RU2699851C1 - Трубчатый теплообменник - Google Patents

Трубчатый теплообменник Download PDF

Info

Publication number
RU2699851C1
RU2699851C1 RU2019115403A RU2019115403A RU2699851C1 RU 2699851 C1 RU2699851 C1 RU 2699851C1 RU 2019115403 A RU2019115403 A RU 2019115403A RU 2019115403 A RU2019115403 A RU 2019115403A RU 2699851 C1 RU2699851 C1 RU 2699851C1
Authority
RU
Russia
Prior art keywords
heat exchanger
matrix
tubes
axis
tubular heat
Prior art date
Application number
RU2019115403A
Other languages
English (en)
Inventor
Валерий Владимирович Леонтьев
Original Assignee
Акционерное общество "ОДК-Климов"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "ОДК-Климов" filed Critical Акционерное общество "ОДК-Климов"
Priority to RU2019115403A priority Critical patent/RU2699851C1/ru
Application granted granted Critical
Publication of RU2699851C1 publication Critical patent/RU2699851C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Изобретение относится к области теплотехники и может быть использовано в области турбиностроения, а также в энергетике и двигателестроении для использования в составе осесимметричных конструкций, таких как авиационные газотурбинные двигатели и энергоустановки. В трубчатом теплообменнике матрица теплообменника без сварных или паяных соединений выполнена монолитной и представляет собой осесимметричную конструкцию из трубок, уложенных слоями в плоскостях, перпендикулярных оси матрицы, причем трубки, расположенные в соседних слоях, перекрещиваются, а концы трубок соединены с осевыми каналами, параллельными оси матрицы. Технический результат - повышение технологичности, надежности и эффективности теплообменника. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области теплотехники и может быть использовано в области турбиностроения, а также в энергетике и двигателестроении для использования в составе осесимметричных конструкций, таких как авиационные газотурбинные двигатели и энергоустановки.
Известен кожухотрубный теплообменник (RU №2395774), содержащий кожух, выполненный в виде двух концентрично расположенных цилиндров, между которыми расположены теплообменные трубы трапециевидной формы, коллекторы для подвода и отвода внутритрубной среды, патрубки и коллекторы для подвода и отвода межтрубной среды. Трубы закреплены в трубных решетках, например, сваркой.
Такая конструкция не обладает достаточной надежностью, поскольку трубы закреплены в трубных решетках, например, сваркой. Это неизбежно приводит к снижению прочности материалов самих труб и трубных решеток в зоне соединений, что, в свою очередь, приводит к снижению надежности теплообменника. Кроме того формирование трапециевидного сечения профиля трубы приводит к малому радиусу сопряжений поверхностей, образующих профиль трубы, а это - концентраторы напряжений, которые также снижают надежность.
Известен вертикальный кожухотрубный испаритель с перегревателем (RU №2451888), содержащий пучок внутренних теплообменных труб и установленных соосно с кольцевым сквозным зазором внешних труб, размещенный в цилиндрическом корпусе, имеющем нижний патрубок ввода теплоносителя и верхний патрубок вывода последнего, а также верхнюю и нижнюю решетки для крепления концов внутренних труб и решетку для крепления внешних труб, при этом цилиндрический корпус имеет крышку и днище с патрубками для подвода и отвода охлаждаемого теплоносителя.
Конструкция такого теплообменника обладает следующими недостатками: использование установленных соосно с кольцевым сквозным зазором внешних и внутренних труб не обеспечивает достаточно высокой надежности, поскольку требует обеспечения определенной величины этого зазора, а технология изготовления такого теплообменника вызывает сложности в плане обеспечения герметичности большого количества соединений труб с решетками.
Известен принятый за прототип теплообменник (RU №2152574), содержащий расположенный в кожухе пучок параллельных пространственно-спиральных змеевиков с одинаковыми геометрическими характеристиками, витки змеевиков которых заведены между витками смежных змеевиков.
К недостаткам этого теплообменника следует отнести необходимость соединения змеевиков с трубными решетками. Это неизбежно приводит к формированию концентраторов напряжений в этих местах, что снижает надежность конструкции, а наличие самих соединений определяет возможность негерметичности в них, что также снижает надежность теплообменника. Кроме того, необходимость обеспечения герметичности в этих соединениях при изготовлении существенно усложняет технологию изготовления этого теплообменника.
Технический результат, направленный на повышение технологичности, надежности и эффективности теплообменника, достигается за счет того, что предлагается трубчатый теплообменник, отличающийся тем, что матрица теплообменника без сварных или паяных соединений выполнена монолитной и представляет собой осесимметричную конструкцию из трубок, уложенных слоями в плоскостях, перпендикулярных оси матрицы, причем трубки, расположенные в соседних слоях перекрещиваются, а концы трубок соединены с осевыми каналами, параллельными оси матрицы.
Сущность изобретения поясняется чертежами:
Фиг. 1 - общий вид матрицы трубчатого теплообменника,
Фиг. 2 - схема движения теплоносителей в матрице теплообменника,
где
1 - трубки матрицы теплообменника для теплоносителя;
2 - осевые каналы для входа или выхода теплоносителя;
3 - ось матрицы теплообменника.
Конструкция матрицы теплообменника представляет собой осесимметричную пространственную матрицу из трубок 1, уложенных слоями в плоскостях, перпендикулярных оси матрицы, причем трубки 1, расположенные в соседних слоях, перекрещиваются. В конструкцию матрицы теплообменника включены каналы 2, параллельные оси матрицы, для подвода и отвода теплоносителя, который проходит по трубкам 1 матрицы теплообменника. Каналы 2 расположены по периферии (на большом радиусе) матрицы теплообменника и на малом радиусе (в прикорневой зоне) матрицы. Концы трубок 1 соединены (сообщаются) с осевыми каналами 2, параллельными оси матрицы.
Теплоноситель №1 через осевые каналы 2 (например, расположенные в зоне большого (периферийного) радиуса осесимметричной матрицы теплообменника) направляется по трубкам матрицы теплообменника 1. Теплоноситель №1 проходит по трубкам 2 и выходит через осевые каналы 2 (например, расположенные в зоне малого (прикорневого) радиуса осесимметричной матрицы теплообменника). Теплоноситель №2 направляется в радиальном направлении от корня к периферии (или от периферии к корню) вокруг трубок 1 через вихревую матрицу, образованную этими трубками. Теплоноситель №2 обтекает трубки 1 снаружи, не смешиваясь с Теплоносителем №1, который движется внутри этих трубок. При этом происходит теплообмен между Теплоносителями №1 и №2 через стенки трубок 1 и стенки осевых каналов 2. Таким образом, реализуется общая перекрестно-противоточная схема теплообмена.
Исключение из конструкции матрицы теплообменника элементов, необходимых для сварных или паяных соединений (отбортовки, разделки и т.п.), которые занимают значительную часть объема матрицы, позволяет избавиться от концентраторов напряжений, неизбежно появляющихся при использовании сварных или паяных соединений и более полно использовать объем. В освободившемся объеме размещены дополнительные поверхности теплообмена. Это повышает эффективность теплообменника в ограниченных габаритах.
Формирование монолитной матрицы теплообменника и исключение соединений элементов матрицы обеспечивает герметичность и также повышает надежность теплообменника.
Исполнение матрицы теплообменника в виде трубок, уложенных слоями в плоскостях, перпендикулярных оси матрицы, позволяет создать пространственную податливую конструкцию, которая, во-первых, способна компенсировать тепловые перемещения элементов из-за разницы температур, что, в свою очередь, позволяет существенно снизить тепловые напряжения и повысить за счет этого надежность теплообменника. Во-вторых, поскольку трубки, расположенные в соседних слоях, перекрещиваются, формируется вихревая матрица, которая позволяет интенсифицировать теплообмен, что повышает эффективность теплообменника. Кроме того, формирование монолитной матрицы (с использованием, например, процесса выборочной лазерной наплавки) позволяет изготовить трубки с интенсификаторами теплообмена, что также повышает эффективность теплообменника.
Использование одного технологического процесса (например, выборочной лазерной наплавки) взамен нескольких технологических процессов (в том числе исключения таких технологических процессов, как сварка и пайка), каждый из которых требует специального оборудования, отдельных производственных участков, производственных площадей, специально обученного персонала, существенно повышает технологичность предлагаемого теплообменника.

Claims (2)

1. Трубчатый теплообменник, содержащий корпус, устройства для подвода и отвода теплоносителей и матрицу теплообменника, отличающийся тем, что матрица теплообменника без сварных или паяных соединений выполнена монолитной и представляет собой осесимметричную конструкцию из трубок, уложенных слоями в плоскостях, перпендикулярных оси матрицы, причем трубки, расположенные в соседних слоях, перекрещиваются, а концы трубок соединены с осевыми каналами, параллельными оси матрицы.
2. Трубчатый теплообменник по п. 1, отличающийся тем, что трубки выполнены с интенсификаторами теплообмена.
RU2019115403A 2019-05-20 2019-05-20 Трубчатый теплообменник RU2699851C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019115403A RU2699851C1 (ru) 2019-05-20 2019-05-20 Трубчатый теплообменник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019115403A RU2699851C1 (ru) 2019-05-20 2019-05-20 Трубчатый теплообменник

Publications (1)

Publication Number Publication Date
RU2699851C1 true RU2699851C1 (ru) 2019-09-11

Family

ID=67989529

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019115403A RU2699851C1 (ru) 2019-05-20 2019-05-20 Трубчатый теплообменник

Country Status (1)

Country Link
RU (1) RU2699851C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727105C1 (ru) * 2019-11-05 2020-07-20 Акционерное общество "ОДК-Климов" Трубчатый теплообменник
RU2743930C1 (ru) * 2020-06-11 2021-03-01 Общество с ограниченной ответственностью "НТЦ "Турбопневматик" Кожухотрубный теплообменник

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800955A (en) * 1986-10-20 1989-01-31 Mtu Motoren- Und Turbinen-Union Munchen Gmbh Heat exchanger
US5086837A (en) * 1989-05-05 1992-02-11 Mtu Motoren-Und Turbinen-Union Munchen Gmbh Heat exchanger formed from superimposed trays
RU2152574C1 (ru) * 1999-02-16 2000-07-10 Походяев Сергей Борисович Теплообменник
RU2328682C1 (ru) * 2006-12-01 2008-07-10 Открытое акционерное общество "Энергомашкорпорация" Теплообменник
RU2387936C1 (ru) * 2009-03-24 2010-04-27 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт атомного энергетического машиностроения" (ОАО "ВНИИАМ") Теплообменник

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800955A (en) * 1986-10-20 1989-01-31 Mtu Motoren- Und Turbinen-Union Munchen Gmbh Heat exchanger
US5086837A (en) * 1989-05-05 1992-02-11 Mtu Motoren-Und Turbinen-Union Munchen Gmbh Heat exchanger formed from superimposed trays
RU2152574C1 (ru) * 1999-02-16 2000-07-10 Походяев Сергей Борисович Теплообменник
RU2328682C1 (ru) * 2006-12-01 2008-07-10 Открытое акционерное общество "Энергомашкорпорация" Теплообменник
RU2387936C1 (ru) * 2009-03-24 2010-04-27 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт атомного энергетического машиностроения" (ОАО "ВНИИАМ") Теплообменник

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727105C1 (ru) * 2019-11-05 2020-07-20 Акционерное общество "ОДК-Климов" Трубчатый теплообменник
RU2743930C1 (ru) * 2020-06-11 2021-03-01 Общество с ограниченной ответственностью "НТЦ "Турбопневматик" Кожухотрубный теплообменник

Similar Documents

Publication Publication Date Title
RU2699851C1 (ru) Трубчатый теплообменник
CN103557514A (zh) 集箱式高压加热器
US5472047A (en) Mixed finned tube and bare tube heat exchanger tube bundle
US4029054A (en) Waste heat boiler
US2633338A (en) Heat exchanger
US2505695A (en) Tube nest for heat exchangers
RU2684688C2 (ru) Кожухотрубный теплообменник, пакет труб для кожухотрубного теплообменника, компонент пакета труб, применение кожухотрубного теплообменника (варианты)
CN109506497B (zh) 一种高效紧凑毛细管换热器
JP2002350092A (ja) 熱交換器とこれを用いたガスタービン装置
CN112071453A (zh) 一种直流逆流孔道式换热器/蒸发器设计方案
US3482626A (en) Heat exchanger
JP5288169B2 (ja) 熱交換器および温水装置
US20110114086A1 (en) Heating device
US3930537A (en) Heat exchanger
RU2727105C1 (ru) Трубчатый теплообменник
CN114370772A (zh) 一种氧化炉换热组件
GB1586480A (en) Tube bundle assembly for a heat exchanger
US11879691B2 (en) Counter-flow heat exchanger
EP3502608B1 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (iii)
RU2619432C2 (ru) Радиально-пластинчатый тепломассообменный аппарат
RU2709241C1 (ru) Пластинчатый теплообменник
RU2395774C1 (ru) Кожухотрубный теплообменник
RU126814U1 (ru) Пластинчатый теплообменник
US3139927A (en) Heat exchanger
RU182526U1 (ru) Многоходовой кожухотрубный теплообменник