EP0270018A2 - Verwendung von N-Alkyl- und N-Alkenylasparaginsäuren als Co-Sammler für die Flotation nichtsulfidischer Erze - Google Patents

Verwendung von N-Alkyl- und N-Alkenylasparaginsäuren als Co-Sammler für die Flotation nichtsulfidischer Erze Download PDF

Info

Publication number
EP0270018A2
EP0270018A2 EP87117541A EP87117541A EP0270018A2 EP 0270018 A2 EP0270018 A2 EP 0270018A2 EP 87117541 A EP87117541 A EP 87117541A EP 87117541 A EP87117541 A EP 87117541A EP 0270018 A2 EP0270018 A2 EP 0270018A2
Authority
EP
European Patent Office
Prior art keywords
alkyl
acids
alkenylaspartic
flotation
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87117541A
Other languages
English (en)
French (fr)
Other versions
EP0270018A3 (en
EP0270018B1 (de
Inventor
Beatrix Dr. Kottwitz
Wolfgang Von Rybinski
Rita Köster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to AT87117541T priority Critical patent/ATE77262T1/de
Publication of EP0270018A2 publication Critical patent/EP0270018A2/de
Publication of EP0270018A3 publication Critical patent/EP0270018A3/de
Application granted granted Critical
Publication of EP0270018B1 publication Critical patent/EP0270018B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/01Organic compounds containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/008Organic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/012Organic compounds containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores

Definitions

  • the invention relates to the use of N-alkyl and / or N-alkenylaspartic acids as co-collectors in the flotation of non-sulfidic ores and a process for separating non-sulfidic ores by flotation.
  • Flotation is a generally used sorting process for the processing of mineral raw materials to separate valuable minerals from the gangue.
  • Non-sulfidic minerals such as apatite, fluorite, scheelite and other salt-like minerals, cassiterite and other metal oxides, such as titanium or zirconium oxides, as well as certain silicates and aluminosilicates can be prepared by flotation processes.
  • the ore is pre-crushed and dry, but preferably ground wet and suspended in water.
  • suspensions are usually added to collectors, often in conjunction with auxiliary reagents such as foaming agents, regulators, pushers (deactivators) and / or stimulants (activators), in order to support the separation of the valuable minerals from the gangue components of the ore during the subsequent flotation.
  • auxiliary reagents such as foaming agents, regulators, pushers (deactivators) and / or stimulants (activators)
  • these reagents are usually allowed to act on the finely ground ore for a certain time (Kon dition). As a result, a foam is generated on the surface of the suspension, the collector ensuring that the surface of the minerals is rendered hydrophobic.
  • the mineral-containing foam is stripped off and worked up using known methods.
  • the aim of the flotation is to extract the mineral of value from the ores in the highest possible yield, while at the same time maintaining the best possible enrichment.
  • Anionic and cationic surfactants are mainly used as collectors in the flotative processing of non-sulfidic ores. These should adsorb as selectively as possible on the valuable mineral surface in order to achieve a high concentration in the flotation concentrate. In addition, the collectors should develop a stable, but not too stable, flotation foam. For ores containing gangue minerals from anionic collectors, e.g. Unsaturated and saturated fatty acids, especially tall oil fatty acids and oleic acids, alkyl sulfates or sulfonates, are not hydrophobicized, these are sufficient as collectors.
  • anionic collectors e.g. Unsaturated and saturated fatty acids, especially tall oil fatty acids and oleic acids, alkyl sulfates or sulfonates, are not hydrophobicized, these are sufficient as collectors.
  • more selective collectors such as Phosphonic acids (DE-PS 24 43 460 and DD-PS 76 974) or alkylsulfosuccinamides (US-PS 3 830 366) are used.
  • Suitable organic phosphonates are water-soluble salts of organic phosphonic acids, for example salts of styrene phosphonic acid, for the flotation of non-sulfidic ores, in particular tin ores. as for example in X. International Mineral Proc. Congress - IMM, E. Tmür, pages 626 to 627, London 1973 (0.S. Bogandow).
  • Collectors frequently used in the flotation of non-sulfidic ores are, for example, alkyl monocarboxylic acids, such as unsaturated long-chain fatty acids, such as the tall oil fatty acid mentioned above.
  • alkyl monocarboxylic acids such as unsaturated long-chain fatty acids, such as the tall oil fatty acid mentioned above.
  • di- and tricarboxylic acids are also used as flotation collectors (H. Schubert, H. Baldauf, A. Serrano, XII International Mineral Proc. Congress, Sao Paulo 1977).
  • the anionic and nonionic collectors used for the flotation of non-sulfidic ores do not lead to a satisfactory output of the valuable minerals with economically justifiable collector quantities.
  • the present invention was therefore based on the object of providing improved collectors in the sense of a more economical design of the flotation processes, with which larger yields of valuable minerals can be achieved either with constant collector quantities and constant selectivity, or constant mineral mineral yields with reduced collector quantities.
  • N-alkyl and / or N-alkenylaspartic acids can advantageously be used as co-collectors in the flotation of non-sulfidic ores.
  • the present invention relates to the use of N-alkyl and / or N-alkenylaspartic acids as co-collectors in the flotation of non-sulfidic ores.
  • N-alkyl and / or N-alkenyl radicals of the aspartic acids to be used according to the invention can be straight-chain or branched-chain, have 2 to 22 C atoms and optionally have a hydroxyl group and / or an ether bridge instead of a CH2 group.
  • N-alkyl and N-alkenylaspartic acids their alkali or ammonium salts can also be used advantageously.
  • the corresponding potassium salts and preferably the corresponding sodium salts of N-alkyl and / or N-alkenylaspartic acids are advantageously used.
  • the alkyl and / or alkenyl radicals of the N-alkyl and / or N-alkenyl aspartic acids are straight are chain or branched, have 2 to 22 C atoms and optionally have a hydroxyl group and / or an ether bridge instead of a CH2 group, preferably N-alkyl and / or N-alkenylaspartic acids are used, the alkyl and / or alkenyl radicals 8 have up to 18 carbon atoms.
  • N-alkyl and / or N-alkenyl amino acids and their alkali or ammonium salts are generally known from the literature. It takes place on the one hand by means of the various alkylation reactions on the nitrogen of the amino acid, as described, for example, in Houben-Weyl Volume 11/2, and on the other hand by adding primary or secondary amines to unsaturated carboxylic acids (J. March "Advanced Organic Chemistry: Reactions, Mechanism and Structure ", McGraw-Hill, 1977).
  • the latter process starting from maleic acid esters, is used to prepare the N-alkyl and / or N-alkenylaspartic acids and salts referred to here.
  • the maleic acid esters can be reacted with the corresponding amine component either in a solvent (US Pat. No. 2,438,092) or in a solvent-free manner, optionally with the addition of a catalyst, such as, for example, acetic acid, alkali metal thiocyanates or O, N-dialkylphosphocarbamate (SU PS 77 10 87) .
  • a catalyst such as, for example, acetic acid, alkali metal thiocyanates or O, N-dialkylphosphocarbamate (SU PS 77 10 87) .
  • anionic and / or nonionic collectors can also be used.
  • N-alkyl and / or N-Al Kenylaspartic acids used as anionic collectors of tallow alkyl sulfosuccinamides and / or oleic acid.
  • a reaction product of propylene glycol glucoside with ⁇ -dodecane epoxide can advantageously be used as the nonionic collector.
  • the amounts in which the co-collectors to be used according to the invention are used depend in each case on the type of non-sulfidic ores to be floated and on their content of valuable mineral. As a result, the amounts required can vary within wide limits.
  • the co-collectors according to the invention are used in collector mixtures in amounts of 50 to 2000 g / t crude ore.
  • the N-alkyl and / or N-alkenylaspartic acids to be used according to the invention are used in combination with anionic, cationic and / or nonionic collectors in the known flotation processes for non-sulfidic ores instead of the known collectors.
  • the customary reagents such as foaming agents, regulators, activators, deactivators, etc. are also added to the aqueous slurries of the ground ores.
  • the flotation is carried out under the conditions of the methods of the prior art.
  • N-alkyl and / or N-alkenylaspartic acids to be used according to the invention can be used, for example, as co-collectors in the flotative processing of Scheelite ore, Cassiterite ore and Fluorite ore.
  • Another object of the invention is a process for the separation of non-sulfidic ores by flotation, in which ground ore is mixed with water to form an ore suspension, air is introduced into the suspension in the presence of the collector mixture and the resulting foam is separated off together with the mineral contained therein.
  • This process is characterized in that N-alkyl and / or N-alkenylaspartic acids are used as co-collectors.
  • the ore sample has the following grain size distribution: 28% - 25 ⁇ m 43% 25-100 ⁇ m 29% 100-200 ⁇ m
  • Combinations of a sulfosuccinamide derived from a tallow amine with sodium salts of N-alkylaspartic acids in a weight ratio of 2: 1 were used as collector mixtures according to the invention.
  • the chain length of the N-alkylaspartic acids was C 16/18 (example 1) and C 12/14 (example 2).
  • the above-mentioned tallow alkyl sulfosuccinamide (Comparative Example 1) was used as the comparative collector.
  • the flotation experiments were carried out using a Humbold-Wedag laboratory flotation machine from KHD Industrieanlagen AG, Humbold-Wedag, Cologne (see Seifen-Fette-Wwachs 105) (1979), p. 248) in a 1 1 flotation cell.
  • Deionized water was used to make the slurry.
  • the cloud density was 400 g / l.
  • Water glass with a dosage of 2,000 g / t was used as the pusher.
  • the conditioning time of the pusher was 10 min at a stirring speed of 2,000 l / min.
  • the type of collector dosage is shown in Table 1.
  • the conditioning time of the collector was 3 minutes.
  • a valuable South African cassiterite ore was floated, which essentially contains granite, tourmaline and magnetite as a gait.
  • the flotation task had the following grain size distribution: 49.5% - 25 ⁇ m 43.8% 25-63 ⁇ m 6.7% + 63 ⁇ m
  • the flotation experiments were carried out in a 1 1 laboratory flotation cell at room temperature. Water glass with a dosage of 2,000 g / t was used as the pusher, the pH of the slurry was adjusted to pH 5 with sulfuric acid before the addition of the collector. Flotation was carried out with a turbidity of 500 g ore per liter of tap water with a hardness of 16 ° dH. The flotation time of the pre-flotation was 4 min at a stirring speed of 1200 l / min.
  • the Na salt of N-tallow alkyl aspartic acid with a chain length of 16 to 18 carbon atoms was used as the co-collector according to the invention.
  • the mixing ratio of collector to co-collector was 1: 2 (example 3).
  • Technical styrenephosphonic acid was used for comparative example 2.
  • a Mexican fluorite ore was floated with predominantly silicates as gait.
  • the flotation task had the following grain size distribution: 35% - 25 ⁇ m 50% 25-80 ⁇ m 15% + 80 ⁇ m
  • the pre-flotation concentrate was further ground before the subsequent cleaning stages.
  • the grain size was then: 98% - 44 ⁇ m
  • the flotation experiments were carried out in a 1 1 Denver cell using extremely hard water (350 ° dH).
  • the trigger was alkaline-digested starch with a dosage of 1,000 g / t.
  • the Na salt of N-tallow alkyl aspartic acid with a chain length of 16 to 18 carbon atoms in combination with oleic acid in a ratio of 1: 9 was used as the co-collector according to the invention (example 4).
  • the standard collector was oleic acid (Comparative Example 3).

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Water Treatments (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Detergent Compositions (AREA)

Abstract

Gegenstand der Erfindung ist die Verwendung von N-Alkyl- und/oder N-Alkenylasparaginsäuren oder deren Salze als Co-Sammler bei der Flotation von nichtsulfidischen Erzen sowie ein Verfahren zur Abtrennung von nichtsulfidischen Erzen durch Flotation, das dadurch gekennzeichnet ist, daß man in Sammlergemischen N-Alkyl- und/oder N-Alkenylasparaginsäuren oder deren Salze einsetzt.

Description

  • Die Erfindung betrifft die Verwendung von N-Alkyl- und/oder N-Alkenylasparaginsäuren als Co-Sammler bei der Flotation von nichtsulfidischen Erzen und ein Ver­fahren zur Abtrennung von nichtsulfidischen Erzen durch Flotation.
  • Zur Abtrennung von Wertmineralen von der Gangart ist die Flotation ein allgemein angewandtes Sortierverfah­ren für die Aufarbeitung von mineralischen Rohstoffen. Nichtsulfidische Minerale, wie beispielsweise Apatit, Fluorit, Scheelit und andere salzartige Mineralien, Cassiterit und andere Metalloxide, wie Titan- oder Zirkonoxide, sowie bestimmte Silikate und Alumosili­kate können durch Flotationsverfahren aufbereitet wer­den. Zur Flotation wird das Erz vorzerkleinert und trocken, vorzugsweise aber naß vermahlen und in Wasser suspendiert. Diesen Suspensionen werden üblicherweise Sammler, häufig in Verbindung mit Hilfsreagenzien wie Schäumern, Reglern, Drückern (Desaktivatoren) und oder Belebern (Aktivatoren) zugesetzt, um die Abtrennung der Wertminerale von den Gangartbestandteilen des Er­zes bei der anschließenden Flotation zu unterstützen. Bevor in die Suspension Luft eingeblasen wird (Flo­tieren) läßt man diese Reagenzien üblicherweise eine gewisse Zeit auf das feingemahlene Erz einwirken (Kon­ ditionieren). Dadurch wird an der Oberfläche der Sus­pension ein Schaum erzeugt, wobei der Sammler für eine Hydrophobierung der Oberfläche der Minerale sorgt. Die Minerale haften an den während der Belüftung gebilde­ten Gasblasen, wobei die Hydrophobierung der Mineral­bestandteile selektiv in der Weise erfolgt, daß die unerwünschten Erzbestandteile nicht an den Gasblasen haften. Der mineralhaltige Schaum wird abgestreift und nach bekannten Verfahren aufgearbeitet. Ziel der Flo­tation ist, das Wertmineral der Erze in möglichst ho­her Ausbeute zu gewinnen, dabei aber gleichzeitig eine möglichst gute Anreicherung zu erhalten.
  • Bei der flotativen Aufbereitung nichtsulfidischer Erze werden überwiegend anionische und kationische Tenside als Sammler eingesetzt. Diese sollen an der Wertmine­raloberfläche möglichst selektiv adsorbieren, um eine hohe Anreicherung im Flotationskonzentrat zu erzielen. Außerdem sollen die Sammler einen tragfähigen, aber nicht zu stabilen Flotationsschaum entwickeln. Für Erze, die Gangartminerale enthalten, die von anioni­schen Sammlern, wie z.B. ungesättigten und gesättigten Fettsäuren, insbesondere Tallölfettsäuren und Öl­säuren, Alkylsulfate oder -sulfonate, nicht hydropho­biert werden, genügen diese als Sammler. Für schwieri­ger zu flotierende Erze, wie beispielsweise Zinnerze, werden selektivere Sammler, wie z.B. Phosphonsäuren (DE-PS 24 43 460 und DD-PS 76 974) oder Alkylsulfo­succinamide (US-PS 3 830 366) eingesetzt.
  • Als organische Phosphonate kommen wasserlösliche Salze von organischen Phosphonsäuren, beispielsweise Salze der Styrolphosphonsäure, zur Flotation von nichtsulfi­dischen Erzen, insbesondere Zinnerzen, in betracht, wie sie beispielsweise in X. International Mineral Proc. Congress - IMM, E. Töpfer, Seite 626 bis 627, London 1973 (0.S. Bogandow) beschrieben sind.
  • Bei der Flotation nichtsulfidischer Erze häufig ver­wendete Sammler sind beispielsweise Alkylmonocarbon­säuren, wie beispielsweise ungesättigte langkettige Fettsäuren, wie die oben genannte Tallölfettsäure. Es werden aber auch Di- und Tricarbonsäuren als Sammler für die Flotation eingesetzt (H. Schubert, H. Baldauf, A. Serrano, XII International Mineral Proc. Congress, Sao Paulo 1977).
  • Viele Sammler für nichtsulfidische Erze entwickeln wegen ihres Tensidcharakters selbst einen für die Flo­tation geeigneten Schaum. Es kann jedoch auch notwen­dig sein, durch spezielle Schäumer einen Schaum zu entwickeln oder den Schaum in geeigneter Weise zu mo­difizieren. Bekannte Schäumer für die Flotation sind Alkohole mit 4 bis 10 C-Atomen, Propylenglykole, Poly­ethylenglykol- oder Polypropylenglykolether, Terpen­alkohole (Pine Oils) und Kresylsäuren. Soweit erfor­derlich, werden den zu flotierenden Suspensionen (Trüben) modifizierende Reagenzien zugegeben, bei­spielsweise Regler für den pH-Wert, Aktivatoren für das im Schaum zu gewinnende Mineral oder Drücker für die im Schaum unerwünschten Minerale und gegebenen­falls auch Dispergatoren.
  • Die für die Flotation von nichtsulfidischen Erzen ein­gesetzten anionischen und nichtionischen Sammler füh­ren in vielen Fällen bei ökonomisch vertretbaren Samm­lermengen nicht zu einem befriedigenden Ausbringen der Wertminerale.
  • Der vorliegenden Erfindung lag deshalb die Aufgabe zugrunde, im Sinne einer wirtschaftlicheren Gestaltung der Flotationsprozesse verbesserte Sammler zur Verfü­gung zu stellen, mit denen entweder bei gleichbleiben­den Sammlermengen und gleichbleibender Selektivität größere Ausbeuten an Wertmineralen, oder bei vermin­derten Sammlermengen gleichbleibende Wertmineralaus­beuten erzielt werden.
  • Es wurde überraschend gefunden, daß N-Alkyl- und/oder N-Alkenylasparaginsäuren als Co-Sammler bei der Flota­tion von nichtsulfidischen Erzen in vorteilhafter Weise verwendet werden können.
  • Gegenstand der vorliegenden Erfindung ist die Verwen­dung von N-Alkyl- und/oder N-Alkenylasparaginsäuren als Co-Sammler bei der Flotation von nichtsulfidischen Erzen.
  • Die N-Alkyl- und/oder N-Alkenylreste der erfindungs­gemäß einzusetzenden Asparaginsäuren können gerad­kettig oder verzweigtkettig sein, 2 bis 22 C-Atome besitzen und gegebenenfalls eine Hydroxylgruppe und/­oder anstelle einer CH₂-Gruppe eine Etherbrücke auf­weisen.
  • Neben den freien Säuren der N-Alkyl- und N-Alkenyl­asparaginsäuren können auch deren Alkali- bzw. Ammo­niumsalze vorteilhaft verwendet werden. In vorteil­hafter Weise werden die entsprechenden Kaliumsalze und vorzugsweise die entsprechenden Natriumsalze der N-Al­kyl- und/oder N-Alkenylasparaginsäuren eingesetzt.
  • Während üblicherweise die Alkyl- und/oder Alkenylreste der N-Alkyl- und/oder N-Alkenylasparaginsäuren gerad­ kettig oder verzweigt sind, 2 bis 22 C-Atome besitzen und gegebenenfalls eine Hydroxylgruppe und/oder an­stelle einer CH₂-Gruppe eine Etherbrücke aufweisen, werden vorzugsweise N-Alkyl- und/oder N-Alkenylaspara­ginsäuren eingesetzt, deren Alkyl- und/oder Alkenyl­reste 8 bis 18 C-Atome aufweisen.
  • Die Herstellung von N-Alkyl- und/oder N-Alkenylamino­säuren sowie ihrer Alkali- bzw. Ammoniumsalze ist all­gemein aus der Literatur bekannt. Sie erfolgt zum einen mittels der verschiedenen Alkylierungsreaktionen am Stickstoff der Aminosäure, wie beispielsweise be­schrieben in Houben-Weyl Band 11/2, zum anderen durch die Addition von primären oder sekundären Aminen an ungesättigte Carbonsäuren (J. March "Advanced Organic Chemistry: Reactions, Mechanism and Structure", McGraw-Hill, 1977).
  • Zur Darstellung der hier bezeichneten N-Alkyl- und/­oder N-Alkenylasparaginsäuren und -salze wird das letzere Verfahren, ausgehend von Maleinsäureestern, angewandt. Dabei können die Maleinsäureester mit der entsprechenden Aminkomponente entweder in einem Lö­sungsmittel (US-PS 2 438 092) oder lösungsmittelfrei, gegebenenfalls unter Zusatz eines Katalysators, wie beispielsweise Essigsäure, Alkalimetallthiocyanate oder O,N-Dialkylphosphocarbamate (SU-PS 77 10 87) um­gesetzt werden.
  • Erfindungsgemäß können neben N-Alkyl- und/oder N-Al­kenylasparaginsäuren im Verhältnis von 20 : 1 bis 1 : 20 zusätzlich anionische und/oder nichtionische Sammler eingesetzt werden.
  • Gemäß einer bevorzugten Ausführungsform der vorliegen­den Erfindung werden neben N-Alkyl- und/oder N-Al­ kenylasparaginsäuren als anionische Sammler Talgalkyl­sulfosuccinamide und/oder Ölsäure eingesetzt.
  • Als nichtionischer Sammler kann beispielsweise ein Umsetzungsprodukt aus Propylenglykolglucosid mit α-Do­decanepoxid mit Vorteil eingesetzt werden.
  • Die Mengen, in denen die erfindungsgemäß zu verwenden­den Co-Sammler eingesetzt werden, hängen jeweils von der Art der zu flotierenden nichtsulfidischen Erze und von deren Gehalt an Wertmineral ab. Demzufolge können die jeweils notwendigen Einsatzmengen in weiten Gren­zen schwanken. Im allgemeinen werden die erfindungsge­mäßen Co-Sammler in Sammlergemischen in Mengen von 50 bis 2000 g/t Roherz eingesetzt.
  • In der Praxis werden die erfindungsgemäß zu verwenden­den N-Alkyl- und/oder N-Alkenylasparaginsäuren in Kom­bination mit anionischen, kationischen und/oder nicht­ionischen Sammlern in den bekannten Flotationsverfah­ren für nichtsulfidische Erze anstelle der bekannten Sammler eingesetzt. Demgemäß werden auch hier neben den Sammlergemischen die jeweils gebräuchlichen Re­agenzien wie Schäumer, Regler, Aktivatoren, Desakti­vatoren usw. den wäßrigen Aufschlämmungen der vermah­lenen Erze zugesetzt. Die Durchführung der Flotation erfolgt unter den Bedingungen der Verfahren des Stan­des der Technik.
  • In diesem Zusammenhang sei auf die folgenden Litera­turstellen zur Technologie der Erzaufbereitung ver­wiesen: A. Schubert, Aufbereitung fester mineralischer Rohstoffe, Leipzig 1967; B. Wills, Mineral Processing Technology, New York, 1978; D. B. Purchas (ed.), Solid/Liquid Separation Equipment Scale-Up, Croydon 1977; E. S. Perry, C. J. van Oss, E. Grushka (ed.), Separation and Purification Methods, New York 1973-1978.
  • Die erfindungsgemäß zu verwendenden N-Alkyl- und/oder N-Alkenylasparaginsäuren können beispielsweise als Co-Sammler eingesetzt werden bei der flotativen Auf­arbeitung von Scheeliterz, Cassiteriterz und Fluorit­erz.
  • Weiterer Gegenstand der Erfindung ist ein Verfahren zur Abtrennung von nichtsulfidischen Erzen durch Flo­tation, bei dem man gemahlenes Erz mit Wasser zu einer Erzsuspension vermischt, in die Suspension in Gegen­wart des Sammlergemisches Luft einleitet und den ent­standenen Schaum zusammen mit dem darin enthaltenen Mineral abtrennt. Dieses Verfahren ist dadurch gekenn­zeichnet, daß man als Co-Sammler N-Alkyl- und/oder N-Alkenylasparaginsäuren einsetzt.
  • Die nachfolgenden Beispiele zeigen die Überlegenheit der erfindungsgemäß zu verwendenden Co-Sammler. Unter Laborbedingungen wurde teilweise mit erhöhten Sammler­konzentrationen gearbeitet, die in der Praxis zum Teil erheblich unterschritten werden können. Die Anwen­dungsmöglichkeiten und Anwendungsbedingungen sind da­her nicht auf die in den Beispielen beschriebenen Trennaufgaben und Versuchsbedingungen beschränkt. Alle Prozentangaben beziehen sich, sofern nicht anders an­gegeben, auf Gewichtsprozent. Die Mengenangaben für Reagenzien beziehen sich jeweils auf Aktivsubstanz.
  • Herstellungsbeispiel
  • Zu 259 g technischen Talgamins (16 bis 18 C-Atome) und 6 g Eisessig wurden bei 60°C 172 g Maleinsäurediethyl­ester getropft, wobei die Innentemperatur 70°C nicht überschritt. Die Reaktionslösung wurde 5 h 70°C belassen und dann auf 90°C erwärmt. Man fügte 80 g NaOH, gelöst in 970 ml Wasser, hinzu und hielt die Temperatur für 1 h bei 85 bis 90°C.
  • Flotationsversuche Beispiele 1 und 2 und Vergleichsbeispiel 1
  • Als Flotationsaufgabe wurde ein Scheeliterz aus Öster­reich mit der nachstehenden chemischen Zusammenset­zung, bezogen auf die Hauptbestandteile, eingesetzt:
    WO₃      0,3 %
    CaO      8,8 %
    SiO₂      55,8 %
  • Die Erzprobe weist folgende Korngrößenverteilung auf:
    28 %      - 25 µm
    43 %      25 - 100 µm
    29 %      100 - 200 µm
  • Als erfindungsgemäße Sammlergemische dienten Kombina­tionen eines von einem Talgamin abgeleiteten Sulfosuc­cinamids mit Natriumsalzen der N-Alkylasparaginsäuren im Gewichtsverhältnis 2 : 1. Die Kettenlänge der N-Al­kylasparaginsäuren war C16/18 (Beispiel 1) bzw. C12/14 (Beispiel 2). Als Vergleichssammler wurde das oben ge­nannte Talgalkylsulfosuccinamid (Vergleichsbeispiel 1) herangezogen.
  • Die Flotationsversuche wurden mit einer Humbold-Wedag-­Laborflotationsmaschine der Firma KHD Industrieanlagen AG, Humbold-Wedag, Köln (s. Seifen-Fette-Wachse 105 (1979), S. 248) in einer 1 1-Flotationszelle durchge­führt. Zur Herstellung der Trübe wurde entionisiertes Wasser verwendet. Die Trübedichte betrug 400 g/l. Als Drücker wurde Wasserglas mit einer Dosierung von 2 000 g/t eingesetzt. Die Konditionierzeit des Drückers betrug 10 min bei einer Rührgeschwindigkeit von 2 000 l/min.
  • Es wurde bei dem sich aus der Wasserglaszugabe erge­benden pH-Wert von ca. 9,5 flotiert. Die Art der Samm­lerdosierung ist aus der Tabelle 1 ersichtlich. Die Konditionierzeit des Sammlers lag bei 3 min.
  • Die Ergebnisse der Tabelle 1 zeigen, daß mit den er­findungsgemäßen Sammlerkombinationen eine deutlich höhere Anreicherung und ein besseres Ausbringen er­zielt werden als mit dem Alkylsulfosuccinamid des Ver­gleichsbeispiels 1 allein.
    Figure imgb0001
  • Beispiel 3 und Vergleichsbeispiel 2
  • Flotiert wurde ein wertmineralarmes südafrikanisches Cassiteriterz, das im wesentlichen Granit, Turmalin und Magnetit als Gangart enthält. Die Flotationsauf­gabe hatte folgende Korngrößenverteilung:
    49,5 %      - 25 µm
    43,8 %      25 - 63 µm
    6,7 %      + 63 µm
  • Die Flotationsversuche wurden in einer 1 1 Laborflota­tionszelle bei Raumtemperatur durchgeführt. Als Drücker wurde Wasserglas mit einer Dosierung von 2 000 g/t ver­wendet, der pH-Wert der Trübe wurde mit Schwefelsäure vor der Sammlerzugabe auf pH 5 eingestellt. Flotiert wurde mit einer Trübedichte von 500 g Erz pro Liter Leitungswasser mit einer Härte von 16 °dH. Die Flota­tionszeit der Vorflotation betrug 4 min bei einer Rührgeschwindigkeit von 1 200 l/min.
  • Als erfindungsgemäßer Co-Sammler wurde das Na-Salz der N-Talgalkylasparaginsäure mit einer Kettenlänge von 16 bis 18 C-Atomen eingesetzt. Als Sammler diente ein Propylenglykolglucosid, umgesetzt mit α-Dodecanepoxid. Das Mischungsverhältnis von Sammler zu Co-Sammler be­trug 1 : 2 (Beispiel 3). Für das Vergleichsbeispiel 2 wurde technische Styrolphosphonsäure herangezogen.
  • Im Vergleich zur Styrolphosphonsäure kann mit dem er­findungsgemäßen Co-Sammler in Kombination mit dem Al­kylglucosid ein höherer SnO₂-Gehalt im Konzentrat er­zielt werden, wobei trotz niedrigerer Sammlerdosierung das Metallausbringen gleich bleibt (Tabelle 2).
    Figure imgb0002
  • Beispiel 4 und Vergleichsbeispiel 3
  • Flotiert wurde ein mexikanisches Fluoriterz mit über­wiegend Silikaten als Gangart. Die Flotationsaufgabe hatte folgende Korngrößenverteilung:
    35 %      - 25 µm
    50 %      25 - 80 µm
    15 %      + 80 µm
  • Das Konzentrat der Vorflotation wurde vor den nach­folgenden Reinigungsstufen weiter aufgemahlen. Die Korngröße betrug dann:
    98 %      - 44 µm
  • Die Flotationsversuche wurden in einer 1 1-Denverzelle unter Verwendung von extrem hartem Wasser (350 °dH) durchgeführt. Der Drücker war alkalisch aufgeschlosse­ne Stärke mit einer Dosierung von 1 000 g/t.
  • Verwendet wurde als erfindungsgemäßer Co-Sammler das Na-Salz der N-Talgalkylasparaginsäure mit einer Ketten­länge von 16 bis 18 C-Atomen in Kombination mit Öl­säure im Verhältnis 1 : 9 (Beispiel 4). Der Standard­sammler war Ölsäure (Vergleichsbeispiel 3).
  • Aus den Ergebnissen in der Tabelle 3 ist ersichtlich, daß die Kombination des erfindungsgemäßen Co-Sammlers mit Ölsäure bei verringerter Dosierung ein besseres Fluoritausbringen und einen höheren Konzentratgehalt ergibt.
    Figure imgb0003

Claims (11)

1. Verwendung von N-Alkyl- und/oder N-Alkenylaspara­ginsäuren oder deren Salze als Co-Sammler bei der Flo­tation von nichtsulfidischen Erzen.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß N-Alkyl- und/oder N-Alkenylasparaginsäuren einge­setzt werden, deren Alkyl- oder Alkenylreste gerad­kettig oder verzweigt sind, 2 bis 22 C-Atome besitzen und gegebenenfalls eine Hydroxylgruppe und/oder an­stelle einer CH₂-Gruppe eine Etherbrücke aufweisen.
3. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß vorzugsweise N-Alkyl- und/oder N-Alkenylasparagin­säuren eingesetzt werden, deren Alkyl- oder Alkenyl­reste 8 bis 18 C-Atome aufweisen.
4. Verwendung nach Ansprüchen 1 bis 3, dadurch gekenn­zeichnet, daß man die Kaliumsalze, Ammoniumsalze und vorzugsweise die Natriumsalze der N-Alkyl- und/oder N-Alkenylasparaginsäuren einsetzt.
5. Verwendung nach Ansprüchen 1 bis 4, dadurch gekenn­zeichnet, daß neben den N-Alkyl- und/oder N-Alkenyl­asparaginsäuren im Verhältnis von 20 : 1 bis 1 : 20 zusätzlich anionische und/oder nichtionische Sammler eingesetzt werden.
6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß neben N-Alkyl- und/oder N-Alkenylasparaginsäuren als anionischer Sammler Talgalkylsulfosuccinamide und/­oder Ölsäure eingesetzt wird.
7. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß neben N-Alkyl- und/oder N-Alkenylasparaginsäuren als nichtionischer Sammler ein Umsetzungsprodukt aus Propylenglykolglucosid mit α-Dodecanepoxid eingesetzt wird.
8. Verfahren nach Ansprüchen 5 bis 7, dadurch gekenn­zeichnet, daß man die Co-Sammler in Sammlergemischen in Mengen von 50 bis 2 000 g/t Roherz einsetzt.
9. Verfahren zur Abtrennung von nichtsulfidischen Er­zen durch Flotation, bei dem man gemahlenes Erz mit Wasser zu einer Suspension vermischt, in die Suspen­sion in Gegenwart eines Sammlergemisches Luft ein­leitet und den entstandenen Schaum zusammen mit dem darin enthaltenen Mineral abtrennt, dadurch gekenn­zeichnet, daß man als Co-Sammler N-Alkyl- und/oder N-Alkenylasparaginsäuren oder deren Salze einsetzt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man die Sammlergemische in Mengen von 50 bis 2 000 g/t Roherz einsetzt.
11. Verfahren nach Anspruch 10, dadurch gekennzeich­net, daß man als Roherz Scheelit-, Cassiterit- oder Fluoriterz einsetzt.
EP87117541A 1986-12-05 1987-11-27 Verwendung von N-Alkyl- und N-Alkenylasparaginsäuren als Co-Sammler für die Flotation nichtsulfidischer Erze Expired - Lifetime EP0270018B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87117541T ATE77262T1 (de) 1986-12-05 1987-11-27 Verwendung von n-alkyl- und nalkenylasparagins|uren als co-sammler fuer die flotation nichtsulfidischer erze.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3641579 1986-12-05
DE19863641579 DE3641579A1 (de) 1986-12-05 1986-12-05 N-alkyl- und n-alkenylasparaginsaeuren als co-sammler fuer die flotation nichtsulfidischer erze

Publications (3)

Publication Number Publication Date
EP0270018A2 true EP0270018A2 (de) 1988-06-08
EP0270018A3 EP0270018A3 (en) 1990-04-18
EP0270018B1 EP0270018B1 (de) 1992-06-17

Family

ID=6315539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117541A Expired - Lifetime EP0270018B1 (de) 1986-12-05 1987-11-27 Verwendung von N-Alkyl- und N-Alkenylasparaginsäuren als Co-Sammler für die Flotation nichtsulfidischer Erze

Country Status (13)

Country Link
US (1) US4790932A (de)
EP (1) EP0270018B1 (de)
CN (1) CN1011296B (de)
AT (1) ATE77262T1 (de)
AU (1) AU601244B2 (de)
BR (1) BR8706570A (de)
CA (1) CA1320769C (de)
DE (2) DE3641579A1 (de)
ES (1) ES2031869T3 (de)
FI (1) FI84321C (de)
MX (1) MX169159B (de)
PT (1) PT86278B (de)
ZA (1) ZA879141B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540336A (en) * 1991-10-04 1996-07-30 Henkel Kommanditgesellschaft Auf Aktien Method of producing iron ore concentrates by froth flotation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE467239B (sv) * 1989-04-05 1992-06-22 Berol Nobel Ab Foerfarande foer flotation av jordartsmetallinnehaallande mineral samt medel daerfoer
SE0302986D0 (sv) * 2003-11-13 2003-11-13 Akzo Nobel Nv Use of a derivative of aspartic acid as a collector in froth flotation processes
CN102120592B (zh) * 2011-04-25 2012-03-21 化工部长沙设计研究院 一种利用NaCl与碳酸锂混盐浮选提取碳酸锂的方法
RU2564550C1 (ru) * 2014-03-12 2015-10-10 Общество с ограниченной ответственностью "ЗабТехноКом" Способ флотации флюоритовых руд
CN110022984B (zh) * 2016-10-20 2022-06-03 新南创新私人有限公司 用于从水溶液中去除重金属的方法
CN110087776B (zh) * 2016-12-23 2020-07-17 阿克苏诺贝尔化学品国际有限公司 处理磷酸盐矿石的方法
CN107520058B (zh) * 2017-08-23 2019-05-17 中南大学 一种金红石用选矿组合试剂及其选矿方法
CN112237996B (zh) * 2020-09-27 2021-08-17 中南大学 一种细粒辉锑矿和黄铁矿分离的浮选抑制剂及其应用
CA3232104A1 (en) * 2021-09-09 2023-03-16 Clariant International Ltd Composition and method for use of 1-alkyl-5-oxopyrrolidine-3-carboxylic acids as collectors for phosphate and lithium flotation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2200220A (en) * 1936-06-06 1940-05-07 Ig Farbenindustrie Ag Nu-substituted aspartic acids and their functional derivatives and process of producig them
FR2313128A1 (fr) * 1975-06-06 1976-12-31 American Cyanamid Co Procede pour enrichir par flottation des minerais autres que des sulfures
GB2037619A (en) * 1978-12-04 1980-07-16 Engelhard Min & Chem Tin flotation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD76974A (de) *
US2438091A (en) * 1943-09-06 1948-03-16 American Cyanamid Co Aspartic acid esters and their preparation
US3753990A (en) * 1972-01-17 1973-08-21 Procter & Gamble Phenylbismuth bis(2-pyridinethiol 1-oxide)
US3830366A (en) * 1972-03-24 1974-08-20 American Cyanamid Co Mineral flotation with sulfosuccinamate and depressent
US3937807A (en) * 1973-03-06 1976-02-10 The Procter & Gamble Company Oral compositions for plaque, caries, and calculus retardation with reduced staining tendencies
US3988433A (en) * 1973-08-10 1976-10-26 The Procter & Gamble Company Oral compositions for preventing or removing stains from teeth
DE2443460A1 (de) * 1974-09-11 1976-03-25 Johannes Winkler Schildausbau mit kappenlenkvorrichtung
US4000080A (en) * 1974-10-11 1976-12-28 The Procter & Gamble Company Low phosphate content detergent composition
US4199064A (en) * 1977-12-21 1980-04-22 American Cyanamid Company Process for beneficiating non-sulfide minerals
US4213961A (en) * 1978-03-23 1980-07-22 Beecham, Inc. Oral compositions
US4472297A (en) * 1982-03-01 1984-09-18 The Procter & Gamble Company Shampoo compositions containing hydroxypropyl guar gum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2200220A (en) * 1936-06-06 1940-05-07 Ig Farbenindustrie Ag Nu-substituted aspartic acids and their functional derivatives and process of producig them
FR2313128A1 (fr) * 1975-06-06 1976-12-31 American Cyanamid Co Procede pour enrichir par flottation des minerais autres que des sulfures
GB2037619A (en) * 1978-12-04 1980-07-16 Engelhard Min & Chem Tin flotation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOVIET INVENTIONS ILLUSTRATED, Woche E06, 24 März 1982, Derwent Publications Ltd., London, GB; & SU-A-825 163 (UKR NATURAL RESOURCE) 05-05-1981 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540336A (en) * 1991-10-04 1996-07-30 Henkel Kommanditgesellschaft Auf Aktien Method of producing iron ore concentrates by froth flotation

Also Published As

Publication number Publication date
CA1320769C (en) 1993-07-27
CN1011296B (zh) 1991-01-23
PT86278A (en) 1988-01-01
BR8706570A (pt) 1988-07-12
DE3779878D1 (de) 1992-07-23
ATE77262T1 (de) 1992-07-15
ES2031869T3 (es) 1993-01-01
FI875336A (fi) 1988-06-06
ZA879141B (en) 1988-06-06
FI875336A0 (fi) 1987-12-03
EP0270018A3 (en) 1990-04-18
US4790932A (en) 1988-12-13
AU8210987A (en) 1988-06-09
PT86278B (pt) 1990-11-07
FI84321B (fi) 1991-08-15
MX169159B (es) 1993-06-23
DE3641579A1 (de) 1988-06-16
FI84321C (fi) 1991-11-25
CN87107280A (zh) 1988-06-15
EP0270018B1 (de) 1992-06-17
AU601244B2 (en) 1990-09-06

Similar Documents

Publication Publication Date Title
EP0201815B1 (de) Verwendung von Tensidgemischen als Hilfsmittel für die Flotation von nichtsulfidischen Erzen
EP0609257B1 (de) Verfahren zur herstellung von eisenerzkonzentraten durch flotation
EP0270933B1 (de) Tensidmischungen als Sammler für die Flotation nichtsulfidischer Erze
EP0585277B1 (de) Verfahren zur gewinnung von mineralien aus nichtsulfidischen erzen durch flotation
EP0219057B1 (de) Verwendung von Gemischen enthaltend nichtionische Tenside als Hilfsmittel für die Flotation von nichtsulfidischen Erzen
EP0876222B1 (de) Biologisch abbaubare esterquats als flotationshilfsmittel
EP0270018B1 (de) Verwendung von N-Alkyl- und N-Alkenylasparaginsäuren als Co-Sammler für die Flotation nichtsulfidischer Erze
EP0070534B1 (de) 3-Alkoxipropylenimino-bis(methylenphosphonsäuren) und deren Salze, Verfahren zu deren Herstellung und deren Verwendung
EP0298392A2 (de) Verfahren zur Gewinnung von Mineralen aus sulfidischen aus Erzen durch Flotation und Mittel zu seiner Durchführung
EP0270986B1 (de) Alkylsulfosuccinate auf der Basis von propoxylierten sowie propoxylierten und ethoxylierten Fettalkoholen als Sammler für die Flotation nichtsulfidischer Erze
DE4325017A1 (de) Verfahren zur Flotation von Kupfer- und Kobalterzen
EP0344553B1 (de) Tensidmischungen als Sammler für die Flotation nichtsulfidischer Erze
EP0378128A2 (de) Verfahren zur selektiven Flotation von Phosphormineralien
EP0368061B1 (de) Grenzflächenaktive Fettsäureester- und/oder Fettsäurederivate als Sammler bei der Flotation von nichtsulfidischen Erzen
DE10217693C1 (de) Verwendung von Fettaminsalzen in Kombination mit Fettsäuren als Hilfsmittel für die Flotation von Kalisalzen (Sylvinit)
DE4010279A1 (de) Verfahren zur gewinnung von mineralien aus nichtsulfidischen erzen durch flotation
DE4016792A1 (de) Verfahren zur gewinnung von mineralien aus nichtsulfidischen erzen durch flotation
EP0544185A1 (de) Verfahren zur Gewinnung von Mineralien aus nichtsulfidischen Erzen durch Flotation
DE3636530A1 (de) Verwendung von sammlergemischen als hilfsmittel fuer die flotation von nichtsulfidischen erzen, insbesondere cassiterit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB SE

17P Request for examination filed

Effective date: 19900507

17Q First examination report despatched

Effective date: 19901211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB SE

REF Corresponds to:

Ref document number: 77262

Country of ref document: AT

Date of ref document: 19920715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3779878

Country of ref document: DE

Date of ref document: 19920723

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921028

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921109

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921111

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921116

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19921120

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2031869

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931127

Ref country code: AT

Effective date: 19931127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19931129

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EAL Se: european patent in force in sweden

Ref document number: 87117541.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961118

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

EUG Se: european patent has lapsed

Ref document number: 87117541.0

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301