J., vol. 4, 1985, pages 475 - 479
KEOWN ET AL., METHODS IN ENZYMOLOGY, vol. 185, 1990, pages 527 - 537
KIM ET AL., J. IMMUNOL., vol. 24, 1994, pages 249
KINGSMAN ET AL., GENE, vol. 7, 1979, pages 141
KOHLER ET AL., NATURE, vol. 256, 1975, pages 495
KOSTELNY ET AL., J. IMMUNOL., vol. 148, no. 5, 1992, pages 1547 - 1553
KOZBOR, J. IMMUNOL., vol. 133, 1984, pages 3001
LI ET AL., MOL BIOTECH., vol. 9, 1998, pages 187
LIANPAN DAI ET AL: "Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody", CELL HOST & MICROBE, vol. 19, no. 5, 1 May 2016 (2016-05-01), NL, pages 696 - 704, XP055352074, ISSN: 1931-3128, DOI: 10.1016/j.chom.2016.04.013 *
LINDMARK ET AL., J. IMMUNOL. METH., vol. 62, 1983, pages 1 - 13
LOUVENCOURT ET AL., J. BACTERIOL., vol. 154, no. 2, 1983, pages 737 - 742
LOWMAN, H.B. ET AL., BIOCHEMISTRY, vol. 30, 1991, pages 10832
LUTZ-FREYERMUTH ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 6393 - 6397
M. IN DAERON, ANNU. REV. IMMUNOL., vol. 15, 1997, pages 203 - 234
MANSOUR ET AL., NATURE, vol. 336, 1988, pages 348 - 352
MANTEI ET AL., NATURE, vol. 281, 1979, pages 40 - 46
MARC-ANTOINE DE LA VEGA ET AL., PLOS PATHOGENS, 2015
MARKS ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 779 - 783
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597
MARKS, J. D. ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581
MARTIN ET AL., J. BIOL. CHEM., vol. 257, 1982, pages 286 - 288
MARTIN ET AL., SCIENCE, vol. 255, 1992, pages 192 - 194
MATHER ET AL., ANNALS N.Y. ACAD. SCI., vol. 383, 1982, pages 44 - 68
MATHER, BIOL. REPROD., vol. 23, 1980, pages 243 - 251
MCCAFFERTY ET AL., NATURE, vol. 348, 1990, pages 552 - 553
MCCAFFERTY ET AL., NATURE, vol. 348, 1990, pages 552 - 554
MERRIFIELD, J. AM. CHEM. SOC., vol. 85, 1963, pages 2149 - 2154
MILLSTEIN ET AL., NATURE, vol. 305, 1983, pages 537 - 539
MOORE ET AL., CYTOTECHNOLOGY, vol. 17, 1995, pages 1 - 11
MORIMOTO ET AL., JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, vol. 24, 1992, pages 107 - 117
MORRISON ET AL., PROC. NATL ACAD. SCI. USA, vol. 81, 1984, pages 6851
MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855
MULLER DA; YOUNG PR, ANTIVIRAL RES, 2013
MUNSON ET AL., ANAL. BIOCHEM., vol. 107, 1980, pages 220
PABORSKY ET AL., PROTEIN ENGINEERING, vol. 3, no. 6, 1990, pages 547 - 553
PEELING RW, NAT REV MICROBIOL, vol. 8, 2010, pages S30 - S38
PLUCKTHUN, IMMUNOL. REVS., vol. 130, 1992, pages 151 - 188
PLUCKTHUN: "The Pharmacology of Monoclonal Antibodies", vol. 113, 1994, SPRINGER-VERLAG, pages: 269 - 315
PRESTA ET AL., CANCER RES., vol. 57, 1997, pages 4593 - 4599
PRESTA ET AL., J. IMMUNOL., vol. 151, 1993, pages 2623
PRESTA, CURR. OP. STRUCT. BIOL., vol. 2, 1992, pages 593 - 596
RAVETCH; KINET, ANNU. REV. IMMUNOL., vol. 9, 1991, pages 457 - 492
RAVETCH; KINET, ANNU. REV. IMMUNOL., vol. 9, 1991, pages 457 - 92
REN ET AL., GENE, vol. 195, no. 2, 1997, pages 303 - 311
REN ET AL., GENE, vol. 215, 1998, pages 439
REN, PROTEIN SCI., vol. 5, 1996, pages 1833
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 329
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR PRESS, article "Moderately stringent conditions"
SCHIER ET AL., GENE, vol. 169, 1995, pages 147 - 155
SCHOOFS ET AL., J. IMMUNOL., vol. 140, 1988, pages 611 - 616
SCOPES: "Protein Purification: Principles and Practice", 1982, SPRINGER-VERLAG
SCOTT, J.K.; SMITH, G. P., SCIENCE, vol. 249, 1990, pages 386
SHALABY ET AL., J. EXP. MED., vol. 175, 1992, pages 217 - 225
SHAW ET AL., GENE, vol. 23, 1983, pages 315
SHOPES, B., J. IMMUNOL., vol. 148, 1992, pages 2918 - 2922
SHU PY, CLIN DIAGN LAB IMMUNOL, vol. 11, 2004, pages 642 - 50
SIMS ET AL., J. IMMUNOL., vol. 151, 1993, pages 2296
SKERRA ET AL., CURR. OPINION IN IMMUNOL., vol. 5, 1993, pages 256 - 262
SKINNER ET AL., J. BIOL. CHEM., vol. 266, 1991, pages 15163 - 15166
SMITH, G. P., CURRENT OPIN. BIOTECHNOL., vol. 2, 1991, pages 668
SMITH; SCOTT, METHODS IN ENZYMOLOGY, vol. 217, 1993, pages 228 - 257
SREEKRISHNA ET AL., J. BASIC MICROBIOL., vol. 28, 1988, pages 265 - 278
STEVENSON ET AL., ANTI-CANCER DRUG DESIGN, vol. 3, 1989, pages 219 - 230
STEWART ET AL.: "Solid-Phase Peptide Synthesis", 1969, W.H. FREEMAN CO.
STINCHCOMB ET AL., NATURE, vol. 282, 1979, pages 39
SURESH ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1986, pages 210
T.E. CREIGHTON: "Proteins: Structure and Molecular Properties", 1983, W.H. FREEMAN & CO., pages: 79 - 86
THOMAS, PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 5201 - 5205
THOTAKURA ET AL., METH. ENZYMOL., vol. 138, 1987, pages 350
TILBURN ET AL., GENE, vol. 26, 1983, pages 205 - 221
TRAUNECKER ET AL., EMBO J., vol. 10, 1991, pages 3655 - 3659
TSCHEMPER ET AL., GENE, vol. 10, 1980, pages 157
TUTT ET AL., J. IMMUNOL., vol. 147, 1991, pages 60
URLAUB ET AL., PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216
VAN DEN BERG ET AL., BIO/TECHNOLOGY, vol. 8, 1990, pages 135
VAN SOLINGEN ET AL., J. BACT., vol. 130, 1977, pages 946
VITETTA ET AL., SCIENCE, vol. 238, 1987, pages 1098
WATERHOUSE ET AL., NUC. ACIDS. RES., vol. 21, 1993, pages 2265 - 2266
WELLS ET AL., GENE, vol. 34, 1985, pages 315
WELLS ET AL., PHILOS. TRANS. R. SOC. LONDON SERA, vol. 317, 1986, pages 415
WINKLER G. ET AL., VIROLOGY, 1989
WOLFF ET AL., CANCER RESEARCH, vol. 53, 1993, pages 2560 - 2565
YELTON ET AL., J. IMMUNOL., vol. 155, 1995, pages 1994 - 2004
YELTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 1470 - 1474
YOUNG PR ET AL., J CLIN MICROBIOL, vol. 38, 2000, pages 1053 - 57
ZAPATA ET AL., PROTEIN ENG., vol. 8, no. 10, 1995, pages 1057 - 1062
ZHU ET AL., CANCER RESEARCH, vol. 58, no. 15, 1998, pages 3209 - 3214
ZOLLER ET AL., NUCL. ACIDS RES., vol. 10, 1987, pages 6487

Similar Documents

Publication Publication Date Title
KR101352853B1 (en) M-csf-specific monoclonal antibody and uses thereof
KR100835786B1 (en) - il-17a/f heterologous polypeptides and therapeutic uses thereof
US9464131B2 (en) Broadly neutralizing human immunodeficiency virus type 1 (HIV-1) GP120-specific monoclonal antibody
JP5955828B2 (en) Anti-vegf antibody
JP6246158B2 (en) New compositions and methods for the treatment of immune-related diseases
JP5898653B2 (en) Anti il17a / il-17f cross-reactive antibodies and methods of use thereof
CN101948541B (en) Compositions and methods for the diagnosis and treatment of tumor
EP3181147A1 (en) Il-17a/f heterodimeric polypeptides and therapeutic thereof
AU2007333805B2 (en) Antagonist anti-Notch3 antibodies and their use in the prevention and treatment of Notch3-related diseases
EP2087006B1 (en) Anti-notch3 agonist antibodies and their use in the treatment of notch3-related diseases
JP6273212B2 (en) Cd47 antibodies and methods of use thereof
AU2005339476B2 (en) Neutralizing antibodies and methods of use thereof
AU2008321016B2 (en) Compositions and methods for the therapy and diagnosis of influenza
JP2005536190A (en) Compositions and methods for the diagnosis and treatment of tumors
AU2010226668B2 (en) Human immunodeficiency virus (HIV) -neutralizing antibodies
CN103261230A (en) Anti-PCSK9 antibodies and methods of use
US7691566B2 (en) Compositions and methods for treatment of cancer
JP2006500009A (en) Compositions and methods for the diagnosis and treatment of tumors
KR20080080639A (en) Anti-ox40l antibodies and methods using same
WO2010025400A2 (en) Cross-reactive and bispecific anti-el 17a/f antibodies
JP6174782B2 (en) Anti-c5 antibodies and methods of use
JP4658967B2 (en) Compositions and methods for the treatment of tumors of hematopoietic origin
US8404239B2 (en) Anti-Notch2 NRR antibodies
US20180072804A1 (en) Anti-tim3 antibodies and methods of use
US9828430B2 (en) Anti-IL-6/IL-6R antibodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18708038

Country of ref document: EP

Kind code of ref document: A1