EP0265726B1 - Echangeur de chaleur - Google Patents

Echangeur de chaleur Download PDF

Info

Publication number
EP0265726B1
EP0265726B1 EP87114629A EP87114629A EP0265726B1 EP 0265726 B1 EP0265726 B1 EP 0265726B1 EP 87114629 A EP87114629 A EP 87114629A EP 87114629 A EP87114629 A EP 87114629A EP 0265726 B1 EP0265726 B1 EP 0265726B1
Authority
EP
European Patent Office
Prior art keywords
matrix
tubular
arc
heat exchanger
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87114629A
Other languages
German (de)
English (en)
Other versions
EP0265726A1 (fr
Inventor
Klaus Hagemeister
Alfred Hueber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0265726A1 publication Critical patent/EP0265726A1/fr
Application granted granted Critical
Publication of EP0265726B1 publication Critical patent/EP0265726B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/40Shell enclosed conduit assembly
    • Y10S165/427Manifold for tube-side fluid, i.e. parallel
    • Y10S165/436Bent conduit assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/91Tube pattern

Definitions

  • a tube matrix protruding temporally from collecting tubes into the combustion exhaust gas is provided, the tubes of which are uniformly proportionate in a substantially straight-leg area large mutual distances and in the arcuate central deflection area are arranged in relatively small uniform mutual distances.
  • This known case also provides as a pipe holder in a spatially staggered arrangement on the matrix formed aerodynamic "baffles" which, in combination with covers on the inside and outside of part of the outer matrix arc, are intended to cause a predetermined forced guidance of combustion gas; consequently, in the known case, a local increase in the hot gas dwell times is to be achieved, which ultimately manifests itself in an indifferent "serpentine" hot gas flow profile on the matrix; there, a more pronounced direction of the flow towards the bend region results in the neglect of a "regular" flow on the straight-leg pipe strands of the matrix.
  • the invention has for its object to provide a heat exchanger according to the preamble of claim 1, which enables a comparatively high degree of heat exchange, especially with regard to the formation of the arcuate matrix deflection area.
  • the hot gas flowing across the matrix finds comparatively small flow cross-sections at these points, particularly in the zenith of the arch area, and is therefore caused to move more into the lower areas of the arch area - i.e. towards the brackets with the smaller bending radii .
  • the flow through the arch area no longer takes place solely along the chords of the circular arches, but preferably arises on the outer arches with a larger radius - a strong crossflow tion component.
  • This weakly flowed zone can - starting from the outermost arch edge of the profile tubes - overlap the natural profile tube curvature in an approximately mushroom-shaped direction.
  • the main mass of the hot gases flows around the mushroom-shaped zone and thus promotes an additional hot gas cross-flow around the profile tubes in favor of a cross-countercurrent heat exchange process, which is also possible in particular in the outer arc area.
  • a cover on the housing side or a boundary guide wall can be restricted to a relatively narrow area at the zenith of the arcuate matrix deflection area or the relevant matrix pipe bends.
  • the invention is based on a heat exchanger according to FIG. 1, which consists of two compressed air ducts 1, 2 arranged essentially parallel to one another, which are designed here, for example, as separate distributor or collecting pipes. According to the darkened contour, the compressed air guides 1, 2 are closed at the respective rear end.
  • compressed air to be heated is fed into the upper compressed air duct 1 (D 1 ), then flows through the straight-leg matrix strands 4 (D 2 ), whereupon it is deflected via the deflection region 6 (D 3 ) and then flows through the straight-leg matrix strands 5 in the opposite direction of flow ( D 4 ), from which it flows out in the heated state via the lower compressed air duct 2 (Ds) in order to be supplied to a suitable consumer, for example the combustion chamber of a gas turbine engine.
  • a suitable consumer for example the combustion chamber of a gas turbine engine.
  • the invention would also be practical for a heat exchanger in which the aforementioned compressed air ducts are integrated in a common header pipe or distributor pipe, from which the matrix projects in a U-shape on both sides.
  • the tube brackets in the arcuate deflection area 6 of the matrix 3 are arranged at a smaller mutual distance (Fig. 4) than in the straight-leg matrix strands, e.g. 4, Figs. 2 and 3.
  • the pipe sections 6 1 , 6 2 to 6 10 are arranged in a staggered manner at shorter mutual distances than the pipe sections 4 1 , 4 2 to 4 10 or 5 1 , 5 2 to 5 1 o in the straight-legged matrix strands 4, 5.
  • the pipe bracket with respect to the pipe sections 6 1 , 6 2 to contained in the arcuate deflection region 6 6 10 are arranged one above the other or next to each other.
  • the circle center points K 1 , K 2 to K 10 assigned to the latter are designated and continuously shifted outwards on a common straight line S on a common straight line S in accordance with the pipe spacing in the bend area and with regard to an arc radius locking device decreasing from the outside inwards, in each case per transverse plane.
  • the centers of the circles Ki, K 2 etc. to Kio are arranged on the straight line G at continuously equal intervals.
  • 2 are uniformly inclined tube bases R, R ' , which are positioned at the same inclination angles ⁇ , ⁇ relative to a vertical S, which intersects the center of the circle K 1 lying on the straight line G and furthermore through the common intersection points 8 1 , S 2 of the pipe bases R, R 'passes through with the central circular arc M of the outermost pipe bend section 6 1 .
  • FIG. 3 embodies the regular and FIG. 4 the resulting narrower profile tube staggering with a mutual mutual tube spacing in the deflection region 6 along the arch meridian plane (section IV-IV-FIG. 2).
  • FIG. 5 embodies a first embodiment of the invention with the resulting effects on the hot gas flow.
  • FIG. 1 the disadvantageous criteria of known heat exchanger concepts already mentioned at the beginning are briefly discussed using the nomenclature according to FIG. 1.
  • Regular optimal hot gas flow ratios can only be taken as a basis here with regard to the block profile rows 4, 5 (FIG. 1) that protrude in a straight line, transverse to the hot gas flow H.
  • the individual profile tubes U-shaped tube brackets
  • the hot gas stream H can therefore flow around the profile tube rows as part of a perfect cross-countercurrent heat exchange process.
  • the hot gas components flowing out of the arcuate deflection region 6 of the matrix 3 (FIG. 1) at a relatively high flow rate can impair the hot gas outflow from the rest of the matrix with the predominantly straight-legged matrix strands (mixed turbulence).
  • the tube sections 6 1 , 6 2 etc. to 6 1 belonging to the tube brackets and defining the arcuate deflection region 6 of the matrix are shown in the section VII - VII of FIG. 5 shown in FIG. 6, in the direction from the innermost profile tube bracket with the smallest elbow (pipe section 6 10 ) to an outermost profile tube bracket with the largest elbow (profile tube section 6 1 ), in continuously decreasing mutual distances in parallel to each other levels are superimposed.
  • the circle center points each associated with a profile tube field according to FIG. 6 are plotted on the straight line G with K 1 , K 2 to K 10 in association with the arcuate tube sections 6 1 , 6 2 and 6 10 .
  • the tube bases R, R 'in FIG. 5 are slightly curved in accordance with the increasing center point compression (K 1 to K i o) and are inclined to the vertical S in the sense of FIG. 2.
  • 5 and 6 is an embodiment of the basic idea of the invention (claim 1), according to which in the arcuate deflection area 6 of the matrix 3 the pipe sections 6 1 , 6 2 and 6 1 " , 62", which are located further out and are equipped with comparatively large bending radii. , the pipe bracket nested more closely into one another, and thus arranged at a smaller mutual distance than the inner pipe sections 6 9 , 6 10 or 6 9 " , 6 10" equipped with the comparatively small bending radii (FIG. 6).
  • the hot gas flow areas H f1 (inner part of the deflection area 6) and H f2 (outer part of the deflection area 6) embody the continuously decreasing hot gas flow area from the inside to the outside.
  • Embodied within the scope of FIGS. 5 and 6 th subject matter of the invention can be formed essentially centrally overlapping the profile tube curvature in the arc region in the opposite direction, here illustrated by cross-hatching, through which the hot gas flows weakly.
  • the most essential part of the arcuate matrix deflection region 6 according to the arrow sequence Hi, H 2 , H 3 can be flowed through by the hot gas 30 according to FIG. 5, so that a cross-countercurrent heat exchange process is possible, specifically as Consequence of the local mutual reduction of the cross section of the hot gas flow (FIG.
  • a border 8 formed, for example, as an indirect or direct component of a housing that guides the hot gases, along the outer pipe bends 6 1 of the matrix 3 can be designed to be relatively short, that is to say short in the arc sense, while, for example, the housing 10 is parallel to the main hot gas flow direction H can run.
  • the edge 8 which can be made relatively short in the arc or has a clear width, can be suspended on the adjacent heat exchanger housing 10 via a component holder 9 which transmits supporting force;
  • a component holder 9 which transmits supporting force;
  • special hot gas shutoff seals can be provided between the edge 8 and the housing 10, which can interact directly or indirectly with the component holder 9 in a motion-compensating manner.
  • the component holder 9 itself can effect the necessary hot gas shut-off between the rim 8 and the housing 10.
  • a longitudinally divided arch boundary consisting of two shell elements can also be provided, which can be supported on the heat exchanger housing by means of movement-compensating component holding means.
  • the invention would also be feasible if the pipe brackets in the common arc meridian plane of the matrix deflection area, in the direction from the innermost profile pipe bracket with the smallest curve, first in a continuously relatively large and then in a relatively small uniform mutual distance in each case Layers parallel to each other lie one above the other.
  • the respective innermost curved pipe section 6 10 circular in shape, while the then following tube portions 6 9 are elliptically curved to 6 1 6 8, wherein all the pipe sections 6 1 o to to 6 1 the same center G is assigned to the associated straight line G.
  • the large axis (A) of the elliptically curved pipe sections is shown by the uniform profile spacing in the straight-legged matrix strands 4, 5 (pipe sections 4 1 , 4 2 to 4 10 and 5 1 , 5 2 to 5 10 ) specified and their respective small axis (B) by the selected (profile) pipe bracket spacing in the arch meridian plane (section IX-IX); 7 and 8 there is therefore a mutual decreasing mutual spacing between the tube bracket in the arcuate matrix deflection area 6, which according to FIG. 8 - similar to FIG. 6 to the local, continuously increasing reduction of the hot flow area seen from the outside inwards leads and here again is symbolically illustrated by inner, relatively large (H f i) and an outer, relatively small hot gas flow area H f2 .
  • the matrix volume (tube sections 6 1 to 6 10 ) which forms the deflection region 6 of the matrix 3 can be reduced, while at the same time as a whole, compared to the embodiments according to FIGS. 2 to 6, with an equivalent matrix length and width Enlarged overall length of the straight-leg matrix strands 4, 5 with the pipe sections 4 1 to 4 10 and 5 1 to 5 10 .
  • a hot gas flow approximately comparable to that of FIG. 5 can be taken as a basis in connection with a weakly flowed zone which curves outward from the outer edge of the arch approximately mushroom-shaped against the existing profile tube curvature.
  • the arc meridian plane or its extension may extend in the middle and parallel between the two straight-leg matrix strands 4, 5 (FIG. 1), the straight line G containing the circle centers K 1 , K 2 , K 6 (FIGS. 2 and 5) or the one or small axes B (FIG. 7), which are associated with the elliptically curved or semi-elliptical profile tube sections 6 1 to 6 10 , lie in this plane.
  • the tube brackets each have a uniform, elongated oval profile tube cross section.
  • the narrower staggering of the profile tube field according to the invention in the zenith of the bend region advantageously also allows the mechanical problem to be solved to maintain the predetermined distances between the profile tubes during operation of the heat exchanger.
  • the bend areas of the tube brackets can be easily deflected in the transverse direction from their normal position, because such an elastic movement causes the profile tube to bend about the axis of its lowest bending resistance moment.
  • the possible transverse vibrations of the pipe bracket from this movement can External flow and their heat exchange sensitive disturb and should therefore be avoided.
  • This support must not violate the basic principle of this type of heat exchanger, according to which each individual pipe bracket should be able to extend freely in length without constraint.
  • a support in this area should not block the cross sections for the longitudinal flow.
  • the tube sections 6 1 , 6 2 ; 6 1 " , 6 2 in the region or in the arch meridian plane are supported against one another by means of bulges 10 introduced at the profile end; for this purpose, the pipe sections forming the arch-shaped deflection region can, for example locally, in the zenith of the arch, via their tips in the direction of their larger axis, to the extent that the flanks bulge outwards in a controlled manner in time (bulges 10)
  • This process is carried out with the aid of special tools, so that the shape of the compressed profile section is produced precisely and repeatably 11, 12 can be designed as shown in FIG. 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (8)

1. Echangeur thermique, qui est constitué par une matrice (3) composée d'étriers tubulaires en forme de U (41, 61; 42, 62; 410, 610) intercalés les uns dans les autres, cette matrice étant raccordée à deux conduites tubulaires d'air comprimé (1, 2), disposées essentiellement parallèlement l'une à côté de l'autre et transversalement par rapport à la matrice, par l'intermédiaire de deux branches rectilignes (4, 5) de matrice, se terminant en une zone de renvoi (6) en forme d'arc, grâce à quoi une circulation croisée à contre-courant des fluides s'établit, les étriers tubulaires étant disposés dans la zone de renvoi en forme d'arc de la matrice à des intervalles réciproques plus réduits que dans les branches rectilignes (4, 5) de la matrice, dans lesquelles les tronçons de tubes correspondants (41, 410; 51, 510) sont disposés à un intervalle réciproque uniforme, échangeur thermique caractérisé en ce que, dans la zone de renvoi en forme d'arc (6) de la matrice (3), les tronçons de tubes (61, 62, 6s), placés le plus loin à l'extérieur des étriers tubulaires et qui sont pourvus de rayons de courbure relativement grands, sont intercalés plus étroitement les uns dans les autres et donc disposés à des intervalles réciproques plus réduits que les tronçons de tubes (6a, 69, 610) placés à l'intérieur et pourvus de rayons de courbure relativement petits.
2. Echangeur thermique selon la revendication 1, caractérisé en ce que les étriers tubulaires, dans le plan méridien commun de l'arc de zone de renvoi (6), sont placés les uns sur les autres dans des plans respectivement parallèles entre eux, à un intervalle réciproque se réduisant progressivement en allant du tronçon de tube profilé (610) le plus intérieur et comportant le rayon de courbure le plus petit, vers le tronçon de tube (61) le plus extérieur et comportant le rayon de courbure le plus grand.
3. Echangeur thermique selon la revendication 1, caractérisé en ce que les étriers tubulaires, dans le plan méridien commun de l'arc de la zone de renvoi, sont placés les uns sur les autres dans des plans respectivement parallèles entre eux, tout d'abord à un intervalle réciproque progressif relativement grand et ensuite à un intervalle réciproque uniforme relativement petit en allant du tronçon de tube profilé le plus intérieur comportant le rayon de courbure le plus petit vers le tronçon de tube profilé le plus extérieur comportant le rayon de courbure le plus grand.
4. Echangeur thermique selon une ou plusieurs des revendications 1 à 3, caractérisé en ce que la zone de renvoi en forme d'arc (6) de la matrice est constituée par des tronçons de tubes (61, 62, 610) courbés en forme de demi-cercle, dont les centres (Ki, K2, Kio) sont respectivement décalés progressivement vers l'extérieur sur une droite commune (G) de façon correspondante aux différents intervalles réciproques des tubes ainsi que compte tenu de la réduction de leurs rayons de courbure de l'extérieur vers l'intérieur.
5. Echangeur thermique selon une ou plusieurs des revendications 1 à 4, caractérisé en ce que la zone de renvoi en forme d'arc de la matrice est constituée par des tronçons de tubes (61, 6a, 69, 610), courbés en forme de cercle et/ou d'ellipse et ayant respectivement le même centre (M), et dont un axe ou le grand axe (A) est prédéfini par les intervalles réciproques uniformes des étriers dans les branches rectilignes (4, 5) de la matrice, et dont l'autre axe ou le petit axe (B) est prédéfini par les intervalles réciproques différents des étriers dans le plan méridien de l'axe.
6. Echangeur thermique selon une ou plusieurs des revendications 1 à 5, caractérisé en ce que le plan méridien de l'arc ou bien son prolongement s'étend médianement ainsi que parallèlement entre les deux branches rectilignes (4, 5) de la matrice, la droite (G) sur laquelle sont placés les centres des cercles (Ki, K2, Kio) ou bien l'un des axes ou le petit axe (B) appartenant aux tronçons de tubes courbés en forme d'ellipse (61, 68, 69, 610) sont situés sur le plan méridien prolongé de l'arc.
7. Echangeur thermique selon une ou plusieurs des revendications 1 à 6, caractérisé en ce que les étriers tubulaires ont respectivement une section transversale tubulaire de forme identique, profilée selon un ovale allongé.
8. Echangeur thermique selon une ou plusieurs des revendications 1 à 7, caractérisé en ce que les tronçons de tubes (61, 62, 61*, 6e) constituant la zone de renvoi en forme d'arc (6) de la matrice (3) prennent appui les uns contre les autres, au voisinage du plan méridien de l'axe ou bien dans ce plan, par des évasements (10) ménagés aux extrémités de leurs profils.
EP87114629A 1986-10-20 1987-10-07 Echangeur de chaleur Expired - Lifetime EP0265726B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3635548A DE3635548C1 (de) 1986-10-20 1986-10-20 Waermetauscher
DE3635548 1986-10-20

Publications (2)

Publication Number Publication Date
EP0265726A1 EP0265726A1 (fr) 1988-05-04
EP0265726B1 true EP0265726B1 (fr) 1990-09-26

Family

ID=6312017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87114629A Expired - Lifetime EP0265726B1 (fr) 1986-10-20 1987-10-07 Echangeur de chaleur

Country Status (4)

Country Link
US (1) US4800955A (fr)
EP (1) EP0265726B1 (fr)
JP (1) JPH0689991B2 (fr)
DE (1) DE3635548C1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735846A1 (de) * 1987-10-23 1989-05-03 Mtu Muenchen Gmbh Verfahren zur herstellung einer rohrbodenstruktur eines waermetauschers
US5177865A (en) * 1989-05-05 1993-01-12 Mtu Motoren-Und Turbinen-Union Method for making heat exchanger having at least two collecting pipes
DE3914773C2 (de) * 1989-05-05 1994-03-03 Mtu Muenchen Gmbh Wärmetauscher mit mindestens zwei Sammelrohren
DE4118777C2 (de) * 1991-06-07 2002-04-18 Mtu Aero Engines Gmbh Gasturbinentriebwerk mit Wärmetauscher
DE4226666B4 (de) * 1991-09-25 2005-12-01 Mtu Aero Engines Gmbh Wärmetauscher für die Kühlung eines heißen Gases
DE4131913A1 (de) * 1991-09-25 1993-04-08 Mtu Muenchen Gmbh Kuehlvorrichtung fuer hyperschall-luftstrahltriebwerke
DE4139104C1 (fr) * 1991-11-28 1993-05-27 Mtu Muenchen Gmbh
DE19905429A1 (de) * 1999-02-10 2000-08-17 Eisenmann Kg Maschbau Reaktor zur Durchführung einer katalytischen, mit einer Wärmetönung verbundenen Reaktion an Substanzen, die in einer Gasströmung enthalten sind
JP4715036B2 (ja) * 2001-05-31 2011-07-06 株式会社Ihi 熱交換器
DE10236380A1 (de) 2002-08-08 2004-03-04 Mtu Aero Engines Gmbh Rekuperativ-Abgaswärmetauscher für ein Gasturbinentriebwerk
US7296620B2 (en) * 2006-03-31 2007-11-20 Evapco, Inc. Heat exchanger apparatus incorporating elliptically-shaped serpentine tube bodies
TWI404903B (zh) * 2007-03-09 2013-08-11 Sulzer Chemtech Ag 用於流體媒介物熱交換及混合處理之設備
US8393860B2 (en) * 2007-12-13 2013-03-12 Cameron International Corporation Heat exchanger
DE102009047620C5 (de) 2009-12-08 2023-01-19 Hanon Systems Wärmeübertrager mit Rohrbündel
JP5651991B2 (ja) * 2010-05-10 2015-01-14 富士通株式会社 ラジエータ及びそれを備えた電子機器
JP6174655B2 (ja) 2014-10-21 2017-08-02 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation ガスタービンエンジン用のダクテッド熱交換器システム、およびガスタービンエンジン用の熱交換器の製造方法
US10190828B2 (en) * 2015-10-22 2019-01-29 Hamilton Sundstrand Corporation Heat exchangers
US11092384B2 (en) * 2016-01-14 2021-08-17 Hamilton Sundstrand Corporation Thermal stress relief for heat sinks
CN106855367B (zh) * 2017-02-28 2024-01-26 郑州大学 具有分布性出入口的管壳式换热器
CN106679467B (zh) * 2017-02-28 2019-04-05 郑州大学 具有外接管箱的管壳式换热器
RU2699851C1 (ru) * 2019-05-20 2019-09-11 Акционерное общество "ОДК-Климов" Трубчатый теплообменник
RU2727105C1 (ru) * 2019-11-05 2020-07-20 Акционерное общество "ОДК-Климов" Трубчатый теплообменник
US11859910B2 (en) 2021-05-14 2024-01-02 Rtx Corporation Heat exchanger tube support
US11892250B2 (en) * 2021-05-14 2024-02-06 Rtx Corporation Heat exchanger tube support

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE609526C (de) * 1935-02-16 Julius Diehl Kinderluftballon mit einem durch eine Aufhaengevorrichtung selbsttaetig ausloesbar angehaengten Fallschirm
US1817978A (en) * 1929-06-10 1931-08-11 Cherry Burrell Corp Liquid storage or tempering apparatus
US1890429A (en) * 1929-09-20 1932-12-06 Dow Chemical Co Mercury boiler
GB464316A (en) * 1936-07-23 1937-04-15 Harold Edgar Yarrow Improvements in or relating to steam superheaters
FR830829A (fr) * 1937-12-15 1938-08-10 Ag Fuer Technische Studien échangeur tubulaire de chaleur
FR52074E (fr) * 1941-08-14 1943-08-13 Générateur d'eau chaude sous pression
FR1168243A (fr) * 1956-12-21 1958-12-05 Perfectionnements aux condenseurs de vapeur
US3007679A (en) * 1960-06-22 1961-11-07 Westinghouse Electric Corp Anti-vibration structure for heat exchanger tubes
US3360037A (en) * 1965-08-24 1967-12-26 Babcock & Wilcox Co Heat exchanger u-bend tube arrangement
JPS4824412B1 (fr) * 1970-07-16 1973-07-20
SE374942B (fr) * 1971-11-04 1975-03-24 Motoren Werke Mannheim Ag
DE3242845C2 (de) * 1982-11-19 1986-03-20 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Wärmetauscher für Gase stark unterschiedlicher Temperaturen
DE3514377A1 (de) * 1985-04-20 1986-10-23 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Waermetauscher

Also Published As

Publication number Publication date
JPS63105397A (ja) 1988-05-10
JPH0689991B2 (ja) 1994-11-14
DE3635548C1 (de) 1988-03-03
EP0265726A1 (fr) 1988-05-04
US4800955A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
EP0265726B1 (fr) Echangeur de chaleur
DE69428219T2 (de) Plattenwärmetauscher
DE69200027T2 (de) Wärmetauscher mit mehreren Rohrreihen, insbesondere für Kraftfahrzeuge.
DE60005602T2 (de) Flüssigkeitsführendes Rohr und seine Verwendung in einem Kraftfahrzeugkühler
DE4020592C2 (de) Wärmetauscher des Gleichstrom-Typs für Fahrzeuge
DE4432972B4 (de) Wärmetauscher mit zwei Rohrreihen, insbesondere für Kraftfahrzeuge
WO1994011616A1 (fr) Refroidissement de la bande de protection d'une aube de turbine
DE2241407C3 (de) Verfahren zur Herstellung eines Wärmetauscherelementes
EP0256259B1 (fr) Echangeur de chaleur, en particulier évaporateur pour réfrigérant
DE69815616T2 (de) Verdampfer
DE2738257C2 (de) Vorrichtung zur Abscheidung von Tropfen aus strömenden Gasen
DE3414495A1 (de) Radiator, insbesondere kraftfahrzeugkuehler
EP0449124B1 (fr) Echangeur de chaleur à espace annulaire
DE3406682C2 (fr)
DE2613747A1 (de) Roehrenwaermetauscher
WO2001000965A1 (fr) Composant, notamment aube de turbine, pouvant etre expose a un gaz chaud
DE9418641U1 (de) Wärmeaustauschrohr
EP0268791B1 (fr) Echangeur de chaleur
DE4037774C1 (fr)
DE202004020899U1 (de) Plattenwärmetauscher
DE4230092C2 (de) Wärmetauscher, insbesondere Verdampfer für Klimaanlagen von Kraftfahrzeugen
DE3638082C2 (de) Abgasleitung mit hohlkegelförmigen Katalysatorträgerkörpern
WO2004079748A2 (fr) Distanceur
DE931595C (de) Gegenstrom-Waermeaustauscher
DE9403848U1 (de) Wärmetauscher für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19880922

17Q First examination report despatched

Effective date: 19890517

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940915

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940919

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941031

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051007