EP0268249A2 - Leistungs-MOSFET mit Stromerfassung - Google Patents

Leistungs-MOSFET mit Stromerfassung Download PDF

Info

Publication number
EP0268249A2
EP0268249A2 EP87116897A EP87116897A EP0268249A2 EP 0268249 A2 EP0268249 A2 EP 0268249A2 EP 87116897 A EP87116897 A EP 87116897A EP 87116897 A EP87116897 A EP 87116897A EP 0268249 A2 EP0268249 A2 EP 0268249A2
Authority
EP
European Patent Office
Prior art keywords
power mosfet
mosfet
semiconductor body
resistor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87116897A
Other languages
English (en)
French (fr)
Other versions
EP0268249A3 (de
Inventor
Josef Dipl.-Ing. Einzinger
Ludwig Dipl.-Ing. Leipold
Jenö Dr. Tihanyi
Roland Dipl.-Ing. Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0268249A2 publication Critical patent/EP0268249A2/de
Publication of EP0268249A3 publication Critical patent/EP0268249A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a power MOSFET with a plurality of individual MOSFETs connected in parallel, with at least one further MOSFET with a small area compared to the area of the power MOSFET, to which a resistor is connected in series on the source side, the series connection being the power -MOSFET is connected in parallel.
  • a power MOSFET of this type has been used e.g. B. in the magazine "Electronic Design", February 20, 1986, pages 59 and 60.
  • some of the power MOSFETs consisting of a large number of single MOSFETs connected in parallel are separated from the power MOSFET on the source side.
  • a resistor is connected in series on the source side of the individual MOSFET, through which a current flows which is proportional to the current flowing through the power MOSFET.
  • the voltage drop across the resistor is then proportional to the current through the power MOSFET. This allows the voltage mentioned to be used to monitor the transistor current. Since only a fraction of the transistor current is used for monitoring, the power loss converted in the resistor is relatively low.
  • the described power MOSFET which is suitable for current detection, requires a new design compared to a normal power MOSFET with otherwise identical electrical properties. This is associated with additional costs.
  • the aim of the invention is to make it easier to detect the current in a power MOSFET of the type mentioned if it is controlled by an integrated control circuit.
  • power MOSFETs that have come on the market as so-called "Smart-FET” or under similar names.
  • the power MOSFET is designated by 1 in FIG. It has a source terminal S, a drain terminal D and a gate terminal G. It is part of a semiconductor body 2 and is only shown symbolically here.
  • the series circuit comprising a further MOSFET 3 and a resistor 5 is connected in parallel to the source-drain path of the power MOSFET 1.
  • the MOSFET 3 and the resistor 5 are integrated in a semiconductor body 4.
  • the MOSFET 3 and the resistor 5 are also shown only symbolically.
  • the further MOSFET 3 has a significantly smaller area than the power MOSFET 1. This can be, for example, one thousandth to two thousandths of the area of the power MOSFET 1.
  • the structure of the further MOSFET 3 is identical to that of the individual MOSFETs from which the power MOSFET 1 is made, one thousandth or two thousandth of the current flowing through the power MOSFET 1 flows through the further MOSFET 3.
  • a load 6 is connected in series to the power MOSFET 1 on the source side. The gate connections of both MOSFETs are connected to one another.
  • the controller is also expediently integrated in the semiconductor body 4.
  • the semiconductor body 4 can also other integrated circuit arrangements, z. B. for monitoring the temperature of the power MOSFET, monitoring for load failure, overvoltage, etc. included. Instead of the controller, a simple display device can also be present.
  • the further MOSFET does not necessarily have to be identical to the structure of one of the individual MOSFETs of the power MOSFET. Since it is part of an integrated circuit that requires different process steps than a power MOSFET, the further MOSFET 3 will therefore generally be dimensioned differently. When dimensioning it can be assumed that its gate-source voltage is lower by the voltage drop across the resistor 5 than the gate-source voltage across the power MOSFET 1. Otherwise, the FET 3 and the resistor 5 must be dimensioned such that the drop across the resistor The voltage is so great that the monitoring device or the controller connected to the terminals 27, 28 can distinguish between normal operation and overload.
  • the semiconductor body 4 is arranged on the semiconductor body 2 of the power MOSFET 1.
  • the integrated circuit is shown in a highly simplified manner and only shows the MOSFET 3 and the resistor 5.
  • Troughs 8 of the conductivity type opposite to the semiconductor body 4 are embedded in the semiconductor body 4.
  • a source zone 9 of the conductivity type opposite to the tubs 8 is embedded.
  • the source zone 9 is provided with a contact 16 and is partially covered with an insulating layer 10 on which a gate electrode 11 is arranged.
  • the trough 8 forms the further one with the source zone 9 and the gate electrode 11 and part of the semiconductor body MOSFET 3.
  • a resistance zone 12 is embedded in the surface of the semiconductor body, which is of the opposite conductivity type to the semiconductor body 4. It forms the resistor 5.
  • the zone 12 is provided at its ends with contacts 14, 15, which in turn are connected to the terminals 27, 28.
  • the contact 15 is electrically connected to the contact 16.
  • a further zone 17 is embedded in the surface of the semiconductor body 4, which is heavily doped compared to the semiconductor body. It is contacted with an electrode 18.
  • the semiconductor body 4 is connected to the semiconductor body 2 of the power MOSFET through an insulating layer 22, for. B. glued by an insulating adhesive.
  • the semiconductor body 2 has a gate electrode 19 and a source electrode 20.
  • the gate electrode 19 is connected via a line to the gate electrode 11 of the MOSFET 3 and leads to a housing connection G.
  • the source electrode 20 is connected to the contact 14 and leads to a housing connection S.
  • the semiconductor body 2 is connected to a metal base plate 24 via a heat-conducting layer 23.
  • the base plate is provided with a drain electrode 21, on which the drain potential for the power MOSFET is present.
  • the drain electrode 21 is connected to the electrode 18 and leads to a housing connection D.
  • the mode of operation corresponds to the circuit arrangement according to FIG. 1.
  • the further MOSFET here is a vertical MOSFET.
  • a lateral MOSFET is used as a further MOSFET, which has a drain zone 26 embedded in a trough 8. This is connected via a contact 29 to the drain electrode 21 and the drain terminal D. Zone 17 and contact 18 are not necessary here, since the drain potential lies directly on drain zone 26.
  • the semiconductor body 4 of the control circuit has a smaller area than the semiconductor body 2 and is arranged on one of its surfaces.
  • semiconductor body 4 can also be arranged spatially separated from the semiconductor body 2 on the base plate 24.
  • the power MOSFET is arranged together with the control circuit and the further MOSFET provided for current monitoring in a housing 25, which is shown only schematically here. Likewise, the connections D, G, and S are only shown schematically.
  • the housing can have further connections for input and output of signals to the integrated control circuit.
  • the lines connecting the two semiconductor bodies are all within the housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Amplifiers (AREA)

Abstract

Dem Leistungs-MOSFET (1) ist die Reihenschaltung aus einem weiteren MOSFET (3) mit vergleichsweise kleiner Fläche und einem Widerstand (5) parallel geschaltet. Der weitere MOSFET und der Widerstand sind in eine integrierte, zur Ansteuerung des Leistungs-MOSFET vorgesehene Schaltung integriert.

Description

  • Die Erfindung bezieht sich auf ein Leistungs-MOSFET mit einer Vielzahl von parallel geschalteten Einzel-MOSFET, mit minde­stens einem weiteren MOSFET mit einer gegenüber der Fläche des Leistungs-MOSFET kleinen Fläche, dem sourceseitig ein Wider­stand in Reihe geschaltet ist, wobei die Reihenschaltung dem Leistungs-MOSFET parallel geschaltet ist.
  • Ein Leistungs-MOSFET dieser Art wurde z. B. in der Zeitschrift "Electronic Design", 20. Februar 1986, Seiten 59 und 60 be­schrieben. Hier sind einige des aus einer Vielzahl von parallel geschalteten Einzel-MOSFET bestehenden Leistungs-MOSFET source­seitig vom Leistungs-MOSFET getrennt. Den Einzel-MOSFET ist sourceseitig ein Widerstand in Reihe geschaltet, durch den ein Strom fließt, der dem durch den Leistungs-MOSFET fließenden Strom proportional ist. Die am Widerstand abfallende Spannung ist dann dem Strom durch den Leistungs-MOSFET proportional. Damit läßt sich die genannte Spannung zur Überwachung des Transistorstroms ausnutzen. Da zur Überwachung lediglich ein Bruchteil des Transistorstroms herangezogen wird,ist die im Widerstand umgesetzte Verlustleistung relativ gering.
  • Der beschriebene, zur Stromerfassung geeignete Leistungs-­MOSFET erfordert gegenüber einem normalen Leistungs-MOSFET mit im übrigen gleichen elektrischen Eigenschaften einen Neuent­wurf. Dies ist mit zusätzlichen Kosten verbunden.
  • Der Erfindung hat das Ziel, den Strom bei einem Leistungs-­MOSFET der erwähnten Art dann einfacher zu erfassen, wenn dieser durch eine integrierte Steuerschaltung angesteuert wird. Hierbei handelt es sich um Leistungs-MOSFET, die als sogenannte "Smart-FET" oder unter ähnlichen Bezeichnungen in den Handel gekommen sind.
  • Diese Aufgabe wird dadurch gelöst, daß der weitere MOSFET und der Widerstand in den vom Halbleiterkörper des Leistungs-MOSFET getrennten Halbleiterkörper einer integrierten, zur Steuerung des Leistungs-MOSFET vorgesehenen Schaltung integriert ist.
  • Weiterbildungen sind Gegenstand der Unteransprüche.
  • Die Erfindung wird anhand zweier Ausführungsbeispiele in Ver­bindung mit den Figuren 1 bis 3 näher erläutert. Es zeigen
    • Figur 1 die Prinzipschaltung gemäß der Erfindung,
    • Figur 2 die Seitenansicht und einen teilweisen Schnitt durch einen Leistungs-MOSFET gemäß einem ersten Ausführungs­beispiel und
    • Figur 3 eine der Figur 2 entsprechende Seitenansicht eines zweiten Ausführungsbeispiels.
  • In Figur 1 ist der Leistungs-MOSFET mit 1 bezeichnet. Er hat einen Sourceanschluß S, einen Drainanschluß D und einen Gate­anschluß G. Er ist Bestandteil eines Halbleiterköpers 2 und ist hier lediglich symbolisch dargestellt. Der Source-Drainstrecke des Leistungs-MOSFET 1 ist die Reihenschaltung aus einem wei­teren MOSFET 3 und einem Widerstand 5 parallel geschaltet. Der MOSFET 3 und der Widerstand 5 ist in einen Halbleiterkörper 4 integriert. Der MOSFET 3 und der Widerstand 5 ist ebenfalls nur symbolisch dargestellt. Der weitere MOSFET 3 hat gegenüber dem Leistungs-MOSFET 1 eine wesentlich geringere Fläche. Diese kann beispielsweise bei einem tausendstel bis einem zweitausendstel der Fläche des Leistungs-MOSFET 1 liegen. Wenn der weitere MOSFET 3 im Aufbau denjenigen Einzel-MOSFET identisch ist, aus denen der Leistungs-MOSFET 1 besteht, wird der weitere MOSFET 3 von einem tausendstel bzw. einem zweitausendstel des durch den Leistungs-MOSFET 1 fließenden Stroms durchflossen. Dem Lei­stungs-MOSFET 1 ist sourceseitig eine Last 6 in Reihe ge­schaltet. Die Gateanschlüsse beider MOSFET sind miteinander verbunden.
  • Zur Überwachung des durch den Leistungs-MOSFET 1 fließenden Stroms wird die Spannung am Widerstand 5 z. B. an zwei Klemmen 27, 28 abgegriffen und z. B. einem Regler zugeführt. Bei Über­steigen einer festgelegten Spannung kann dieser dann die Gate-­Sourcevorspannung des Leistungs-MOSFET 1 so einstellen, daß die Spannung am Widerstand 5 und damit der Strom durch den MOSFET 1 abnimmt. Der Regler ist zweckmäßigerweise ebenfalls in den Halb­leiterkörper 4 integriert. Der Halbleiterkörper 4 kann daneben noch weitere integrierte Schaltungsanordnungen, z. B. zur Über­wachung der Temperatur des Leistungs-MOSFET, Überwachung auf Lastausfall, Überspannung usw. enthalten. Anstelle des Reglers kann auch eine einfache Anzeigevorrichtung vorhanden sein.
  • Der weitere MOSFET muß nicht unbedingt dem Aufbau einer der Einzel-MOSFET des Leistungs-MOSFET identisch sein. Da er Be­standteil einer integrierten Schaltung ist, die andere Prozeß­schritte erfordert als ein Leistungs-MOSFET, wird der weitere MOSFET 3 daher im allgemeinen anders dimensioniert sein. Bei der Dimensionierung ist davon auszugehen, daß seine Gate-­Sourcespannung um den Spannungsabfall am Widerstand 5 geringer ist als die Gate-Sourcespannung am Leistungs-MOSFET 1. Im übri­gen ist der FET 3 und der Widerstand 5 so zu dimensionieren, daß die am Widerstand abfallende Spannung so groß ist, daß die an den Klemmen 27, 28 angeschlossene Überwachungseinrichtung oder der Regler zwischen Normalbetrieb und Überlastung unter­scheiden kann.
  • Beim Leistungs-MOSFET nach Figur 2 ist der Halbleiterkörper 4 auf dem Halbleiterkörper 2 des Leistungs-MOSFET 1 angeordnet. Die integrierte Schaltung ist stark vereinfacht dargestellt und zeigt lediglich den MOSFET 3 und den Widerstand 5.
  • In den Halbleiterkörper 4 sind Wannen 8 des dem Halbleiter­körper 4 entgegengesetzten Leitungstyps eingebettet. In diese Wannen 8 ist jeweils eine Sourcezone 9 vom den Wannen 8 entge­gengesetzten Leitungstyp eingebettet. Die Sourcezone 9 ist mit einem Kontakt 16 versehen und ist teilweise mit einer Isolier­schicht 10 bedeckt, auf der eine Gateelektrode 11 angeordnet ist. Die Wanne 8 bildet mit der Sourcezone 9 und der Gateelek­trode 11 und einem Teil des Halbleiterkörpers den weiteren MOSFET 3. In die Oberfläche des Halbleiterkörpers ist eine Widerstandszone 12 eingebettet, die vom dem Halbleiterkörper 4 entgegengesetzten Leitungstyp ist. Sie bildet den Widerstand 5. Die Zone 12 ist an ihren Enden mit Kontakten 14, 15 versehen, die ihrerseits mit den Klemmen 27, 28 verbunden sind. Der Kontakt 15 ist elektrisch mit dem Kontakt 16 verbunden. In die Oberfläche des Halbleiterkörpers 4 ist eine weitere Zone 17 ein­gebettet, die verglichen mit dem Halbleiterkörper stark dotiert ist. Sie ist mit einer Elektrode 18 kontaktiert. Der Halbleiter­körper 4 ist mit dem Halbleiterkörper 2 des Leistungs-MOSFET durch eine Isolierschicht 22, z. B. durch einen Isolierkleber, verklebt.
  • Der Halbleiterkörper 2 hat eine Gateelektrode 19 und eine Sourceelektrode 20. Die Gateelektrode 19 ist über eine Leitung mit der Gateelektrode 11 des MOSFET 3 verbunden und führt zu einem Gehäuseanschluß G. Die Sourceelektrode 20 ist mit dem Kontakt 14 verbunden und führt zu einem Gehäuseanschluß S. Der Halbleiterkörper 2 ist über eine wärmeleitende Schicht 23 mit einer metallenen Bodenplatte 24 verbunden. Die Bodenplatte ist mit einer Drainelektrode 21 versehen, an der das Drain­potential für den Leistungs-MOSFET anliegt. Die Drainelektrode 21 ist mit der Elektrode 18 verbunden und führt zu einem Ge­häuseanschluß D.
  • Die Funktionsweise entspricht der Schaltungsanordnung nach Figur 1. Der weitere MOSFET ist hier ein Vertikal-MOSFET.
  • In der Anordnung nach Figur 3 ist als weiterer MOSFET ein Late­ral-MOSFET verwendet, der eine in eine Wanne 8 eingebettete Drainzone 26 hat. Diese ist über einen Kontakt 29 mit der Drain­elektrode 21 und dem Drainanschluß D verbunden. Die Zone 17 und der Kontakt 18 erübrigt sich hier, da das Drainpotential direkt an der Drainzone 26 liegt.
  • Der Halbleiterkörper 4 der Steuerschaltung hat in den gezeigten Ausführungsbeispielen eine kleinere Fläche als der Halbleiter­körper 2 und ist auf einer seiner Oberflächen angeordnet. Der Halbleiterkörper 4 kann jedoch auch räumlich getrennt neben dem Halbleiterkörper 2 auf der Bodenplatte 24 angeordnet sein.
  • Der Leistungs-MOSFET ist zusammen mit der Ansteuerschaltung und dem zur Stromüberwachung vorgesehenen weiteren MOSFET in einem Gehäuse 25 angeordnet, das hier nur schematisch dargestellt ist. Ebenso sind die Anschlüsse D, G, und S lediglich schema­tisch dargestellt. Das Gehäuse kann weitere Anschlüsse zur Ein- ­und Ausgabe von Signalen an die integrierte Steuerschaltung aufweisen. Die die beiden Halbleiterkörper verbindenden Lei­tungen liegen alle innerhalb des Gehäuses.

Claims (3)

1. Leistungs-MOSFET mit einer Vielzahl von parallel geschalteten Einzel-MOSFET, mit mindestens einem weiteren MOSFET mit einer gegenüber der Fläche des Leistungs-MOSFET kleinen Fläche, dem sourceseitig ein Widerstand in Reihe geschaltet ist, wobei die Reihenschaltung dem Leistungs-MOSFET parallel geschaltet ist,
dadurch gekennzeichnet,
daß der weitere MOSFET (3) und der Widerstand in den vom Halb­leiterkörper (2) des Leistungs-MOSFET (1) getrennten Halbleiter­körper (4) einer integrierten, zur Steuerung des Leistungs-­MOSFET vorgesehenen Schaltung integriert ist.
2. Leistungs-MOSFET nach Anspruch 1,
dadurch gekennzeichnet,
daß der Halbleiterkörper (4) der Steuerschaltung eine kleinere Fläche als der Halbleiterkörper (2) des Leistungs-MOSFET (1) hat und auf einer Hauptfläche des Halbleiterkörpers (2) des Leistungs-MOSFET angeordnet ist.
3. Leistungs-MOSFET nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß beide Halbleiterkörper in ein und demselben Gehäuse (25) an­geordnet sind und daß die Reihenschaltung dem Leistungs-MOSFET durch innerhalb des Gehäuses liegende Leitungen parallel ge­schaltet ist.
EP87116897A 1986-11-17 1987-11-16 Leistungs-MOSFET mit Stromerfassung Withdrawn EP0268249A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3639236 1986-11-17
DE3639236 1986-11-17

Publications (2)

Publication Number Publication Date
EP0268249A2 true EP0268249A2 (de) 1988-05-25
EP0268249A3 EP0268249A3 (de) 1988-09-28

Family

ID=6314136

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87116897A Withdrawn EP0268249A3 (de) 1986-11-17 1987-11-16 Leistungs-MOSFET mit Stromerfassung

Country Status (4)

Country Link
US (1) US5029322A (de)
EP (1) EP0268249A3 (de)
JP (1) JPS63141357A (de)
KR (1) KR880006791A (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821065A1 (de) * 1987-06-22 1989-01-05 Nissan Motor Mos-feldeffekttransistor-einrichtung
DE4015625A1 (de) * 1989-05-16 1990-11-22 Toyoda Automatic Loom Works Mit einer stromerfassungsfunktion versehener transistor
DE4036426A1 (de) * 1989-11-16 1991-05-29 Int Rectifier Corp Sperrschicht-bipolartransistor-leistungsmodul

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721144A (en) * 1995-04-27 1998-02-24 International Business Machines Corporation Method of making trimmable modular MOSFETs for high aspect ratio applications
US5631548A (en) * 1995-10-30 1997-05-20 Motorola, Inc. Power off-loading circuit and method for dissipating power
US6232654B1 (en) * 1998-07-10 2001-05-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Semiconductor module
EP1231635A1 (de) * 2001-02-09 2002-08-14 STMicroelectronics S.r.l. Herstellungsverfahren eines elektronischen Leistungsbauteils und einer Diode in der gleichen Packung
US6667548B2 (en) * 2001-04-06 2003-12-23 Intel Corporation Diamond heat spreading and cooling technique for integrated circuits
KR100612409B1 (ko) 2002-05-29 2006-08-16 엔오케이 가부시키가이샤 밀봉 링
US7345499B2 (en) * 2006-01-13 2008-03-18 Dell Products L.P. Method of Kelvin current sense in a semiconductor package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314270A (en) * 1977-12-02 1982-02-02 Mitsubishi Denki Kabushiki Kaisha Hybrid thick film integrated circuit heat dissipating and grounding assembly
JPS6094756A (ja) * 1983-10-29 1985-05-27 Toshiba Corp 半導体装置
US4599554A (en) * 1984-12-10 1986-07-08 Texet Corportion Vertical MOSFET with current monitor utilizing common drain current mirror

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715452A (en) * 1980-06-30 1982-01-26 Mitsubishi Electric Corp Transistor module
JPS60117763A (ja) * 1983-11-30 1985-06-25 Fujitsu Ltd 半導体装置
JPS60250639A (ja) * 1984-05-25 1985-12-11 Nec Kansai Ltd ハイブリツドic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314270A (en) * 1977-12-02 1982-02-02 Mitsubishi Denki Kabushiki Kaisha Hybrid thick film integrated circuit heat dissipating and grounding assembly
JPS6094756A (ja) * 1983-10-29 1985-05-27 Toshiba Corp 半導体装置
US4599554A (en) * 1984-12-10 1986-07-08 Texet Corportion Vertical MOSFET with current monitor utilizing common drain current mirror

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 244 (E-346)[1967], 30. September 1985; & JP-A-60 094 756 (TOSHIBA K.K.) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821065A1 (de) * 1987-06-22 1989-01-05 Nissan Motor Mos-feldeffekttransistor-einrichtung
US4893158A (en) * 1987-06-22 1990-01-09 Nissan Motor Co., Ltd. MOSFET device
DE4015625A1 (de) * 1989-05-16 1990-11-22 Toyoda Automatic Loom Works Mit einer stromerfassungsfunktion versehener transistor
DE4036426A1 (de) * 1989-11-16 1991-05-29 Int Rectifier Corp Sperrschicht-bipolartransistor-leistungsmodul

Also Published As

Publication number Publication date
JPS63141357A (ja) 1988-06-13
EP0268249A3 (de) 1988-09-28
US5029322A (en) 1991-07-02
KR880006791A (ko) 1988-07-25

Similar Documents

Publication Publication Date Title
DE69534548T2 (de) Intergrierter widerstand zum abtasten elektrischer parameter
DE19614354C2 (de) Steuerschaltung für eine MOS-Gate-gesteuerte Leistungshalbleiterschaltung
DE102008033465B4 (de) Leistungshalbleitermodulsystem und leistungshalbleitermodul mit einem gehause sowie verfahren zur herstellung einer leis- tungshalbleiteranordnung
DE10120524B4 (de) Vorrichtung zur Ermittlung des Stromes durch ein Leistungs-Halbleiterbauelement
DE10004196A1 (de) Elektronische Halbbrücken-Moduleinheit
EP0281684B1 (de) Überspannungsgeschützter Darlingtonschalter
DE4036426A1 (de) Sperrschicht-bipolartransistor-leistungsmodul
EP0747713A2 (de) Schaltungsanordnung zum Erfassen des Laststroms eines Leistungshalbleiterbauelementes mit source- oder drainseitiger Last
EP0262530A1 (de) Halbleiterbauelemente mit Leistungs-MOSFET und Steuerschaltung
DE102005024900A1 (de) Halbleiterbauelement
DE10031115A1 (de) Halbleiterbauteil sowie Verfahren zur Messung seiner Temperatur
DE4031051C2 (de) Modul mit mindestens einem Halbleiterschaltelement und einer Ansteuerschaltung
DE102007020882B4 (de) Einrichtung zur Überprüfung der Befestigung einer Leiterbahnplatte an einem Träger
DE19581814B4 (de) Halbleiter-Testchip mit waferintegrierter Schaltmatrix
EP0268249A2 (de) Leistungs-MOSFET mit Stromerfassung
EP1083599A2 (de) Leistungshalbleitermodul
DE69825095T2 (de) Elektronische Temperaturmessvorrichtung und elektronisches Schaltungsgerät dieselbe enthaltend
DE10230716A1 (de) Leistungsmodul
DE102018207308B4 (de) Halbleiterbauteil mit integriertem shunt-widerstand und verfahren zu dessen herstellung
DE3701466C2 (de) Leistungs-Schnittstellenschaltung
EP0350015B1 (de) Leistungs-MOSFET mit Temperatursensor
EP0704902B1 (de) Verwendung eines Leistungshalbleiterbauelements mit monolithisch integrierter Sensoranordnung
DE4429903B4 (de) Leistungshalbleiteranordnung mit Überlastschutzschaltung
EP2592913A1 (de) Unmittelbare Kontaktierung eines Energiespeichers oder einer Last mittels eines elektronischen Lastschalters
DE4444808B4 (de) Halbleitervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19881026

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900531

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEBER, ROLAND, DIPL.-ING.

Inventor name: TIHANYI, JENOE, DR.

Inventor name: LEIPOLD, LUDWIG, DIPL.-ING.

Inventor name: EINZINGER, JOSEF, DIPL.-ING.