EP0260974A2 - Fibres à deux composants contenant du polypropylène et du polyéthylène - Google Patents
Fibres à deux composants contenant du polypropylène et du polyéthylène Download PDFInfo
- Publication number
- EP0260974A2 EP0260974A2 EP87308249A EP87308249A EP0260974A2 EP 0260974 A2 EP0260974 A2 EP 0260974A2 EP 87308249 A EP87308249 A EP 87308249A EP 87308249 A EP87308249 A EP 87308249A EP 0260974 A2 EP0260974 A2 EP 0260974A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fiber
- lldpe
- fibers
- percent
- polypropylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 102
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 88
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 88
- -1 polypropylene Polymers 0.000 title claims abstract description 50
- 239000004698 Polyethylene Substances 0.000 title claims description 57
- 229920000573 polyethylene Polymers 0.000 title claims description 57
- 229920000092 linear low density polyethylene Polymers 0.000 claims abstract description 38
- 239000004707 linear low-density polyethylene Substances 0.000 claims abstract description 38
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims abstract description 22
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 12
- 239000000155 melt Substances 0.000 claims abstract description 12
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 claims abstract description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 36
- 229920001684 low density polyethylene Polymers 0.000 claims description 14
- 239000004702 low-density polyethylene Substances 0.000 claims description 14
- 238000009987 spinning Methods 0.000 claims description 12
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 description 16
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 9
- 239000005977 Ethylene Substances 0.000 description 8
- 239000004744 fabric Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004700 high-density polyethylene Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004711 α-olefin Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 101710149632 Pectinesterase A Proteins 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920006771 PE-C Polymers 0.000 description 2
- 101710149624 Pectinesterase B Proteins 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 239000012967 coordination catalyst Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- 229920013683 Celanese Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 229920002544 Olefin fiber Polymers 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 1
- 239000004931 filters and membranes Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004767 olefin fiber Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/04—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
- D01F6/06—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/46—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
Definitions
- Blends consisting of polypropylene and polyethylene are spun into fibers having improved properties.
- Polypropylene (PP) fibers and filaments are items of commerce and have been used in making products such as ropes, non-woven fabrics, and woven fabrics.
- U.S. 4,578,414 discloses additives for making olefin polymer fibers water-wettable, including blends of polyethylene (PE) and polypropylene (PP).
- PE polyethylene
- PP polypropylene
- U.S. 4,518,744 discloses melt-spinning of certain polymers and blends of polymers, including polypropylene (PP).
- PP polypropylene
- Japanese Kokai 56-159339 and 56-159340 disclose fibers of mixtures of polyester with minor amounts of polypropylene.
- a “monofilament” (also known as (a.k.a.) monofil) refers to an individual strand of denier greater than 15, usually greater than 30;
- a "fine denier fiber or filament” refers to a strand of denier less than 15;
- multi-filament refers to simultaneously formed fine denier filaments spun as a bundle of fibers, generally containing at least 3, preferably at least 15-100 fibers and can be several hundred or several thousand;
- “Staple fibers” refer to fine denier strands which have been formed at, or cut to, staple lengths of generally 1 to 8 inches (2.5 to 20 cm);
- extruded strand refers to an extrudate formed by passing polymer through a forming-orifice, such as a die.
- a “fibril” refers to a superfine discrete filament embedded in a more or less continuous matrix.
- thermoplastic polymer can be extruded as a coarse strand or monofilament
- many of these, such as polyethylene and some ethylene copolymers have not generally been found to be suitable for the making of fine denier fibers or multi-filaments.
- Practitioners are aware that it is easier to make a coarse monofilament yarn of 15 denier than to make a multi-filament yarn of 15 denier.
- the mechanical and thermal conditions experienced by a bundle of filaments, whether in spinning staple fibers or in multi-filaments yarns are very different to those in spinning monofilaments.
- Low density polyethylene is prepared by polymerizing ethylene using a free-radical initiator, e.g. peroxide, at elevated pressures and temperatures, having densities in the range, generally, of 0.910-0.935 g/cm3.
- the LDPE sometimes called "I.C.I.-type" polyethylene is a branched (i.e. non-linear) polymer, due to the presence of short-chains of polymerized ethylene units pendent from the main polymer backbone.
- HPPE high pressure polyethylene
- High density polyethylene is prepared using a coordination catalyst, such as a "Ziegler-type” or “Natta-type” or a “Phillips-type” chromium oxide compound. These have densities generally in the range of 0.94 to 0.98 g/cm3 and are called “linear" polymers due to the substantial absence of short polymer chains pendent from the main polymer backbone.
- Linear low density polyethylene is prepared by copolymerizing ethylene with at least one ⁇ -olefin alkylene of C3-C12, especially at least one of C4-C8, using a coordination catalyst such as is used in making HDPE.
- LLDPE Linear low density polyethylene
- These LLDPE are "linear", but with alkyl groups of the ⁇ -olefin pendent from the polymer chain. These pendent alkyl groups cause the density to be in about the same density range (0.88-0.94 g/cm3) as the LDPE; thus the name "linear low density polyethylene” or LLDPE is used in the industry in referring to these linear low density copolymers of ethylene.
- Polypropylene is known to exist as atactic (largely amorphous), syndiotactic (largely crystalline), and isotactic (also largely crystalline), some of which can be processed into fine denier fibers. It is preferable, in the present invention, to use the largely crystalline types of PP suitable for spinning fine denier fibers, sometimes referred to as "CR", or constant rheology, grades.
- U.S. 4,181,762, U.S. 4,258,097, and U.S. 4,356,220 contain information about olefin polymer fibers, some of which are monofilaments.
- U.S. 4,076,698 discloses methods of producing LLDPE and discloses extrusion of a monofilament.
- U.S. 4,584,347 discloses in general terms the manufacture of xerogel fibers from dilute solutions of ultra high molecular weight polyethylene or polypropylene containing a polymeric additive which can be LDPE, LLDPE or HDPE but there is no exemplification of a PE/PP mix.
- U.S. 4,563,504 discloses the manufacture of mono-oriented yarns from a mixture of 10-40 weight percent polypropylene and 60 to 90 weight percent ethylene ⁇ -olefin copolymer. The components can be mixed in the solid or molten state.
- U.S. 4,632,861 discloses that the melt spinning of LDPE is improved by blending LDPE with polypropylene in the amounts of 65-95 weight percent LDPE and 5 to 35 weight percent PP.
- the resultant fibers have PP dispersed in a PE continuous phase. Comparative examples having 40:60 and 20:80 LDPE:PP are given but the patent teaches that PP content below 35 weight percent is require for satisfactory spinning.
- CA 1199746 discloses mixtures of 40 to 90 weight percent LLDPE to improve the flexibility, capacity for hot and cold drawing, and strength of PP for blow-molding, extrusion drawing or thermoforming. No reference is made to spinning fibers.
- Skoroszewski discloses stretched polypropylene film fibers containing LDPE and teaches that LDPE contents above 20 weight percent drastically affect the tenacity of the products.
- JP 52072744, JP 58011536, JP 58206647 and JP 5904132 disclose moulding compositions comprising polypropylene and polyethylene but make no reference to fiber manufacture.
- JP 52072744 discloses compositions containing 70 to 98 weight percent polypropylene, 1 to 14 weight percent ethylene/but-1-ene random copolymers and 1 to 15 weight percent LDPE.
- JP 58011536 discloses compositions comprising an ethylene propylene random copolymer, containing 3 to 9 weight percent ethylene, and a LLDPE.
- JP 58206647 discloses a composition comprising polypropylene, LDPE and LLDPE.
- JP 59041342 discloses compositions containing 60 to 95 weight percent LLDPE and 5 to 50 weight percent polypropylene.
- the invention provides a biconstituent fiber consisting essentially of polypropylene as a continuous phase, having distributed therein 20 to 45 percent by weight of linear low density polyethylene (LLDPE) fibrils as a dispersed phase arrayed in a substantially omni-directionally splayed manner, said LLPDE having a melt flow rate (as measured in accordance with ASTMD-1238 (E)) in the range of 12 to 120 g/10 min.
- LLDPE linear low density polyethylene
- E ASTMD-1238
- a process of preparing a biconstituent fibers which comprises intimately mixing molten polypropylene (PP) and molten linear low density polyethylene (LLDPE), having a melt flow rate (as measured in accordance with ASTM D-1238 (E)) in the range 12 to 120 g/10 min in the PP:LLDPE weight ratio 80:20 to 65:45 to disperse the LLDPE in the PP and maintaining the dispersion until the mixture, as an extrudate, is expelled from a spinning die to form a fiber in which LLDPE fibrils, as a dispersed phase, are arrayed in a substantially omni-directional splayed manner.
- PP molten polypropylene
- LLDPE linear low density polyethylene
- Figs. 1-4 are provided herewith as visual aids for relating certain properties of blends described in this disclosure.
- the polyethylene for use in this invention is LLDPE with a molecular weight of the polyethylene in the moderately high range, as indicated by a melt index, M.I., (a.k.a. melt flow rate, M.F.R.) value in the range of from 12 to 120, preferably 20 to 100 g/10 min, especially 50 ⁇ 20 g/10 mins, as measured by ASTM D-1238(E) (190°C/2.16 Kg).
- M.I. melt index
- M.F.R. melt flow rate
- the comonomer ⁇ -olefin alkylenes in the LLDPE are, in the C3-C12 range, especially C4 to C8 and particularly 1-octene.
- Butene (C4) can be used, but 1-octene is preferred.
- Mixtures of the alkylene comonomers may be used, such as butene/octene or hexene/octene in preparing the ethylene/alkylene copolymers.
- the density of the LLDPE is dependent on the amount of, and the molecular size (i.e. the number of carbons in the alkylene molecule) of, the alkylene incorporated into the copolymer.
- alkylene comonomer used, the lower the density; also, the larger the alkylene comonomer, the lower the density.
- an amount of alkylene comonomer is used which results in a density in the range of 0.88 to 0.94, most preferably 0.92 to 0.94, especially 0.92 to 0.93 g/cm3.
- An ethylene/octene copolymer having a density of around 0.925 g/cm3, an octene content in the range of from 5 to 10 percent and a M.F.R. of 50 ⁇ 20 g/10 min. is very effective for the purposes of this invention.
- the weight ratio of PP/PE can range from 80/20 to 55/45, but is preferably in the range of 78/22 to 60/40, most preferably in the range of 75/25 to 65/35.
- An especially preferred range is 72/28 to 68/32.
- melt-mixing is important due to generally acknowledged immiscibility of the PP and PE.
- An intensive mixer-extruder is required which causes, in the blender, on the one hand, molten PE to be dispersed in the molten PP and the dispersion maintained until the mixture, as an extrudate, is expelled from the spinning die.
- Polymer blends of PP and PE prepared in such a mixer are found to be useful, strong, and can be extruded into products where the immiscibility is not a problem.
- the so-formed extrudate of a mixture which contains more PP than PE is spun and drawn into fibers, the molten PE globules become extruded into fibrils within the polypropylene matrix.
- An important, novel feature of the fibers is that the fibrils of PE are diverse in their orientation in the PP fiber. A larger fraction of PE particles is found close to the periphery of the cross-section of the PP fibers, and the remaining PE particles are spread in the inner portions of the PP fiber.
- the size of the PE particles is smallest at the periphery of the fiber's cross-section and a gradual increase in size is evidenced toward the center of the fiber.
- the frequency of small particles at the periphery is highest, and it decreases toward the center where the PE particles are largest, but spread apart more.
- the PE fibrils near the periphery of the PP fiber's cross-section are diverse in the direction in which they are oriented or splayed, whereas close to the center of the PP fiber the orientation is mostly coaxial with the fiber.
- these fibers will be referred to herein as blends consisting of PP as a continuous phase, and containing omni-directionally splayed PE fibrils as a dispersed phase.
- each PE fibril in the cross-section is dependent on whether one is viewing a PE fibril sliced at right angles to the axis of the PE fibril at that point or at a slant to the axis of the PE fibril at that point.
- An oval or elongate shaped section indicates a PE fibril cut at an angle.
- An elongate shaped section indicates a PE fibril which has skewed from axial alignment to a transverse position.
- the mixer for preparing the molten blend of PP/PE is a dynamic high intensity mixer, especially one which provides 3-dimensional mixing. Insufficient mixing will cause non-homogeneous dispersion of PE in PP resulting in fibers of inconsistent properties, and tenacities lower than that of the corresponding PP fibers alone.
- a 3-dimensional mixer suitable for use in the present invention is disclosed in a publication titled "Polypropylene--Fibers and Filament Yarn With Higher Tenacity", presented at International Man-Made Fibres Congress, September 25-27, 1985, Dornbirn/Austria, by Dr. Ing. Klaus Schafer of Barmag, Barmer Maschinen-Fabrik, West Germany.
- the distribution of PE fibrils in a PP matrix are studied by using the following method:
- the fibers are prepared for transverse sectioning by being attached to strips of adhesive tape and embedded in epoxy resin.
- the epoxy blocks are trimmed and faced with a glass knife on a Sorvall MT-6000 microtome.
- the blocks are soaked in a mixture of 0.2 gm ruthenium chloride dissolved in 10 ml of 5.25 percent by weight aqueous sodium hypochlorite for 3 hours. This stains the ends of the fibers with ruthenium to a depth of about 30 micrometers.
- the blocks are rinsed well and remounted on the microtome.
- Transverse sections of fibers in epoxy are microtomed using a diamond knife, floated onto a water trough, and collected onto copper TEM grids.
- the grids are examined at 100 KV accelerating voltage on a JEOL 100C transmission electron microscope (TEM). Sections taken from the first few micrometers, as well as approximately 20 micrometers from the end are examined in the TEM at magnifications of 250X to 66,000X.
- the polyethylene component in the samples are preferentially stained by the ruthenium. Fiber sections microtomed near the end of the epoxy block may be overstained, whereas sections taken about 20 micrometers away from the end of the fibers are more likely to be properly stained.
- Scratches made by the microtome knife across the face of the section may also contain artifacts of the stain, but a skilled operator can distinguish the artifacts from the stained PE.
- the diameter of PE fibrils near the center of the PP fiber have been found to be, typically, on the order of about 350 to 500 angstrom (35 to 50 nm), whereas the diameter of the more populace fibrils near the periphery edge of the PP fiber have been found to be, typically, on the order of about 100 to 200 angstrom (10 to 20 nm). This is in reference to those which appear under high magnification to be of circular cross-section rather than oval or elongate.
- dimensionally stable it is meant that upon storing a measured fiber for several months and then remeasuring the tenacity, one does not encounter a significant change in the tenacity. A change in tenacity indicates that stress relaxation has occurred and that fiber shrinkage has taken place. In many applications, such as in non-woven fabrics, such shrinkage is considered undesirable.
- polypropylene By using 20 percent to 45 percent polyethylene in the polypropylene one obtains increased tenacity as well as obtaining better "hand” than with polypropylene alone. By using between 25 percent to 35 percent, especially 28 percent to 32 percent, of polyethylene in the polypropylene one also obtains a substantially dimensionally stable fiber.
- a substantially dimensionally stable fiber is one which undergoes very little, if any, change in tenacity during storage.
- a ratio of polypropylene/polyethylene of 70/30 is especially beneficial in obtaining a dimensionally stable fiber.
- 50 percent to 90 percent polyethylene in the blend a reduction in tenacity may be observed, but the "hand" is noticeably softer than polypropylene alone.
- a greater draw ratio gives a higher tenacity than a lower draw ratio.
- a draw ratio of, say 3.0 may yield a tenacity greater than PP alone, but a draw ratio of, say 2.0 may not give a greater tenacity than PP alone.
- a blend of 80 percent by weight of PP granules (M.I., 230°C/2.16 kg, about 25 g/10 min. and density of 0.910 g/cc) with 20 percent by weight of LLDPE (1-octene of from 10 to 15 percent; M.I. of 50 g/10 min.; density of 0.926 g/cm3) is mechanically mixed and fed into an extruder maintained at about 245 to 250°C where the polymers are melted.
- the molten polymers are passed through a 3-dimensional dynamic mixer mounted at the outlet of the extruder.
- the dynamic mixer is designed, through a combination of shearing and mixing, to simultaneously divide the melt stream into superfine layers, and rearrange the layers tangentially, radially, and axially, thereby effecting good mixing of the immiscible PP and LLDPE.
- the so-mixed melt is transported from the dynamic mixer, by a gear pump, through a spinnerent having 20,500 openings.
- the formed filaments are cooled by a side-stream of air, wound on a take-up roller, stretched over a preheated heptet of Godet rollers (90° to 140°C), run through an air-heated annealing oven (150° to 170°C), followed by another heptet of Godet rollers (100° to 140°C), before crimping and cutting of the continuous fibers into 38 mm staple fibers.
- Appropriate spin-finishes are applied to aid the operation.
- the stretch ratio is 3.1X.
- the resulting fibers have about 20 cpi (crimps per inch) (2.5 cm) and the titre is in the range of 2.0-2.5 dpf (denier per filament).
- the mechanical properties of the fibers, measured 3 weeks after production, are as follows (average of 15 randomly sampled fibers): Titre of 2.14 dpf; tenacity (tensile at break) of 4.73 g/denier; elongation (at break) of 52 percent. The "hand" (softness) was judged better than that of similar PP fibers alone.
- This example is like Example 1 above except that 30 weight percent of the LLDPE and 70 weight percent of the PP is used.
- This example is like Example 1 above except that the LLDPE contains 1-butene instead of 1-octene. It also has M.I. of 50 g/10 min., a density of 0.926 g/cm3, and comprises 20 percent by weight of the blend.
- Table IA illustrates the change in properties when measured about 120 days following the initial measurements shown in Examples 1-3 above.
- the 70/30 blend (Example 2) in the tables above exhibited very little change in tenacity; this is an indication that these particular biconstituent fibers show unusual permanency of strength, affected very little by stress relaxation during storage.
- the 70/30 blend is found to form a high strength non-woven structure (about 2650 gm. force to break a 1 inch (2.5 cm) wide strip) when thermally bonded at about 148°C under 700 psi (4.8 MPa) pressure to form a 1 oz./yd2 (34 g/m2) fabric.
- Example 1 Each of the following LLDPE's is blended as in Example 1 with the PP at ratios of PP/PE as indicated below, and the blends are all successfully spun as fibers at two stretch ratios of about 2.0 and about 2.7.
- the following described blends are used, wherein the PP used in each is a highly crystalline PP having a M.F.R. of 25 g/10 minutes as measured by ASTM D-1238 (230°C, 2.16 Kg) and the M.F.R. of the PE's are measured by ASTM D-1238 (190°C, 2.16 Kg).
- All of the PE's are LLDPE's identified as: PE-A - LLDPE (1-octene comonomer), 50 M.F.R., 0.926 density PE-B - LLDPE (1-octene comonomer), 105 M.F.R., 0.930 PE-C - LLDPE (1-octene comonomer), 26 M.F.R., 0.940 density PE-D - LLDPE (1-butene comonomer), 50 M.F.R., 0.926 density
- Blends made of the above described polymers are made into fibers in the manner described hereinbefore, the results of which are shown below in Table II.
- Thermal bondability of biconstituent fibers are demonstrated using a PE/PP blend of 30/70 wherein PE-A is employed. After being stored for 150 days after spinning, thermal bonding is tested by preparing 10 samples of 1 inch (2.5 cm) wide slivers using a rotaring device, such as is commonly used in the industry, aiming at 1 oz. per yd2 (34 g/m2) web weight. Results of the 10 measurements are normalized to 1 oz. per yd2 (34 g/m2). The pressure between the calanders during the thermal bonding is maintained constant at 700 psig (4.8 MPa) in preparing fabrics. Listed below are the bonding temperature and corresponding tensile force, in grams, required to break the fabric.
- the typical break force usually obtained for PP base fabrics is 2500 ⁇ 150 grams and the typical range usually obtained for LLDPE is 1300-1500 grams.
- fibers are prepared using a melt temperature in the range of 180° to 260°C, preferably 200° to 250°C. Spinning rates of 20 to 150 m/min. are preferred. Stretch ratios in the range of 1.5-5X, preferably 2.0-3.0X are preferred. At excessive Godet rolls temperatures, sticking of the fibers to the rolls may take place. A proper choice of a spinfinish would tend to aleviate or minimize this, within a reasonable temperature range.
- the diameter of the PE fibrils which are contained in the fibers are all of sub-micrometer size and most of them have a diameter of less than about 0.05 micrometers.
- the fibers may be of any denier size
- the preferred denier size is less than 30 and the most preferred denier size is in the fine denier range of 0.5 to 15, especially in the range of 1 to 5.
- the fibers of this invention are useful in a variety of applications, such as non-wovens, wovens, yarns, ropes, continuous fibers, and fabrics such as carpets, upholstery, wearing apparel, tents, and industrial applications such as filters and membranes.
- blends over the range of PP/PE ratios of 20/80 to 90/10 exhibit surprisingly good strength during extrusion and are not subject to the breaking one normally obtains from blends of incompatible polymers.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT87308249T ATE83512T1 (de) | 1986-09-19 | 1987-09-17 | Zweikomponentfasern aus polypropylen und polyethylen. |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13853 | 1979-02-22 | ||
US90934586A | 1986-09-19 | 1986-09-19 | |
US909345 | 1986-09-19 | ||
US94656286A | 1986-12-24 | 1986-12-24 | |
US946562 | 1986-12-24 | ||
US1065187A | 1987-02-04 | 1987-02-04 | |
US10651 | 1987-02-04 | ||
US07/013,853 US4839228A (en) | 1987-02-04 | 1987-02-12 | Biconstituent polypropylene/polyethylene fibers |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0260974A2 true EP0260974A2 (fr) | 1988-03-23 |
EP0260974A3 EP0260974A3 (en) | 1989-05-24 |
EP0260974B1 EP0260974B1 (fr) | 1992-12-16 |
Family
ID=27486028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87308249A Expired - Lifetime EP0260974B1 (fr) | 1986-09-19 | 1987-09-17 | Fibres à deux composants contenant du polypropylène et du polyéthylène |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0260974B1 (fr) |
KR (1) | KR880004141A (fr) |
AU (1) | AU606357B2 (fr) |
BR (1) | BR8704808A (fr) |
CA (1) | CA1296498C (fr) |
DE (1) | DE3783109T2 (fr) |
ES (1) | ES2036579T3 (fr) |
FI (1) | FI89188C (fr) |
MX (1) | MX160047A (fr) |
NO (1) | NO170499C (fr) |
PH (1) | PH24516A (fr) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991016374A1 (fr) * | 1990-04-20 | 1991-10-31 | Dsm N.V. | Procede de preparation d'une compositon polymere renforcee contenant des fibrilles d'une polyolefine cristalline |
EP0462188A1 (fr) * | 1989-03-07 | 1991-12-27 | The Dow Chemical Company | Fibres liees a deux composants en polypropylene/polyethylene |
EP0620294A2 (fr) * | 1993-04-16 | 1994-10-19 | Hercules Incorporated | Fibres à composants multiples avec des macrodomaines distribués au hasard, sa préparation et non-tissées réalisées avec celles-ci |
EP0621356A2 (fr) * | 1993-04-19 | 1994-10-26 | Hercules Incorporated | Fibres à composants multiples et non-tissées réalisées avec celles-ci |
DE4321560A1 (de) * | 1993-06-29 | 1995-01-12 | Danubia Petrochem Deutschland | Polyolefingarn und Gewebe |
FR2721949A1 (fr) * | 1994-04-26 | 1996-01-05 | Fiberweb Sodoca | Non-tisses a bas de melanges polyethylene/polypropylene et leur procede de fabrication |
US5514751A (en) * | 1992-10-09 | 1996-05-07 | Moplefan S.P.A. | Polymeric composition for soft polypropylene fibers, fibers obtained from this composition and manufactured articles derived from these fibers |
US5554437A (en) * | 1993-04-06 | 1996-09-10 | Hercules Incorporated | Gamma-sterilizable barrier fabrics |
US5643240A (en) * | 1993-12-30 | 1997-07-01 | Kimberly-Clark Corporation | Apertured film/nonwoven composite for personal care absorbent articles and the like |
WO1999015586A1 (fr) * | 1997-09-22 | 1999-04-01 | Montell Technology Company B.V. | Compositions de polyolefines comportant un polymere de polypropylene et un polyethylene de poids moleculaire tres eleve (uhmwpe) |
EP2218811A1 (fr) | 2003-12-20 | 2010-08-18 | Fiberweb Corovin GmbH | nontissé doux à base de polyethylène |
KR101847907B1 (ko) | 2016-09-29 | 2018-04-11 | 롯데케미칼 주식회사 | 로프 성형용 폴리프로필렌 수지 조성물 및 이를 제조하는 방법과 이를 이용하여 제조된 로프 성형물 |
CN116695280A (zh) * | 2023-06-07 | 2023-09-05 | 清源创新实验室 | 一种三维螺旋结构弹性es纤维及其制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3097506C (fr) | 2018-05-09 | 2023-03-14 | Borealis Ag | Composition de polypropylene-polyethylene de masse moleculaire ultra-elevee |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4296022A (en) * | 1980-06-04 | 1981-10-20 | Chevron Research | Polypropylene blend compositions |
EP0080274A2 (fr) * | 1981-11-23 | 1983-06-01 | Imperial Chemical Industries Plc | Procédé pour le filage au fondu d'un mélange d'un polymère constituant la fibre et un polymère incompatible et fibres filés par ce procédé |
DE3544523A1 (de) * | 1984-12-21 | 1986-06-26 | Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid | Verfahren zur herstellung von bikomponentenfasern, daraus hergestellte fasern und deren verwendung |
EP0192897A2 (fr) * | 1984-12-27 | 1986-09-03 | E.I. Du Pont De Nemours And Company | Mélange de polyéthylène et de polypropylène |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2493855B1 (fr) * | 1980-11-13 | 1986-01-10 | Naphtachimie Sa | Compositions de polypropylene de resistance au choc ameliorees |
EP0277707B1 (fr) * | 1987-01-12 | 1994-04-06 | Unitika Ltd. | Fibre de polyoléfine à deux composants et étoffe non tissée fabriquée à partir de cette fibre |
-
1987
- 1987-09-17 DE DE8787308249T patent/DE3783109T2/de not_active Expired - Fee Related
- 1987-09-17 ES ES198787308249T patent/ES2036579T3/es not_active Expired - Lifetime
- 1987-09-17 EP EP87308249A patent/EP0260974B1/fr not_active Expired - Lifetime
- 1987-09-18 FI FI874086A patent/FI89188C/fi not_active IP Right Cessation
- 1987-09-18 BR BR8704808A patent/BR8704808A/pt unknown
- 1987-09-18 NO NO873921A patent/NO170499C/no unknown
- 1987-09-18 AU AU78649/87A patent/AU606357B2/en not_active Ceased
- 1987-09-18 MX MX8368A patent/MX160047A/es unknown
- 1987-09-18 CA CA000547252A patent/CA1296498C/fr not_active Expired - Fee Related
- 1987-09-19 KR KR870010401A patent/KR880004141A/ko not_active Application Discontinuation
- 1987-09-21 PH PH35834A patent/PH24516A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4296022A (en) * | 1980-06-04 | 1981-10-20 | Chevron Research | Polypropylene blend compositions |
EP0080274A2 (fr) * | 1981-11-23 | 1983-06-01 | Imperial Chemical Industries Plc | Procédé pour le filage au fondu d'un mélange d'un polymère constituant la fibre et un polymère incompatible et fibres filés par ce procédé |
DE3544523A1 (de) * | 1984-12-21 | 1986-06-26 | Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid | Verfahren zur herstellung von bikomponentenfasern, daraus hergestellte fasern und deren verwendung |
EP0192897A2 (fr) * | 1984-12-27 | 1986-09-03 | E.I. Du Pont De Nemours And Company | Mélange de polyéthylène et de polypropylène |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0462188A1 (fr) * | 1989-03-07 | 1991-12-27 | The Dow Chemical Company | Fibres liees a deux composants en polypropylene/polyethylene |
EP0462188A4 (en) * | 1989-03-07 | 1992-06-03 | The Dow Chemical Company | Biconstituent polypropylene/polyethylene bonded fibers |
WO1991016374A1 (fr) * | 1990-04-20 | 1991-10-31 | Dsm N.V. | Procede de preparation d'une compositon polymere renforcee contenant des fibrilles d'une polyolefine cristalline |
US5514751A (en) * | 1992-10-09 | 1996-05-07 | Moplefan S.P.A. | Polymeric composition for soft polypropylene fibers, fibers obtained from this composition and manufactured articles derived from these fibers |
EP0663965B2 (fr) † | 1992-10-09 | 2000-07-12 | Meraklon S.r.l. | Fibres de polypropylene souples |
US5585172A (en) * | 1992-10-09 | 1996-12-17 | Moplefan S.P.A. | Polymeric composition for soft polypropylene fibers, fibers obtained from this composition and manufactured articles derived from these fibers |
US5554437A (en) * | 1993-04-06 | 1996-09-10 | Hercules Incorporated | Gamma-sterilizable barrier fabrics |
EP0620294A2 (fr) * | 1993-04-16 | 1994-10-19 | Hercules Incorporated | Fibres à composants multiples avec des macrodomaines distribués au hasard, sa préparation et non-tissées réalisées avec celles-ci |
EP0620294A3 (fr) * | 1993-04-16 | 1995-04-26 | Hercules Inc | Fibres à composants multiples avec des macrodomaines distribués au hasard, sa préparation et non-tissées réalisées avec celles-ci. |
US5554441A (en) * | 1993-04-16 | 1996-09-10 | Hercules Incorporated | Random macrodomain multiconstituent fibers, their preparation, and nonwoven structures from such fibers |
EP0621356A3 (fr) * | 1993-04-19 | 1995-04-19 | Hercules Inc | Fibres à composants multiples et non-tissées réalisées avec celles-ci. |
EP0621356A2 (fr) * | 1993-04-19 | 1994-10-26 | Hercules Incorporated | Fibres à composants multiples et non-tissées réalisées avec celles-ci |
US5487943A (en) * | 1993-04-19 | 1996-01-30 | Hercules Incorporated | Multiconstituent fibers, and nonwoven structures of such fibers |
DE4321560A1 (de) * | 1993-06-29 | 1995-01-12 | Danubia Petrochem Deutschland | Polyolefingarn und Gewebe |
US5643240A (en) * | 1993-12-30 | 1997-07-01 | Kimberly-Clark Corporation | Apertured film/nonwoven composite for personal care absorbent articles and the like |
FR2721949A1 (fr) * | 1994-04-26 | 1996-01-05 | Fiberweb Sodoca | Non-tisses a bas de melanges polyethylene/polypropylene et leur procede de fabrication |
US6521709B2 (en) | 1997-09-22 | 2003-02-18 | Basell Poliolefine Italia S.P.A. | Polyolefin compositions comprising a propylene polymer and UHMWPE |
WO1999015586A1 (fr) * | 1997-09-22 | 1999-04-01 | Montell Technology Company B.V. | Compositions de polyolefines comportant un polymere de polypropylene et un polyethylene de poids moleculaire tres eleve (uhmwpe) |
EP2218811A1 (fr) | 2003-12-20 | 2010-08-18 | Fiberweb Corovin GmbH | nontissé doux à base de polyethylène |
EP2341174A1 (fr) | 2003-12-20 | 2011-07-06 | Fiberweb Corovin GmbH | Nontissé doux à base de polyethylène |
US8420557B2 (en) | 2003-12-20 | 2013-04-16 | Fiberweb Corovin Gmbh | Polyethylene-based, soft nonwoven fabric |
KR101847907B1 (ko) | 2016-09-29 | 2018-04-11 | 롯데케미칼 주식회사 | 로프 성형용 폴리프로필렌 수지 조성물 및 이를 제조하는 방법과 이를 이용하여 제조된 로프 성형물 |
CN116695280A (zh) * | 2023-06-07 | 2023-09-05 | 清源创新实验室 | 一种三维螺旋结构弹性es纤维及其制备方法 |
CN116695280B (zh) * | 2023-06-07 | 2024-04-12 | 清源创新实验室 | 一种三维螺旋结构弹性es纤维及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
BR8704808A (pt) | 1988-05-17 |
MX160047A (es) | 1989-11-10 |
EP0260974A3 (en) | 1989-05-24 |
ES2036579T3 (es) | 1993-06-01 |
NO170499B (no) | 1992-07-13 |
PH24516A (en) | 1990-07-18 |
NO170499C (no) | 1992-10-21 |
DE3783109D1 (de) | 1993-01-28 |
NO873921L (no) | 1988-03-21 |
FI874086A (fi) | 1988-03-20 |
FI89188B (fi) | 1993-05-14 |
AU7864987A (en) | 1988-03-24 |
AU606357B2 (en) | 1991-02-07 |
FI89188C (fi) | 1993-08-25 |
KR880004141A (ko) | 1988-06-01 |
EP0260974B1 (fr) | 1992-12-16 |
FI874086A0 (fi) | 1987-09-18 |
NO873921D0 (no) | 1987-09-18 |
DE3783109T2 (de) | 1993-06-09 |
CA1296498C (fr) | 1992-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4839228A (en) | Biconstituent polypropylene/polyethylene fibers | |
US5133917A (en) | Biconstituent polypropylene/polyethylene fibers | |
CA2001959C (fr) | Fibres de polyolefine avec greffe d'anhydride maleique | |
US4578414A (en) | Wettable olefin polymer fibers | |
US6140442A (en) | Elastic fibers, fabrics and articles fabricated therefrom | |
EP0277707B1 (fr) | Fibre de polyoléfine à deux composants et étoffe non tissée fabriquée à partir de cette fibre | |
AU641147B2 (en) | Biconstituent polypropylene/polyethylene bonded fibers | |
US5126199A (en) | Maleic anhydride-grafted polyolefin fibers | |
EP0260974B1 (fr) | Fibres à deux composants contenant du polypropylène et du polyéthylène | |
US5185199A (en) | Maleic anhydride-grafted polyolefin fibers | |
JP2578665B2 (ja) | 繊維製品の放射線処理方法 | |
EP0696329B1 (fr) | Fibres et tissus elastiques et articles produits a partir de ceux-ci | |
HU226849B1 (en) | Polypropylene fibres | |
WO1993006168A1 (fr) | Melanges compatibles de polypropylene/poly(1-butene) et fibres produites a partir de ceux-ci | |
JPH0533215A (ja) | 低比重ポリオレフイン繊維及びこれを用いた不織布 | |
JP2768461B2 (ja) | ポリエチレンとポリプロピレンのブレンド構造体からなる繊維及びその繊維を用いた不織布 | |
JP3849851B2 (ja) | 高強度ポリエチレン繊維不織布および電池セパレータ | |
JPS63159515A (ja) | 二成分ポリプロピレン/ポリエチレン繊維 | |
JP2003113567A (ja) | 不織布およびフィルター |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE DE ES FR GB IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE DE ES FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19891113 |
|
17Q | First examination report despatched |
Effective date: 19910618 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 83512 Country of ref document: AT Date of ref document: 19930115 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3783109 Country of ref document: DE Date of ref document: 19930128 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2036579 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 87308249.9 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020725 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030612 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20030616 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030619 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030625 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030722 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030820 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20030901 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040918 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 |
|
BERE | Be: lapsed |
Owner name: THE *DOW CHEMICAL CY Effective date: 20040930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050401 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050401 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20050401 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050917 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20040918 |
|
BERE | Be: lapsed |
Owner name: THE *DOW CHEMICAL CY Effective date: 20040930 |