EP0254813B1 - Procédé de détection pour un détecteur de mouvement passif à infrarouge et dispositif pour la mise-en-oeuvre - Google Patents

Procédé de détection pour un détecteur de mouvement passif à infrarouge et dispositif pour la mise-en-oeuvre Download PDF

Info

Publication number
EP0254813B1
EP0254813B1 EP87105734A EP87105734A EP0254813B1 EP 0254813 B1 EP0254813 B1 EP 0254813B1 EP 87105734 A EP87105734 A EP 87105734A EP 87105734 A EP87105734 A EP 87105734A EP 0254813 B1 EP0254813 B1 EP 0254813B1
Authority
EP
European Patent Office
Prior art keywords
output
radiation
signal
time
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87105734A
Other languages
German (de)
English (en)
Other versions
EP0254813A2 (fr
EP0254813A3 (en
Inventor
Joachim Willie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Fuss GmbH and Co
Original Assignee
Fritz Fuss GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Fuss GmbH and Co filed Critical Fritz Fuss GmbH and Co
Priority to AT87105734T priority Critical patent/ATE65854T1/de
Publication of EP0254813A2 publication Critical patent/EP0254813A2/fr
Publication of EP0254813A3 publication Critical patent/EP0254813A3/de
Application granted granted Critical
Publication of EP0254813B1 publication Critical patent/EP0254813B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/191Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using pyroelectric sensor means

Definitions

  • the invention relates to a method for detecting an object which has entered the measuring field of a passive infrared motion detector (PIR motion detector), in which the signal level of a radiation detector is determined and the frequency of the deviations of an output signal from a predetermined reference level is compared with a predetermined reference signal frequency and if there is agreement a detector is activated. Furthermore, the invention relates to an arrangement for performing the method.
  • PIR motion detector passive infrared motion detector
  • PIR motion detectors are used in hazard detection technology, in particular in intrusion protection technology, and in control technology to detect moving objects indoors.
  • the infrared radiation (IR radiation) emitted by a human body or by another heat source is bundled by an optical device and fed to a radiation detector, the output signal of which is processed in an electronic evaluation unit.
  • IR radiation infrared radiation
  • a large number of motion detectors are each connected to an alarm center via an alarm line, at which an alarm is triggered in the event of motion detection.
  • the known PIR motion detectors are designed to detect and evaluate dynamic changes in radiation flux, that is to say changes over time in the temperature difference between the ambient temperature and the respective surface temperature of the object. So that a message signal is generated, it is necessary that the object both penetrates into the measuring field and exits the measuring field again. If the measuring field is divided into several adjacent measuring zones radiating from the motion detector, the sensor output signals generated by the entrances and exits to the individual measuring zones are compared in terms of their amplitudes and their number or polarity with predetermined reference values as well as predetermined polarity sequences and time sequences and from that Comparison result if necessary concluded about an object movement.
  • the invention is based on the object of specifying a method of the type mentioned at the outset, with which the dwell or movement of an object within the measuring field can also be recognized and evaluated. Furthermore, the invention is based on the object of also realizing this according to the arrangement.
  • the object is achieved in that the output voltage level is delayed in accordance with the expected signal frequencies, that when the radiation received by the measuring field changes below the lowest signal frequency, measurement field radiation tracking is carried out, that the tracked output voltage level is compared with a time-delayed reference output voltage level dependent on the signal amplitude and that an actuator is set when the output voltage level exceeds the reference output voltage level after a predetermined time.
  • the object is achieved in that the output of the radiation detector is fed to a differential amplifier both directly and via a time delay element, with a time delay corresponding to the expected signal frequency of an object detection, in that the output of the differential amplifier is supplied both directly and via a signal amplitude-dependent time reference tracking is connected to a comparator, the output of which is connected to a detection line via a further time delay element.
  • the invention makes use of the knowledge that the inhomogeneity of a measuring field, which is based on the physical conditions such as absorption, reflection, specific thermal conductivity and different influences of extraneous radiation, is used for evaluation, taking into account the change in the received direct light component of the surrounding objects.
  • the detection takes place on the basis of the change in the absolute radiation power value associated with these thermal inhomogeneities.
  • An infrared motion detector is known from EP-A-0 107 042, a comparison being made with stored reference signals.
  • a preferred development of the arrangement consists in that the output of the differential amplifier is fed to another differential amplifier both directly and via a time delay element.
  • the object detection sensitivity can be increased by this measure.
  • dual radiation detectors may be present in the antipolarity circuit, for two comparators to be connected in parallel after the reference tracking for determining an antipolarity signal amplitude, and for a memory device controlled by the output signals of the two comparators to temporarily store the time-delayed comparator output signals.
  • a further preferred embodiment of the invention consists in that further time delay elements for interference signal suppression are present in the parallel feed to the differential amplifiers.
  • a further preferred development of the invention consists in that the output of the radiation detector is additionally fed to a series connection of differentiators and selective amplifiers, the output signal of which is connected to an alarm line.
  • object detection can take place on the basis of predetermined amplitude sequences and signal frequencies.
  • Fig. 1 shows purely schematically a measuring range monitored by a PIR motion detector with a sensor S, which here consists, for example, of two approximately conical measuring zones 20, 20 ⁇ .
  • the infrared radiation of the two measuring zones 20, 20 ⁇ which can extend from the visible to the middle infrared radiation range, is focused on the sensor S via an optical device, not shown.
  • Each change in the radiation incidence causes an output voltage change at the sensor S, which is evaluated in an arrangement described in the following figures.
  • the sensor S consists of pyro-electric dual sensors 1, 1 ⁇ in antipolarity circuit, each consisting of a crystal with an effective length X and an effective area A or A ⁇ and are arranged at a distance B.
  • the optical device can consist, for example, of a lens or a mirror arrangement, which determines the geometric dimensions of the receiving zone 20, 20 ⁇ as a function of the detector size, the crystal distance and the focal length. Therefore, it is of course also possible to implement more than two reception zones.
  • FIG. 1 also illustrates in a purely schematic manner the manner in which the relationship between the measurement field size and the size of an object 22 changes at different distances e1, e3 and e4 from the motion detector.
  • an object 22 of the same size is shown in the measuring field 20 at each distance.
  • Fig. 1 illustrates that at the same speed of the object, the time period for Traversing the measuring fields at different distances is inevitably also different. The determination of this time period can be determined on the basis of an entrance amplitude and an exit amplitude at the outputs of the two detectors 1, 1 ⁇ .
  • FIG. 2 shows one of the measuring zones 20, which is directed onto a measuring field background, which in the example shown here comprises purely schematically four areas with radiation components ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4. Further radiation is imitated within the measuring field volume, which is schematically marked with ⁇ 5.
  • the object 22 emits a radiation component ⁇ 6.
  • the radiation detector will set itself to a value which corresponds to the received radiation change of the radiation components ⁇ 1 to ⁇ 4 of the measuring field background, the radiation of the measuring range volume ⁇ 5 and the radiation component ⁇ 6 of the object 22 when it enters the measuring field 20 arrives, corresponds.
  • a distance ⁇ S1 is covered.
  • the radiation received at the radiation detector will result from the sum of the radiation components ⁇ 2, ⁇ 3, ⁇ 5 and ⁇ 6.
  • the distance ⁇ S2 would be covered at a distance e2, etc.
  • the three diagrams in FIG. 3 each show the course of the output signal of the radiation detector S over time t.
  • t1 denotes the entry of the object 22 into the measuring zone and t2 exit of the object from the measuring zone.
  • the amplitudes are also identified with indices e1, e2, e3, which belong to the different distances e1, e2, e3. It is clear to see that a large input signal level A e1 and a correspondingly large output signal level A a1 occur at the small distance e1. With increasing distance, the input level A E2 or A E3 decreases in the square if the distances double or triple compared to the distance e1.
  • the associated output signal levels A a2 and A a3 also occur after a time delay. This is because the distance e1 and the measuring zone 20 are traversed in the time ⁇ t1. At distances e2 and e3, the time ⁇ t2 and ⁇ t3 are necessary, because distances ⁇ S1, ⁇ S2 and ⁇ S3 of different lengths have to be covered. If the object 22 would leave the measuring zone again after staying within the measuring zone, this would result in a curve course which decays over a longer period of time and is referred to as the change in signal level A v . When leaving the reception area, an output signal would be tapped at the radiation detector, which corresponds approximately to the signal curve A a1 .
  • the positive and negative amplitudes are denoted by U+ and U ⁇ , respectively.
  • the second line of FIG. 3 shows a curve which is characteristic of a relatively slow movement speed or a short residence time in the measuring zone 20.
  • the entrance signal amplitude is denoted by A E
  • the exit signal amplitude by A A
  • the amplitude associated with the dwelling of an object 22 is denoted by A V.
  • the typical curve profile is shown for an object that lingers longer in the measuring zone 20 or for an object that subsequently remains static, the same reference numerals being used for the same sizes.
  • a radiation detector 1 is followed by a signal amplifier 2, the output signal of which is fed in parallel to two different evaluation branches, Namely, a detection evaluation I and a detection control evaluation II.
  • the detection evaluation I consists of a series connection of differentiators 30, 32, 34, 36 and selective amplifiers 31, 33, 35. By connecting the selective amplifiers and the differentiators in series, the detection evaluation I can be graded to one predefined sensitivity can be designed.
  • a notification signal which can be transmitted to a reporting center (not shown) on a first reporting line 37 can be tapped if a radiation change is detected in an evaluation circuit 38 which is determined by an object penetrating and exiting the measuring zone associated with the radiation sensor 1 .
  • the criteria for this are the signal frequency and the amplitude sequence, as exemplified in FIG. 3 above.
  • the output signal of the signal amplifier 2 is coupled directly in order to obtain the information content of the detector signals.
  • the output voltage level which is dependent on the change in the ambient radiation, is supplied in parallel to a first and a second time delay element 3, 4.
  • the time delay of the first time delay element 3 corresponds to an expected signal frequency of an object whose detection is desired. If the ambient radiation changes below the lowest signal frequency, the ambient radiation is tracked accordingly.
  • the reference value C thus formed is fed to a differential amplifier 5, which amplifies the difference between the reference value and the current signal level. This can be applied directly to the differential amplifier 5 or, as in the example shown here, via the second time delay element 4, which serves to suppress interference pulses.
  • the differential amplifier 5 has a circuit stage which is similar in principle connected downstream, which consists of a third time delay element 6 and a fourth time delay element 7 connected in parallel thereto and a further differential amplifier 8, to which the outputs of the third and fourth time delay elements 6, 7 are applied.
  • the time constant of the third time delay element is in turn matched to a signal frequency of an object detection, while the delay through the fourth time delay element 7 serves to suppress interference pulses.
  • the amplified reference signal is fed to a comparator stage, which consists of a reference tracker 9 and two comparators 10 and 11 connected in parallel.
  • the comparators are supplied on the one hand with the output signal of the differential amplifier 8 and at the reference inputs the output signal of the reference tracking. This consists of a time delay element dependent on the signal amplitude.
  • a timer 12 or 13 is activated, which is connected downstream of the respective comparators.
  • a memory element 14 and 15 are controlled crosswise by the comparators 10 and 11. If signal amplitudes occur that exceed the predetermined times of the timing elements 12, 13, the associated memory element 14, 15 is set. This memory element is reset when an antipolarity signal amplitude F or G occurs at the output of the comparator 10 or 11.
  • the outputs of the two memory elements 14, 15 are linked in time with a logic circuit 16. Via the logic circuit 16, they control an actuator 17, which forwards the detection of a dwelling object in the measuring zone of the radiation detector 1 to a signaling center (not shown).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Burglar Alarm Systems (AREA)

Claims (6)

  1. Procédé pour détecter un objet ayant pénétré dans le champ de mesure d'un avertisseur passif de déplacement a infra-rouge (avertisseur de déplacement PIR), procédé dans lequel le niveau du signal d'un détecteur de rayonnement est déterminé et la fréquence des écarts d'un signal de sortie à partir d'un niveau de référence prédéfini est comparée à une fréquence de signal de référence prédéfinie, et en cas de coïncidence un avertisseur est activé, procédé caractérisé en ce que le niveau de sortie est retardé dans le temps de façon correspondante aux fréquences de signaux attendues, en ce que, lors d'une modification du rayonnement reçu du champ du réseau au dessous de la plus basse fréquence de signal une restitution du rayonnement du champ de mesure est effectuée, en ce que le niveau de tension de sortie restitué est comparé à un niveau de sortie de référence retardé en fonction de l'amplitude du signal, et en ce qu'un acteur est positionné lorsque le niveau de tension de sortie dépasse après un temps prédéfini le niveau de tension de sortie de référence.
  2. Agencement pour la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce que la sortie du détecteur de rayonnement (1) est amenée, aussi bien directement qu'également par l'intermédiaire d'un premier organe de temporisation (3), à une temporisation correspondant à la fréquence de signal attendue d'une détection d'objet, à un amplificateur différenciateur (5), en ce que la sortie de cet amplificateur différenciateur (5) est reliée, aussi bien directement qu'également par l'intermédiaire d'une restitution de référence (9) dans le temps, dépendant des amplitudes de signaux, à un comparateur (10, 11) dont la sortie est reliée par l'intermédiaire d'un autre organe de temporisation (12, 13) à l'acteur (17).
  3. Agencement selon la revendication 2, caractérisé en ce qu'un autre étage de commutation est interposé, de façon que la sortie de l'amplificateur différenciateur (5) soit reliée, aussi bien directement qu'également par l'intermédiaire d'un troisième organe de temporisation (6), à un autre amplificateur différenciateur (8).
  4. Agencement selon la revendication 2 ou la revendication 3, caractérisé en ce qu'il est prévu des détecteurs de rayonnement dual (1, 1') en branchement antipolaire, en ce qu'à la suite de la restitution de référence (9) sont branchés en parallèle deux comparateurs (10, 11) pour déterminer une amplitude de signal d'antipolarité, et en ce qu'il est prévu un dispositif de mémorisation (14, 15), commandé par les signaux de sortie des deux comparateurs (10, 11), pour la mémorisation intermédiaire des signaux de sortie temporisés des comparateurs.
  5. Agencement selon une des revendications 2 à 4, caractérisé en ce qu'au lieu de l'application directe en parallèle à l'amplificateur différenciateur ou aux amplificateurs différenciateurs (5, 8), il est prévu un autre organe de temporisation ou d'autres organes de temporisation (4, 7) pour la suppression des signaux parasites.
  6. Agencement selon une des revendications 2 à 5, caractérisé en ce que la sortie du détecteur de rayonnement est en outre amenée à un branchement en série d'organes différenciateurs (30, 32, 34, 36) et d'amplificateurs sélectifs (31, 33, 35), dont le signal de sortie est relié par l'intermédiaire d'un dispositif d'exploitation (38) à une ligne d'avertissement (37).
EP87105734A 1986-07-17 1987-04-16 Procédé de détection pour un détecteur de mouvement passif à infrarouge et dispositif pour la mise-en-oeuvre Expired - Lifetime EP0254813B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87105734T ATE65854T1 (de) 1986-07-17 1987-04-16 Detektionsverfahren fuer einen passiven infrarot- bewegungsmelder und anordnung zur durchfuehrung des verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863624195 DE3624195A1 (de) 1986-07-17 1986-07-17 Detektionsverfahren fuer einen passiven infrarot-bewegungsmelder und anordnung zur durchfuehrung des verfahrens
DE3624195 1986-07-17

Publications (3)

Publication Number Publication Date
EP0254813A2 EP0254813A2 (fr) 1988-02-03
EP0254813A3 EP0254813A3 (en) 1988-09-28
EP0254813B1 true EP0254813B1 (fr) 1991-07-31

Family

ID=6305404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87105734A Expired - Lifetime EP0254813B1 (fr) 1986-07-17 1987-04-16 Procédé de détection pour un détecteur de mouvement passif à infrarouge et dispositif pour la mise-en-oeuvre

Country Status (3)

Country Link
EP (1) EP0254813B1 (fr)
AT (1) ATE65854T1 (fr)
DE (2) DE3624195A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520891A1 (de) * 1995-06-08 1996-12-12 Abb Patent Gmbh Anordnung mit Emissionsgradstruktur im Infrarotbereich
DE102004053821B4 (de) 2004-11-04 2008-12-18 Dorma Gmbh + Co. Kg Türanlage mit automatisch verfahrbaren Flügeln sowie ein Verfahren zum Betrieb derartiger Türanlagen
BR112012023127A8 (pt) 2010-03-18 2017-12-05 Koninklijke Philips Electronics Nv Dispositivo para controlar os níveis de luz emitida por uma carga de iluminação no estado sólido em baixos níveis de escurecimento e método ara controlar os níveis de luz emitida por uma carga de iluminação no estado sólido controlado por um dimmer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599642A5 (fr) * 1976-11-15 1978-05-31 Cerberus Ag
DE3128256A1 (de) * 1981-07-17 1983-02-03 Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen Bewegungsmelder zur raumueberwachung
EP0107042B1 (fr) * 1982-10-01 1987-01-07 Cerberus Ag Détecteur infra-rouge pour déterminer un intrus dans une zone
JPS59195179A (ja) * 1983-04-20 1984-11-06 Uro Denshi Kogyo Kk 侵入警報器

Also Published As

Publication number Publication date
EP0254813A2 (fr) 1988-02-03
DE3624195C2 (fr) 1989-03-23
DE3624195A1 (de) 1988-01-21
DE3771798D1 (de) 1991-09-05
ATE65854T1 (de) 1991-08-15
EP0254813A3 (en) 1988-09-28

Similar Documents

Publication Publication Date Title
DE3832428C2 (fr)
DE3618693C2 (fr)
DE4218151C2 (de) System zum Erfassen der Bewegung einer Wärmequelle
DE69710019T2 (de) Anwesenheitssensor mit mehreren Funktionen
DE19628050C2 (de) Infrarotmeßgerät und Verfahren der Erfassung eines menschlichen Körpers durch dieses
DE69413117T2 (de) Detektierungssystem des passiven Typs von sich bewegendem Objekt
DE10113518B4 (de) Verfahren zur Messung des Verschmutzungsgrades eines Schutzglases eines Laserbearbeitungskopfs sowie Laserbearbeitungsanlage zur Durchführung des Verfahrens
DE2742389A1 (de) Schaltungsanordnung fuer einen infrarot-eindringdetektor
CH693549A5 (de) Opto-elektronischer Sensor.
DE2260486A1 (de) Raumschutzvorrichtung
DE3530646A1 (de) Flaechensicherung
DE69327558T2 (de) Feuer-Detektierungsverfahren
DE2032438B2 (de) Vorrichtung zur regelung des vorspannstromes fuer einen photodetektor
DE69726812T2 (de) Zielsuchkopf eines Flugkörpers
DE3607065C2 (fr)
EP0200186A2 (fr) Barrière photoélectrique
EP0254813B1 (fr) Procédé de détection pour un détecteur de mouvement passif à infrarouge et dispositif pour la mise-en-oeuvre
EP0287827B1 (fr) Procédé d'opération d'un pyrodétecteur pour la détection et/ou la détermination de la vélocité d'un objet en mouvement
DE3886928T2 (de) Annäherungszünder.
EP0250746B1 (fr) Détecteur de mouvement passif à infrarouge
DE3231025C2 (de) Einrichtung zur Identifizierung von gepulster Laserstrahlung
DE2427328A1 (de) Einbruchsalarmanlage
DE1798281A1 (de) Vorrichtung zum Wahrnehmen von Muendungsfeuer
DE102013213458A1 (de) Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
DE102006019941A1 (de) Vorrichtung und Verfahren zum Nachweis von Personen, Tieren oder Gegenständen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19880908

17Q First examination report despatched

Effective date: 19901207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19910731

Ref country code: BE

Effective date: 19910731

Ref country code: GB

Effective date: 19910731

REF Corresponds to:

Ref document number: 65854

Country of ref document: AT

Date of ref document: 19910815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3771798

Country of ref document: DE

Date of ref document: 19910905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19911111

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911227

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920430

Ref country code: CH

Effective date: 19920430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920430

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930416