EP0260465B1 - Oxyddispersionsgehärtete Superlegierung mit verbesserter Korrosionsbeständigkeit auf der Basis von Nickel - Google Patents

Oxyddispersionsgehärtete Superlegierung mit verbesserter Korrosionsbeständigkeit auf der Basis von Nickel Download PDF

Info

Publication number
EP0260465B1
EP0260465B1 EP87112012A EP87112012A EP0260465B1 EP 0260465 B1 EP0260465 B1 EP 0260465B1 EP 87112012 A EP87112012 A EP 87112012A EP 87112012 A EP87112012 A EP 87112012A EP 0260465 B1 EP0260465 B1 EP 0260465B1
Authority
EP
European Patent Office
Prior art keywords
weight
oxide dispersion
corrosion resistance
improved corrosion
following composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87112012A
Other languages
English (en)
French (fr)
Other versions
EP0260465A1 (de
Inventor
Peter Jongenburger
Robert Dr. Singer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0260465A1 publication Critical patent/EP0260465A1/de
Application granted granted Critical
Publication of EP0260465B1 publication Critical patent/EP0260465B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof

Definitions

  • Oxide dispersion-hardened superalloys based on nickel which, thanks to their excellent mechanical properties at high temperatures, are used thermally and mechanically under high stress during construction of thermal machines. Preferred use as blade materials for gas turbines.
  • the invention relates to the further development of oxide dispersion-hardened nickel-based superalloys with overall optimal properties with regard to high-temperature strength, long-term stability and resistance to oxidation and corrosion in an aggressive atmosphere.
  • Ni rest (See HF Merrick, LR Curwick and YG Kim, Nasa Report CR-135150, Contract NAS-3-19694, 1977, Cleveland, Ohio, USA and RC Benn, LR Curwick and GAJ hack, Powder Met. 1981, No. 4 , p. 191-195).
  • This alloy which has increased Cr and Al contents compared to MA 6000, has improved corrosion resistance, but tends to become unstable due to the formation of brittle phases in certain temperature ranges, which deteriorate the mechanical properties.
  • the invention has for its object an oxide dispersion hardened superalloy based on nickel Specify which, while maintaining the highest possible heat resistance, in particular creep limit, while avoiding the formation of brittle phases, has an increased resistance to sulfidation.
  • the alloy should be stable over the long term and should not change even over a long period of operation.
  • a melt of the above composition was prepared, but without the addition of Y2O3 and converted into a powder by gas atomization using argon under high pressure.
  • the powder was comparatively coarse. Particles with a diameter of over 300 ⁇ m were retained using a sieve. The fractions below were used again.
  • the alloy powder was mixed with fine Y2O3 powder with a maximum particle diameter of 1 ⁇ m and a maximum crystallite diameter of 100 nm. Then the powder mixture was mechanically alloyed in the attritor for 36 hours under an argon atmosphere.
  • the Attritor 5-1 from Netzsch, Federal Republic of Germany had a volume of 3 liters and a filling of 12 kg steel balls. The capacity for the powder was 1 kg.
  • the mechanical properties were examined. In particular, the creep rupture strength (creep limit) for a period of 5. 104 h measured at different temperatures. The values were: Temperature (° C) Creep rupture strength (MPa) 800 215 900 158 1000 138
  • the resistance to oxidation and corrosion was better than that of the known alloy with the trade name MA 6000.
  • Samples with a smooth surface were subjected to a temperature cycle in air and the specific weight change per unit area was determined after 1000 cycles.
  • One cycle lasted approximately one hour: the test specimen was heated to a temperature of 1000 ° C. and left at this temperature for 1 hour. Then, it was cooled and reheated at a rate of 500 ° C / min, and so on.
  • the change in weight is a measure of the resistance to oxidation.
  • the change in weight was + 0.5 mg / cm2 surface
  • the creep rupture strength measured on samples for a period of 5.104 h as a function of temperature was: Temperature (° C) Creep rupture strength (MPa) 800 221 900 165 1000 140
  • the resistance to oxidation was determined by weight change as defined in Example I and was + 0.5 mg / cm2 surface.
  • the creep rupture strength measured on samples for a period of 5 ⁇ 104 h as a function of temperature was: Temperature (° C) Creep rupture strength (MPa) 800 205 900 145 1000 115
  • the resistance to oxidation was determined by weight change as defined in Example I and was + 0.4 mg / cm2 surface.
  • the invention is not restricted to the exemplary embodiments.
  • the hafnium improves cross-strength in particular.
  • Cobalt increases strength and improves workability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemically Coating (AREA)

Description

    Technisches Gebiet:
  • Oxyddispersionsgehärtete Superlegierungen auf der Basis von Nickel, welche dank ihrer hervorragenden mechanischen Eigenschaften bei hohen Temperaturen beim Bau thermisch und mechanisch hochbeanspruchtër thermischer Maschinen Verwendung finden. Bevorzugte Verwendung als Schaufelwerkstoffe für Gasturbinen.
  • Die Erfindung bezieht sich auf die Weiterentwicklung von oxyddispersionsgehärteten Nickelbasis-Superlegierungen mit insgesamt optimalen Eigenschaften bezüglich Hochtemperaturfestigkeit, Langzeitstabilität und Widerstand gegen Oxydation und Korrosion in agressiver Atmosphäre.
  • Insbesondere betrifft sie eine oxyddispersionsgehärtete Superlegierung mit verbesserter Korrosionsbeständigkeit auf der Basis von Nickel.
  • Stand der Technik:
  • Zum Stand der Technik wird folgende Literatur zitiert:
    • G.H. Gessinger, Powder Metallurgy of Superalloys, Butterworths, London, 1984
    • R.F. Singer and E. Arzt, To be published in: Conf. Proc. "High Temperature Materials for Gas Turbines", Liège, Belgium, Oktober 1986
    • J.S. Benjamin, Metall. Trans., 1970, 1, 2943 - 2951.
  • Im Verlauf der vergangenen Jahre ist eine neue Klasse von hochwarmfesten Superlegierungen, insbesondere für Bauteile thermischer Maschinen (Gasturbinenschaufeln) entwickelt worden. Es handelt sich um Nickelbasislegierungen, welche fein verteilte Dispersoide in Form von Oxyden enthalten. Meistens handelt es sich bei letzteren um Y₂0₃-Partikel. Eine der bekanntesten derartigen oxyddispersionsgehärteten Legierungen ist die von INCO unter dem Handelsnamen MA 6000 erhältliche Nickelbasislegierung folgender Zusammensetzung:
    Cr = 15,0 Gew.-%
    Al = 4,5 Gew.-%
    Ti = 2,5 Gew.-%
    Mo = 2,0 Gew.-%
    N = 4,0 Gew.-%
    Ta = 2,0 Gew.-%
    Zr = 0,15 Gew.-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew.-%
    Ni = Rest
    (Vergl. H.F. Merrick, L.R. Curwick and Y.G. Kim, Nasa Report CR-135150, Contract NAS-3-19694, 1977, Cleveland, Ohio, USA und R.C. Benn, L.R. Curwick and G.A.J. Hack, Powder Met. 1981, No. 4, p. 191-195).
  • Obwohl diese Legierung bei hohen Temperaturen vorzügliche mechanische Eigenschaften hat, genügt sie im Hinblick auf Oxydations- und Sulfidationsbeständigkeit in zahlreichen Verwendungsfällen den Anforderungen des Betriebes nicht.
  • Um die Antikorrosionseigenschaften zu verbessern, hat INCO eine neue Legierung entwickelt. Sie hat folgende Zusammensetzung:
    Cr = 20,0 Gew.-%
    Al = 6,0 Gew.-%
    Mo = 2,0 Gew.-%
    W = 3,5 Gew.-%
    Zr = 0,19 Gew.-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew.-%
    Ni = Rest
  • Diese, gegenüber MA 6000 erhöhte Cr- und Al-Gehalte aufweisende Legierung hat zwar verbesserte Korrosionsbeständigkeit, neigt aber durch Bildung spröder Phasen in bestimmten Temperaturbereichen zu Instabilitäten, welche die mechanischen Eigenschaften verschlechtern.
  • Darstellung der Erfindung:
  • Der Erfindung liegt die Aufgabe zugrunde, eine oxyddispersionsgehärtete Superlegierung auf der Basis von Nickel anzugeben, die bei Wahrung höchstmöglicher Warmfestigkeit, insbesondere Kriechgrenze, unter Vermeidung der Bildung von spröden Phasen eine erhöhte Beständigkeit gegen Sulfidation aufweist. Die Legierung soll langzeitstabil sein und sich auch im Verlaufe längerer Betriebsdauer nicht verändern.
  • Diese Aufgabe wird durch die in den Ansprüchen gekennzeichnete Erfindung gelöst.
  • Weg zur Ausführung der Erfindung:
  • Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele erläutert.
  • Ausführungsbeispiel I:
  • Es wurde eine Legierung der nachfolgenden Zusammensetzung hergestellt:
    Cr = 17,0 Gew.-%
    Al = 6,0 Gew.-%
    Mo = 2,0 Gew.-%
    W = 3,5 Gew.-%
    Ta = 2,0 Gew.-%
    Zr = 0,15 Gew.-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew.-%
    Ni = Rest
  • Zunächst wurde eine Schmelze obiger Zusammensetzung, jedoch ohne Y₂O₃-Zusatz hergestellt und durch Gaszerstäubung mittels Argon unter hohem Druck in ein Pulver übergeführt. Das Pulver war vergleichsweise grobkörnig. Partikel von über 300 µm Durchmesser wurden mittels Sieb zurückgehalten. Die darunter liegenden Fraktionen wurden weiter verwendet. Das Legierungspulver wurde mit feinem Y₂O₃-Pulver mit maximalem Partikeldurchmesser von 1 µm bei maximalem Kristallitdurchmesser von 100 nm gemischt. Dann wurde die Pulvermischung während 36 h unter Argonatmosphäre im Attritor mechanisch legiert. Der Attritor 5-1, Fa. Netzsch, Bundesrepublik Deutschland hatte 3 Liter Inhalt und eine Füllung von 12 kg Stahlkugeln. Die Kapazität für das Pulver betrug 1 kg.
  • Das mechanisch legierte Pulver wurde nun in eine Dose aus weichem Stahl von 73 mm Aussendurchmesser und 75 mm Höhe abgefüllt. Das Ganze wurde unter Vakuum auf 300°C erhitzt und die Dose luftdicht verschweisst. Nun wurde das eingekapselte Pulver in einer Strangpresse bei einer Temperatur von 975°C zu einer Stange verpresst. Diese hatte einen Durchmesser von ca. 19,5 mm (Reduktionsverhältnis der Strangpresse = 14:1). Die Stahloberflächenschicht wurde durch Abdrehen entfernt, so dass die Stange schliesslich einen Durchmesser von 18 mm aufwies. Die Stange wurde nun einem Zonenglühprozess unterworfen.
  • Mit einem Temperaturgradienten, welcher den Wert von 8°C/mm überstieg, wurden längsgerichtete Körner mit einem Längen- zu Breitenverhältnis von mehr als 10 erreicht.
  • Die mechanischen Eigenschaften wurden untersucht. Insbesondere wurde die Zeitstandfestigkeit (Kriechgrenze) für eine Zeitdauer von 5 . 10⁴ h bei verschiedenen Temperaturen gemessen. Die Werte betrugen:
    Temperatur (°C) Zeitstandfestigkeit (MPa)
    800 215
    900 158
    1000 138
  • Der Oxydations- und Korrosionswiderstand war besser als derjenige der bekannten Legierung mit dem Handelsnamen MA 6000.
  • Es wurden Proben mit glatter Oberfläche einem Temperaturzyklus in Luft unterworfen und die spezifische Gewichtsveränderung per Flächeneinheit nach 1000 Zyklen bestimmt. Ein Zyklus dauerte ungefähr eine Stunde: Der Probekörper wurde auf eine Temperatur von 1000 °C aufgeheizt und während 1h bei dieser Temperatur belassen. Dann wurde er mit einer Geschwindigkeit von 500 °C/min abgekühlt und wieder erhitzt, und so fort. Die Gewichtsveränderung ist ein Mass für die Oxydationsbeständigkeit.
  • Im vorliegenden Fall betrug die Gewichtsveränderung
       + 0,5 mg/cm² Oberfläche
    Im Vergleich die Legierung MA 6000
       - 10,5 mg/cm²
  • Ausführungsbeispiel II:
  • Es wurde eine Legierung der nachfolgenden Zusammensetzung hergestellt.
    Cr = 17,0 Gew.-%
    Al = 6,0 Gew.-%
    Mo = 2,0 Gew.-%
    W = 3,5 Gew.-%
    Ta = 2,0 Gew.-%
    Hf = 1,0 Gew.-%
    Zr = 0,15 Gew.-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew.-%
    Ni = Rest
  • Die Pulverherstellung und die Weiterverarbeitung erfolgte nach den unter Beispiel I angegebenen Verfahrensschritten.
  • Die an Proben gemessene Zeitstandfestigkeit (Kriechgrenze) für eine Zeitdauer von 5.10⁴ h betrug in Funktion der Temperatur:
    Temperatur (°C) Zeitstandfestigkeit (MPa)
    800 221
    900 165
    1000 140
  • Die Oxydationsbeständigkeit wurde durch Gewichtsveränderung gemäss Definition in Beispiel I bestimmt und betrug
       + 0,5 mg/cm² Oberfläche.
  • Ausführungsbeispiel III:
  • Es wurde eine Legierung der nachfolgenden Zusammensetzung hergestellt:
    Cr = 17,0 Gew.-%
    Al = 6,0 Gew.-%
    Co = 10,0 Gew.-%
    Ta = 5,0 Gew.-%
    Zr = 0,15 Gew.-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew.-%
    Ni = Rest
  • Die Pulverherstellung und die Weiterverarbeitung erfolgte nach den unter Beispiel I angegebenen Verfahrensschritten.
  • Die an Proben gemessene Zeitstandfestigkeit (Kriechgrenze) für eine Zeitdauer von 5`10⁴ h betrug in Funktion der Temperatur:
    Temperatur (°C) Zeitstandfestigkeit (MPa)
    800 205
    900 145
    1000 115
  • Die Oxydationsbeständigkeit wurde durch Gewichtsveränderung gemäss Definition in Beispiel I bestimmt und betrug
       + 0,4 mg/cm² Oberfläche.
  • Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Vorzugsweise können die Legierungen im Rahmen der nachfolgenden Zusammensetzungsgrenzen liegen:
    Cr = 17 - 18 Gew.-%
    Al = 6 - 7 Gew.-%
    Mo = 2 - 2,5 Gew.-%
    W = 3 - 3,5 Gew.-%
    Ta = 2 - 2,5 Gew.-%
    Zr < 0,2 Gew.-%
    B < 0,02 Gew.-%
    C < 0,1 Gew.-%
    Y₂O₃ = 1 - 1,5 Gew.-%
    Ni = Rest
  • Eine weitere vorteilhafte Gruppe mit Hafniumzusatz hat die nachfolgende Zusammensetzung:
    Cr = 17 - 18 Gew.-%
    Al = 6 - 7 Gew.-%
    Mo = 2 - 2,5 Gew.-%
    W = 3 - 3,5 Gew.-%
    Ta = 2 - 2,5 Gew.-%
    Hf = 0,5 - 1,5 Gew.-%
    Zr < 0,2 Gew.-%
    B < 0,02 Gew.-%
    C < 0,1 Gew.-%
    Y₂O₃ = 1 - 1,5 Gew.-%
    Ni = Rest
  • Das Hafnium verbessert insbesondere die Querfestigkeit.
  • Die Legierungen können gemäss nachfolgender Darstellung auch Kobalt als Legierungselement enthalten:
    Cr = 16 - 18 Gew.-%
    Al = 6 - 7 Gew.-%
    Co = 8 - 10 Gew.-%
    Ta = 5 - 7 Gew.-%
    Zr < 0,2 Gew.-%
    B < 0,02 Gew.-%
    C < 0,1 Gew.-%
    Y₂O₃ = 1 - 1,5 Gew.-%
    Ni = Rest
  • Kobalt steigert die Festigkeit und verbessert die Verarbeitbarkeit`
  • Insbesondere erweist sich auch die nachfolgende Zusammensetzung als vorteilhaft:
    Cr = 17,0 Gew`-%
    Al = 6,0 Gew.-%
    Co = 8,0 Gew`-%
    Ta = 6,5 Gew.-%
    Zr = 0,15 Gew.-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew.-%
    Ni = Rest

Claims (7)

  1. Oxyddispersionsgehärtete Superlegierung mit verbesserter Korrosionsbeständigkeit auf der Basis von Nickel, dadurch gekennzeichnet, dass sie die nachfolgende Zusammensetzung aufweist:

    Cr = 17 - 18 Gew.-%
    Al = 6 - 7 Gew.-%
    Mo = 2 - 2,5 Gew.-%
    W = 3 - 3,5 Gew.-%
    Ta = 2 - 2,5 Gew.-%
    Zr < 0,2 Gew.-%
    B < 0,02 Gew`-%
    C < 0,1 Gew`-%
    Y₂O₃ = 1 - 1,5 Gew`-%
    Ni = Rest
  2. Oxyddispersionsgehärtete Superlegierung nach Patentanspruch 1, gekennzeichnet durch die nachfolgende Zusammensetzung:

    Cr = 17,0 Gew`-%
    Al = 6,0 Gew.-%
    Mo = 2,0 Gew.-%
    W = 3,5 Gew`-%
    Ta = 2,0 Gew`-%
    Zr = 0,15 Gew.-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew.-%
    Ni = Rest
  3. Oxyddispersionsgehärtete Superlegierung mit verbesserter Korrosionsbeständigkeit auf der Basis von Nickel, dadurch gekennzeichnet, dass sie die nachfolgende Zusammensetzung aufweist:

    Cr = 17 - 18 Gew.-%
    Al = 6 - 7 Gew.-%
    Mo = 2 - 2,5 Gew.-%
    W = 3 - 3,5 Gew`-%
    Ta = 2 - 2,5 Gew.-%
    Hf = 0,5 - 1,5 Gew.-%
    Zr < 0,2 Gew.-%
    B < 0,02 Gew.-%
    C < 0,1 Gew.-%
    Y₂O₃ = 1 - 1,5 Gew`-%
    Ni = Rest
  4. Oxyddispersionsgehärtete Superlegierung nach Patentanspruch 3, gekennzeichnet durch die nachfolgende Zusammensetzung:

    Cr = 17,0 Gew.-%
    Al = 6,0 Gew.-%
    Mo = 2,0 Gew.-%
    W = 3,5 Gew`-%
    Ta = 2,0 Gew.-%
    Hf = 1,0 Gew`-%
    Zr = 0,15 Gew`-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew.-%
    Ni = Rest
  5. Oxyddispersionsgehärtete Superlegierung mit verbesserter Korrosionsbeständigkeit auf der Basis von Nickel, dadurch gekennzeichnet, dass sie die nachfolgende Zusammensetzung aufweist:

    Cr = 16 - 18 Gew.-%
    Al = 6 - 7 Gew.-%
    Co = 8 - 10 Gew.-%
    Ta = 5 - 7 Gew.-%
    Zr < 0,2 Gew.-%
    B < 0,02 Gew.-%
    C < 0,1 Gew`-%
    Y₂O₃ = 1 - 1,5 Gew.-%
    Ni = Rest
  6. Oxyddispersionsgehärtete Superlegierung nach Patentanspruch 5, gekennzeichnet durch die nachfolgende Zusammensetzung:

    Cr = 17,0 Gew.-%
    Al = 6,0 Gew.-%
    Co = 10,0 Gew.-%
    Ta = 5,0 Gew.-%
    Zr = 0,15 Gew.-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew.-%
    Ni = Rest
  7. Oxyddispersionsgehärtete Superlegierung nach Patentanspruch 5, gekennzeichnet durch die nachfolgende Zusammensetzung:

    Cr = 17,0 Gew.-%
    Al = 6,0 Gew.-%
    Co = 8,0 Gew.-%
    Ta = 6,5 Gew.-%
    Zr = 0,15 Gew`-%
    B = 0,01 Gew.-%
    C = 0,05 Gew.-%
    Y₂O₃ = 1,1 Gew`-%
    Ni = Rest
EP87112012A 1986-09-08 1987-08-19 Oxyddispersionsgehärtete Superlegierung mit verbesserter Korrosionsbeständigkeit auf der Basis von Nickel Expired - Lifetime EP0260465B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3593/86 1986-09-08
CH359386 1986-09-08

Publications (2)

Publication Number Publication Date
EP0260465A1 EP0260465A1 (de) 1988-03-23
EP0260465B1 true EP0260465B1 (de) 1992-01-02

Family

ID=4259333

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112012A Expired - Lifetime EP0260465B1 (de) 1986-09-08 1987-08-19 Oxyddispersionsgehärtete Superlegierung mit verbesserter Korrosionsbeständigkeit auf der Basis von Nickel

Country Status (5)

Country Link
US (1) US4798625A (de)
EP (1) EP0260465B1 (de)
JP (1) JP2630323B2 (de)
DE (1) DE3775671D1 (de)
NO (1) NO873738L (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59007734D1 (de) * 1989-05-16 1995-01-05 Asea Brown Boveri Verfahren zur Erzeugung grober längsgerichteter Stengelkristalle in einer oxyddispersionsgehärteten Nickelbasis-Superlegierung.
US5427601A (en) * 1990-11-29 1995-06-27 Ngk Insulators, Ltd. Sintered metal bodies and manufacturing method therefor
DE4110543A1 (de) * 1991-03-30 1992-10-01 Pm Hochtemperatur Metall Gmbh Oxiddispersionsgehaertete ausscheidungshaertbare nickel-chromlegierung
SK284033B6 (sk) * 1991-08-02 2004-08-03 Isover Saint-Gobain Minerálna vlna z roztaveného minerálneho materiálu, spôsob jej výroby a zariadenie na vykonávanie tohto spôsobu
US6412465B1 (en) 2000-07-27 2002-07-02 Federal-Mogul World Wide, Inc. Ignition device having a firing tip formed from a yttrium-stabilized platinum-tungsten alloy
JP2013181213A (ja) * 2012-03-01 2013-09-12 Hokkaido Univ 酸化物分散強化型ニッケル基超合金

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738817A (en) * 1968-03-01 1973-06-12 Int Nickel Co Wrought dispersion strengthened metals by powder metallurgy
US3728088A (en) * 1968-03-01 1973-04-17 Int Nickel Co Superalloys by powder metallurgy
US3776704A (en) * 1968-03-01 1973-12-04 Int Nickel Co Dispersion-strengthened superalloys
US3754902A (en) * 1968-06-05 1973-08-28 United Aircraft Corp Nickel base superalloy resistant to oxidation erosion
US3809545A (en) * 1969-08-25 1974-05-07 Int Nickel Co Superalloys by powder metallurgy
US3660049A (en) * 1969-08-27 1972-05-02 Int Nickel Co Dispersion strengthened electrical heating alloys by powder metallurgy
NL171309C (nl) * 1970-03-02 1983-03-01 Hitachi Ltd Werkwijze voor de vervaardiging van een halfgeleiderlichaam, waarbij een laag van siliciumdioxyde wordt gevormd op een oppervlak van een monokristallijn lichaam van silicium.
US3749612A (en) * 1971-04-06 1973-07-31 Int Nickel Co Hot working of dispersion-strengthened heat resistant alloys and the product thereof
US3743548A (en) * 1971-05-06 1973-07-03 Cabot Corp Dispersion hardened metals having improved oxidation characteristics at elevated temperature
US3926568A (en) * 1972-10-30 1975-12-16 Int Nickel Co High strength corrosion resistant nickel-base alloy
US4080204A (en) * 1976-03-29 1978-03-21 Brunswick Corporation Fenicraly alloy and abradable seals made therefrom
US4386976A (en) * 1980-06-26 1983-06-07 Inco Research & Development Center, Inc. Dispersion-strengthened nickel-base alloy
JPS58193335A (ja) * 1982-05-06 1983-11-11 Sumitomo Electric Ind Ltd 分散強化型ニツケル基耐熱焼結合金およびその製造法
US4599214A (en) * 1983-08-17 1986-07-08 Exxon Research And Engineering Co. Dispersion strengthened extruded metal products substantially free of texture
US4631082A (en) * 1985-02-20 1986-12-23 Pfizer Hospital Products Group Inc. Cobalt-chromium superalloy

Also Published As

Publication number Publication date
JPS6369936A (ja) 1988-03-30
US4798625A (en) 1989-01-17
NO873738L (no) 1988-03-09
EP0260465A1 (de) 1988-03-23
JP2630323B2 (ja) 1997-07-16
NO873738D0 (no) 1987-09-07
DE3775671D1 (de) 1992-02-13

Similar Documents

Publication Publication Date Title
EP1978120B1 (de) Aluminium-Silizium-Gussleglerung und Verfahren zu Ihrer Herstellung
DE102014001328B4 (de) Aushärtende Nickel-Chrom-Eisen-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
EP0513407B1 (de) Verfahren zur Herstellung einer Turbinenschaufel
DE102014001330B4 (de) Aushärtende Nickel-Chrom-Kobalt-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
DE69734515T2 (de) Gesinterte hartlegierung
JPS63157831A (ja) 耐熱性アルミニウム合金
DE2445462B2 (de) Verwendung einer Nickellegierung
DE102020116868A1 (de) Pulver aus einer Nickel-Kobaltlegierung, sowie Verfahren zur Herstellung des Pulvers
EP1188845A1 (de) Nickelbasislegierung für die Hochtemperaturtechnik
EP0260465B1 (de) Oxyddispersionsgehärtete Superlegierung mit verbesserter Korrosionsbeständigkeit auf der Basis von Nickel
EP0570072B1 (de) Verfahren zur Herstellung einer Legierung auf Chrombasis
DE102020116865A1 (de) Nickel-Basislegierung für Pulver und Verfahren zur Herstellung eines Pulvers
AT394058B (de) Hochmolybdaenhaltige legierung auf nickelbasis
EP0396185B1 (de) Verfahren zur Herstellung von warmkriechfesten Halbfabrikaten oder Formteilen aus hochschmelzendem Metall
EP0677355B1 (de) Hartlot
AT5199U1 (de) Formteil aus einem intermetallischen gamma-ti-al-werkstoff
US5169461A (en) High temperature aluminum-base alloy
EP0709478B1 (de) Legierung auf der Basis eines zumindest Chrom und Molybdän enthaltenden Silicids
EP0172852A1 (de) Hitzebeständige molybdän-legierung.
EP0425972B1 (de) Oxydations- und korrosionsbeständige Hochtemperaturlegierung auf der Basis einer intermetallischen Verbindung
JPH02194142A (ja) 焼結用Al基合金粉末
DE1132735B (de) Verfahren zur Herstellung eines warmfesten Werkstoffes
DE3808163C2 (de) Verfahren zur Herstellung aushärtbarer beta-Titan-Legierungen
JPH01275724A (ja) 分散強化耐熱合金の製造方法
DE2101185A1 (de) Werkstoff für Strangpreßmatrizen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19880715

17Q First examination report despatched

Effective date: 19900703

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 3775671

Country of ref document: DE

Date of ref document: 19920213

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920831

Ref country code: CH

Effective date: 19920831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 87112012.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970716

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970717

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970826

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980820

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

EUG Se: european patent has lapsed

Ref document number: 87112012.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST