EP0265619B1 - Verfahren zur Herstellung ebener Flächen durch Silylation - Google Patents

Verfahren zur Herstellung ebener Flächen durch Silylation Download PDF

Info

Publication number
EP0265619B1
EP0265619B1 EP87112330A EP87112330A EP0265619B1 EP 0265619 B1 EP0265619 B1 EP 0265619B1 EP 87112330 A EP87112330 A EP 87112330A EP 87112330 A EP87112330 A EP 87112330A EP 0265619 B1 EP0265619 B1 EP 0265619B1
Authority
EP
European Patent Office
Prior art keywords
insulator
silylation
photoactive
photoresist
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87112330A
Other languages
English (en)
French (fr)
Other versions
EP0265619A3 (en
EP0265619A2 (de
Inventor
Garth Alwyn Brooks
Nancy Anne Greco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0265619A2 publication Critical patent/EP0265619A2/de
Publication of EP0265619A3 publication Critical patent/EP0265619A3/en
Application granted granted Critical
Publication of EP0265619B1 publication Critical patent/EP0265619B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric

Definitions

  • the invention relates to a process for planarizing a nonplanar surface and, more particularly, to a process for forming a planarized multilevel chip wiring structure.
  • a semiconductor chip consists of an array of semiconductor devices whose contacts are interconnected by metal patterns.
  • the metal patterns, or nets are sometimes multi-layered and separated by an insulating material, like quartz.
  • the thickness of the insulator is made sufficiently large to minimize capacitance between the different levels of wiring and also to render the insulator more tolerant to particulate defects.
  • Connections between nets are made by via studs (also known as vertical wires) which penetrate the insulator.
  • the vertical wire is formed by metal lift-off process described, for example, in U.S. Pat. No. 4,004,044 issued to Franco et al and assigned to the present assignee. The vertical wire is put in place before the insulator is deposited.
  • RIE reactive ion etching
  • ion milling the surface of the insulator is planarized and the top of the stud is exposed. Planarization is necessary since it improves the reliability of subsequent wiring levels as these wires do not have to traverse topography.
  • U.S. Patent 4,541,169 issued to Bartush and assigned to the present assignee discloses a planarization process in the context of making studs at different levels in a chip.
  • silicon dioxide layer is deposited and planarized, by etching using a thick photoresist planarization layer, to expose the most elevated studs.
  • a silicon nitride layer is then deposited and using the same mask pattern used to delineate the studs, the nitride (and the residual oxide over the the depressed studs) is etched to expose all the studs.
  • U.S. Pat. No. 4,541,168 issued to Galie et al and assigned to the present assignee discloses a method for making metal contact studs between first level metal and regions of a semiconductor device with the studs butting against polyimide-filled trenches.
  • the metal studs are formed by lift-off followed by sputter depositing silicon dioxide layer of thickness about the stud height, obtaining a nonplanar oxide structure.
  • a planarizing photoresist is applied and the resist and oxide are etched to expose the studs.
  • FIG. 1 and 2 A basic problem with these prior art methods is peak inversion. To explain, reference is made to Figs. 1 and 2 wherein a semiconductor substrate 10 having two metal studs 12 and 14 of different width is illustrated. When an insulator, such as oxide, layer 16 is deposited over the studed structure, peaks 18 and mesas 20 of oxide will be formed over the narrow and wide studs 12 and 14, respectively.
  • an insulator such as oxide
  • etch rate ratio of quartz to resist is, typically, about 1.4:1.0
  • etch rate ratio of quartz to resist is, typically, about 1.4:1.0
  • these oxide structures tend to etch off more quickly than the remainder of the oxide (which is still protected by the resist 22 thereover).
  • the peaks and mesas of the oxide are inverted as illustrated in Fig. 2.
  • the resulting structure will be of nonplanar topography consisting of an oxide medium 16 having studs 12 and 14 and vias 24 and 26. Such topography is undesirable as it leads to breakage of the next level wiring metal that is subsequently formed owing to the steepness of the vias in the oxide.
  • the wiring is prone to be fractured due to the sharp edges of the studs, leading to a low device yield and/or reliability.
  • Yet another problem is poor step coverage at the edges of the studs, which, due to electromigration, poses reliability concerns.
  • the invention is a process for planarizing a nonplanar surface.
  • a substrate having a nonplanar insulator e.g. an organosilicate such as SiO2
  • a planarizing photoactive photoresist medium is applied.
  • the photoresist is spin coated followed by soft baking at a sufficiently low temperature to drive out the solvent therein while maintaining the photoactivity of the resist.
  • the dried, photoactive resist is then silylated to convert it into a material having the same etch rate as that of the underlying insulator.
  • the conversion is accomplished by subjecting the dried resist to a silylation bath consisting of a silylating agent which can substitute SiO groups into the resist.
  • the silylating agent could be an organosilane or organosilazane. Specific examples of these agents are hexamethylcyclotrisilazane, octamethylcyclotetra- silazane, hexamethyldisilazane, N,N,dimethyl aminotri- methylsilane and N,N,diethylaminotrimethylsilane.
  • the silyation process step is accomplished at a temperature in the range 40-80°C for a period determined by the scale of 1 minute per thousand Angstroms thickness of the planarizing photoresist. Once the silyation process is complete, the resist is rendered harder and converted to SiO, while maintaining its planar surface.
  • the resulting structure is subjected to an etching step, typically, CF4 + O2 RIE or ion milling. Since the etch rate of the silylated resist is the same as that of the insulator, upon etching down to the level of the lowest valley in the insulator, the surface of insulator is made perfectly planar.
  • an etching step typically, CF4 + O2 RIE or ion milling. Since the etch rate of the silylated resist is the same as that of the insulator, upon etching down to the level of the lowest valley in the insulator, the surface of insulator is made perfectly planar.
  • the invention is a process for forming a planarized multilevel chip wiring structure.
  • an insulator e.g., quartz
  • a thick planarizing photoactive photoresist is applied.
  • the photoresist is converted by silylation to SiO material having an etch rate quite comparable to that of the quartz, while preserving its surface planarity. Unwanted portions of the silylated resist and quartz are uniformly etched back to expose the stud.
  • Figs. 1 and 2 show in cross-sectional representation successive views of a semiconductor structure having vertical wiring, pointing out the problems of the prior art planarization processes.
  • Figs. 3-5 are cross-sectional representations of a studed semiconductor structure undergoing the planarization process according to the present invention.
  • Fig. 6 is a magnified photograph of a vertical wiring structure suffering from quartz peak inversion, characteristic of the prior art.
  • Fig. 7 is a magnified photograph of a vertical wiring structure made in accordance with the present invention, without the occurrence of quartz peak inversion.
  • vertical wiring or studs designated by numerals 32 and 34 are formed by conventional process.
  • the width of the vertical wiring varies, typically, from 0.5 micrometer to 8 micrometers.
  • the vertical wiring may be, for example, in contact with elements of a semiconductor device (not shown) formed on the substrate 10.
  • the studs 32 and 34 may be formed on selected localized regions of a first level metal pattern (not shown) formed on the substrate.
  • the structure is covered with a layer 36 of an organosilicate material (i.e., a material having the SiO group) such as siloxane or silicon dioxide (quartz).
  • SiO2 may be sputtered according to standard sputtering technique. Due to conformality of layer 36, a mesa 38 and peak 40 of oxide is formed over the wide and narrow studs 32 and 34, respectively.
  • a photoactive photosensitive layer 42 is applied, as indicated in Fig. 3 to planarize the structure.
  • An example of the layer material 42 is photoactive photoresist.
  • the thickness of the photoresist layer 42 is typically 1-2.5 micrometers, the actual thickness being determined by the height of the peak 40. The higher the peak height, the thicker is the photoresist to obtain planar photoresist surface 44.
  • the photoresist is typically spin-coated, followed by soft-baking at a sufficiently low temperature to drive out the solvents therein, while maintaining the photoactivity of the photoresist.
  • the next process step is converting the resist into a material having substantially the same RIE or ion milling rate as the insulator 36.
  • This is achieved by silylating the resist 42.
  • Silylation is accomplished by subjecting the resist layer 42 to a silylation bath consisting of a silylating agent such as an organo-silazane or organosilane.
  • organosilazane are hexamethylcyclotrisilazane (HMCTS), hexamethyldisilazane (HMDS) and octamethylcyclotetrasilazane (OMCTS).
  • organosilanes are N,N,dimethyl-aminotrimethylsilane (TMSDMA) and N,N, diethylamino-trimethylsilane (TMSDEA).
  • TMSDMA N,N,dimethyl-aminotrimethylsilane
  • TMSDEA diethylamino-trimethylsilane
  • a chemical reaction occurs in which bonds are broken and SiO groups are substituted into the photoactive compound in the photoresist 42.
  • the silylation process step is accomplished at a temperature of 40-80°C. Temperatures higher than 80°C may not be suitable since then the resist 42 may begin to strip.
  • the silylation is carried out for a period of time determined by the scale of 1 minute per thousand Angstroms thickness of the resist 42. In other words, for a 1,0100 ⁇ m thick resist, silylation is complete in approximately 10 mins.
  • the direct result of the silylation process step is that the resist layer 42 is not only rendered harder, but, more importantly, converted to SiO layer 46, while maintaining the planar surface 44 of the resist.
  • the resist is converted into a material having the same etch rate as that of the quartz material 36. Since the silylated resist is virtually indistinguishable, from etching viewpoint, the previous composite layer of oxide 36 and resist 42 (Fig. 3) is transformed into a single layer of an organosilicate as indicated in Fig. 4.
  • the top surfaces of the studs 32 and 34 are exposed and the surface of the insulator layer 36 that remains will be coplanar with the exposed stud surfaces (as indicated in Fig. 5).
  • Fig. 7 is a photograph in a view taken from the top of a silicon substrate having a number of metal studs embedded in a planar quartz layer.
  • the quartz is coplanar with all the studs, regardless of their width, and free of via holes around the studs.
  • This improved result of the invention becomes particularly apparent when compared with the silicon substrate displayed in Fig. 6 which was fabricated without the silylation process of the invention, showing vividly the quartz peak inversion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Claims (21)

  1. Einebnungsvefahren, bei welchem:
    ein Substrat mit einer unebenen Isolatoroberfläche bereitgestellt wird;
    diese Oberfläche mit einer lichtempfindlichen Schicht überzogen wird, um von dieser eine im wesentlichen ebene Oberfläche zu erhalten;
    die lichtempfindliche Schicht in ein Material umgewandelt wird, dessen Ätzrate von jener des Isolators nicht unterscheidbar ist, wobei die photo-aktiven Eigenschaften der lichtempfindlichen Schicht erhalten bleiben und das Umwandeln durch Silylierung der lichtempfindlichen Schicht erreicht wird;
    und dieses Material und Oberflächenabschnitte des Isolators geätzt werden, um die Isolatoroberfläche im wesentlichen eben zu machen.
  2. Verfahren nach Anspruch 1, bei welchem der Silylierungsprozeß umfaßt, daß die lichtempfindliche Schicht entweder einem organischen Silazan oder einem organischen Silan ausgesetzt wird.
  3. Verfahren nach Anspruch 2, bei welchem das organische Silazan aus der Gruppe ausgewählt wird, die aus Hexamethyldisilazan, Hexamethylcyclotrisilazan und Octomethylcyclotetrasilazan besteht.
  4. Verfahren nach Anspruch 2, bei welchem das organische Silan aus einer Gruppe ausgewählt wird, die aus N, N-Diethylaminotrimethylsilan und N,N Di methylaminotrimethylsilan besteht.
  5. Verfahren nach Anspruch 3 oder 4, bei welchem der Silylierungsprozeß für eine Zeit durchgeführt wird, die durch ein Ausmaß von etwa 1 Minute pro 100 µm Dicke des lichtempfindlichen Materials bestimmt ist.
  6. Verfahren nach Anspruch 3, bei welchem der Silylierungsprozeß bei einer Temperatur im Bereich von 40-80°C durchgeführt wird.
  7. Verfahren nach Anspruch 2, bei welchem weiters das lichtempfindliche Material wärmebehandelt wird, um bei Erhalten seiner Photoaktivität Lösungsmittel aus ihm zu entfernen.
  8. Verfahren nach irgend einem der vorgehenden Ansprüche, bei welche der Isolator aus einer Gruppe ausgewählt wird, die aus Siliziumdioxid und organischen Silikaten besteht.
  9. Verfahren nach irgend einem der vorgehenden Ansprüche, bei welchem die unebene Isolatoroberfläche zumindest einen vertikalen leitenden Vorsprung aufweist.
  10. Verfahren nach irgend einem der vorgehenden Ansprüche, bei welchem das Ätzen durch reaktives Ionenätzen oder Ionenfräsen durchgeführt wurde.
  11. Verfahren zur Herstellung von Vorsprüngen für die Verbindung metallisierter Schichten in verschiedenen Ebenen eines Halbleiterchips, enthaltend die folgenden Schritte:
    Bilden von leitenden Vorsprüngen in gewünschten Bereichen eines Halbleitersubstrats;
    überlagerndes Ablagern einer Isolierschicht auf dem Substrat, um die Vorsprünge zu bedecken, wobei die Isolierschicht eine unebene Oberfläche besitzt;
    Ausbilden eines einebnenden photoaktiven Mediums über der Isolierschicht, wobei dieses Medium eine im wesentlichen ebene obere Fläche besitzt;
    Umwandeln dieses Mediums in ein Material, dessen Ätzrate von jener des Isolators nicht unterscheidbar ist, wobei die photoaktiven Eigenschaften dieses Mediums erhalten bleiben und das Umwandeln durch Silylierung des photoaktiven Mediums erfolgt; und
    Rückätzen des Materials und von Teilen des Isolators, um die Vorsprünge freizulegen und um eine eingeebnete Isolatoroberfläche zu erhalten, die mit den Oberflächen der Vorsprünge koplanar ist.
  12. Verfahren nach Anspruch 11, bei welchem der Isolator Quarz ist.
  13. Verfahren nach Anspruch 12, bei welchem das Medium ein Photoresist ist.
  14. Verfahren nach Anspruch 13, bei welchem der Silylierungsprozeß beeinhaltet, daß der Photoresist einem Bad ausgesetzt wird, das entweder aus Hexamethyldisilazan, Hexamethylcyclotrisilazan, Octomethylcyclotetrasilazan, N, N-Dimethylaminotrimethylsilan oder N, N-Diethylaminotrimethysilan besteht.
  15. Verfahren nach Anspruch 14, bei welchem die Silylierung für eine Zeit durchgeführt wird, die durch ein Ausmaß von 1 Minute pro 100 µm Dicke des Photoresists gegeben ist.
  16. Verfahren nach Anspruch 15, bei welchem der Resist vor dem Silylierungsprozeß einer Wärmebehandlung bei niedriger Temperatur ausgesetzt wird, um Lösungsmittel in dem Photoresist auszutreiben.
  17. Verfahren nach Anspruch 16, bei welchem das Ätzen entweder durch reaktives Ionenätzen unter Verwendung eines CF₄ + O₂ Plasmas oder durch Ionenfräsen durchgeführt wird.
  18. Einebnungsverfahren, bei welchem:
    ein Substrat mit einer unebenen Isolatoroberfläche bereitgestellt wird;
    dieses Substrat mit einem silylisierbaren, photoaktiven Material überzogen wird, um von diesem eine im wesentlichen ebene Oberfläche zu erhalten;
    das silylisierbare photoaktive Material durch dessen Silylisierung in ein anderes Material umgewandelt wird, dessen Ätzrate von jener des Isolators nicht unterscheidbar ist, wobei die photoaktiven Eigenschaften des Materials erhalten bleiben; und
    dieses andere Material und Oberflächenabschnitte des Isolators geätzt werden, um die Isolatoroberfläche im wesentlichen eben zu machen.
  19. Verfahren nach Anspruch 18, bei welchem das silylisierbare Material lichtempfindlich ist.
  20. Verfahren nach Anspruch 19, bei welchem das lichtempfindliche Material ein Photoresist ist.
  21. Verfahren nach Anspruch 20, bei welchem die Silylierung umfaßt, daß der Photoresist entweder einem organischen Silazan oder einem organischen Silan ausgesetzt wird.
EP87112330A 1986-10-27 1987-08-25 Verfahren zur Herstellung ebener Flächen durch Silylation Expired - Lifetime EP0265619B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/923,779 US4816112A (en) 1986-10-27 1986-10-27 Planarization process through silylation
US923779 1986-10-27

Publications (3)

Publication Number Publication Date
EP0265619A2 EP0265619A2 (de) 1988-05-04
EP0265619A3 EP0265619A3 (en) 1988-10-26
EP0265619B1 true EP0265619B1 (de) 1992-05-13

Family

ID=25449260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112330A Expired - Lifetime EP0265619B1 (de) 1986-10-27 1987-08-25 Verfahren zur Herstellung ebener Flächen durch Silylation

Country Status (7)

Country Link
US (1) US4816112A (de)
EP (1) EP0265619B1 (de)
JP (1) JPS63115341A (de)
AU (1) AU594518B2 (de)
BR (1) BR8705230A (de)
CA (1) CA1308609C (de)
DE (1) DE3779043D1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986876A (en) * 1990-05-07 1991-01-22 The United States Of America As Represented By The Secretary Of The Army Method of smoothing patterned transparent electrode stripes in thin film electroluminescent display panel manufacture
US5139608A (en) * 1991-04-01 1992-08-18 Motorola, Inc. Method of planarizing a semiconductor device surface
JPH05243223A (ja) * 1992-02-28 1993-09-21 Fujitsu Ltd 集積回路装置の製造方法
KR0170253B1 (ko) * 1992-11-18 1999-03-20 김광호 실리레이션을 이용한 사진식각방법
US5981143A (en) * 1997-11-26 1999-11-09 Trw Inc. Chemically treated photoresist for withstanding ion bombarded processing

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2547792C3 (de) * 1974-10-25 1978-08-31 Hitachi, Ltd., Tokio Verfahren zur Herstellung eines Halbleiterbauelementes
US4004044A (en) * 1975-05-09 1977-01-18 International Business Machines Corporation Method for forming patterned films utilizing a transparent lift-off mask
DE3371734D1 (en) * 1983-02-23 1987-06-25 Ibm Deutschland Process for the production of metallic layers adhering to plastic supports
GB2153335B (en) * 1983-07-20 1988-05-25 Don Marketing Management Ltd A label
US4511430A (en) * 1984-01-30 1985-04-16 International Business Machines Corporation Control of etch rate ratio of SiO2 /photoresist for quartz planarization etch back process
US4552833A (en) * 1984-05-14 1985-11-12 International Business Machines Corporation Radiation sensitive and oxygen plasma developable resist
JPS60262150A (ja) * 1984-06-11 1985-12-25 Nippon Telegr & Teleph Corp <Ntt> 三層レジスト用中間層材料及びそれを用いた三層レジストパタン形成方法
US4541168A (en) * 1984-10-29 1985-09-17 International Business Machines Corporation Method for making metal contact studs between first level metal and regions of a semiconductor device compatible with polyimide-filled deep trench isolation schemes
US4541169A (en) * 1984-10-29 1985-09-17 International Business Machines Corporation Method for making studs for interconnecting metallization layers at different levels in a semiconductor chip
US4613398A (en) * 1985-06-06 1986-09-23 International Business Machines Corporation Formation of etch-resistant resists through preferential permeation
US4702792A (en) * 1985-10-28 1987-10-27 International Business Machines Corporation Method of forming fine conductive lines, patterns and connectors
US4944836A (en) * 1985-10-28 1990-07-31 International Business Machines Corporation Chem-mech polishing method for producing coplanar metal/insulator films on a substrate
US4723978A (en) * 1985-10-31 1988-02-09 International Business Machines Corporation Method for a plasma-treated polysiloxane coating
US4676868A (en) * 1986-04-23 1987-06-30 Fairchild Semiconductor Corporation Method for planarizing semiconductor substrates

Also Published As

Publication number Publication date
AU8013187A (en) 1988-05-05
US4816112A (en) 1989-03-28
CA1308609C (en) 1992-10-13
EP0265619A3 (en) 1988-10-26
AU594518B2 (en) 1990-03-08
JPH0565049B2 (de) 1993-09-16
DE3779043D1 (de) 1992-06-17
JPS63115341A (ja) 1988-05-19
EP0265619A2 (de) 1988-05-04
BR8705230A (pt) 1988-05-24

Similar Documents

Publication Publication Date Title
USRE39126E1 (en) Two-step chemical mechanical polishing process for producing flush and protruding tungsten plugs
EP0146038B1 (de) Planierung eines Metallisierungssystemes mit mehreren Verbindungsschichten
EP0284840B1 (de) Verfahren zur Herstellung von gleichmässigen Materialschichten
CA1244145A (en) Process for forming planar chip-level wiring
EP0154573B1 (de) Planarisierungsverfahren für Halbleiter und nach diesem Verfahren hergestellte Strukturen
JPS63114213A (ja) 平担化方法
US5710460A (en) Structure for reducing microelectronic short circuits using spin-on glass as part of the interlayer dielectric
US5366850A (en) Submicron planarization process with passivation on metal line
US5517062A (en) Stress released VLSI structure by the formation of porous intermetal layer
US4867838A (en) Planarization through silylation
US6093635A (en) High integrity borderless vias with HSQ gap filled patterned conductive layers
KR0147976B1 (ko) 박막 헤드의 패턴 평탄화 방법
US4328263A (en) Method of manufacturing semiconductor devices using lift-off technique
EP0265619B1 (de) Verfahren zur Herstellung ebener Flächen durch Silylation
US4089766A (en) Method of passivating and planarizing a metallization pattern
US6020265A (en) Method for forming a planar intermetal dielectric layer
US6030891A (en) Vacuum baked HSQ gap fill layer for high integrity borderless vias
JPH03295239A (ja) 半導体装置の製造方法
US4642162A (en) Planarization of dielectric layers in integrated circuits
JPH0194623A (ja) 多層配線半導体装置の製造方法
KR0171977B1 (ko) 반도체 소자의 제조 방법
JPH0430524A (ja) 半導体装置の製造方法
JPH0427703B2 (de)
JPH0982799A (ja) 配線基板およびその製造方法
KR100207476B1 (ko) 화학기계적 폴리싱에 의한 반도체 장치의 제조 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19880823

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19910729

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920513

REF Corresponds to:

Ref document number: 3779043

Country of ref document: DE

Date of ref document: 19920617

ITF It: translation for a ep patent filed

Owner name: IBM - DR. ARRABITO MICHELANGELO

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920831

Ref country code: CH

Effective date: 19920831

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87112330.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950726

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950804

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950807

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950821

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970501

EUG Se: european patent has lapsed

Ref document number: 87112330.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050825