EP0252315B1 - Brennkammereinrichtung mit einer Vorbrennkammer für unterstöchiometrische Verbrennung - Google Patents
Brennkammereinrichtung mit einer Vorbrennkammer für unterstöchiometrische Verbrennung Download PDFInfo
- Publication number
- EP0252315B1 EP0252315B1 EP87108265A EP87108265A EP0252315B1 EP 0252315 B1 EP0252315 B1 EP 0252315B1 EP 87108265 A EP87108265 A EP 87108265A EP 87108265 A EP87108265 A EP 87108265A EP 0252315 B1 EP0252315 B1 EP 0252315B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion
- combustion chamber
- air
- outlet duct
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 88
- 239000000446 fuel Substances 0.000 claims description 36
- 238000002347 injection Methods 0.000 claims description 22
- 239000007924 injection Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C3/00—Combustion apparatus characterised by the shape of the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/04—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/02—Disposition of air supply not passing through burner
Definitions
- the invention relates to a two-part combustion chamber device in which a first part is designed as a pre-combustion chamber for substoichiometric combustion and a second part as an after-combustion chamber.
- DE-B-1 021 646 a cylindrical combustion chamber is known, at the head of which there is a hemispherical dome. Partial combustion at the outlet of the dome can take place in this.
- This dome is to be regarded as a kind of evaporation burner, ie the heat generated in the closed head is used to heat and evaporate most of the combustion air or fuel.
- the task of this dome is the formation of an eddy current and the associated generation of a negative pressure. This negative pressure is said to be conducive to an increased inflow of combustion air through the flame tube openings.
- the dome geometry of DE-B-1 021 646 is closely linked to the flame tube geometry, ie a cylinder, because it is decisive for the inflow of secondary air into this cylinder.
- CH-A-163 686 shows a burner for liquid fuels, in which an oil feed line extends below the bottom of an elongated trough in its longitudinal axis. From this, fuel is injected into the trough through a series of nozzles and burned there. The injection takes place along a slightly raised back compared to the two side parts.
- Two band-shaped air jets are introduced on both sides of the upper end of the tub. The lower air jets are directed inwards against the respective side parts, are deflected and then flow into the combustion chamber in the same direction as the fuel jets and thereby pre-burn the fuel.
- the two upper band-shaped air jets are directed transversely to the longitudinal axis of the burner and are used for afterburning in the combustion chamber.
- this disadvantage is to be avoided in that, by means of a special design of the pre-combustion chamber by means of an air and fuel layer, its wall is shielded from the ignited combustion mixture and the temperature near the wall is thereby reduced to values which are permissible for the material of the combustion chamber walls are.
- the injection nozzles are arranged at the end of injection lines, which branch off from a fuel ring line surrounding the outlet duct and open directly radially inward of the outlet opening of the combustion air duct into the housing, the axes of the injection nozzles being essentially parallel to the tangent to the respective are directed adjacent wall part of the housing, and wherein for the supply of additional air, an annular additional air channel arranged at the end of the outlet channel is present.
- the injection nozzles are arranged at the end of a fuel line which opens into the housing coaxially with the axis of symmetry thereof, the axes of the injection nozzles being directed in such a way that the fuel jets shield the combustion air blown into the housing from the ignited fuel mixture, and where the additional air is taken from the combustion air intended for the afterburning chamber.
- the housing 2 of the pre-combustion chamber 1 shown schematically in FIG. 1 shows the shape of a heart with a cut-off tip in an axial section through the axis of rotation of the rotary body. In their place, the housing ends in an outlet channel 3 for the incompletely burned fuel mixture generated in the housing 2.
- a fuel ring line 4 for the liquid fuel is provided in the lower part of the housing 2 at a distance from the same. This passes from a fuel tank (not shown) via a feed line 5 into the ring line 4. From this ring line, a number branches off, uniformly distributed over the circumference, hook-shaped curved injection lines 6, which end within the outlet channel 3 in injection nozzles 7, from which fuel jets 8 are approximately parallel emerge towards the inner surface of the housing 2. Radially inward of the injection lines 6 is a rotating body formed baffle 9, which, together with the outer surface of the housing 2, defines an annular combustion air duct 10 in its lower part. The flow arrows 11 symbolize the combustion air, which is preheated in the channel 10 and, after a deflection at the lower end of the housing 2, flows upward approximately parallel to the housing wall and mixes with the fuel jet 8.
- Another rotationally symmetrical baffle plate 12 which surrounds the injection lines 6, delimits with the first-mentioned baffle plate 9 an annular additional air duct 13 through which air, represented by the flow arrows 14, is admixed to the preburned fuel mixture in the region of the outlet duct 3 in a stoichiometric ratio. This mixture then reaches a post-combustion chamber 16, part of the housing of which is shown, for complete combustion.
- the mechanism of shielding the wall of the housing 2 from the high combustion temperatures that occur during the substoichiometric pre-combustion is based on the tangential injection of the combustion air, which takes place over the entire inner circumference of the housing 2, which creates a vortex ring with a toroidal vortex core 15, the Cross section in Fig. 1 is symbolized by the two circles with dashed double hatching.
- this vortex core contains very hot gases, the centrifugal effect causing a stratification of the combustion gases of different temperatures or densities, which can only balance themselves out very slowly from the inside out.
- Such a compensation of the temperature or density from the inside out is, however, in stationary operation suppressed by the constantly supplied fuel / air mixture.
- the vortex core 15 also acts as an ignition source, by means of which the substoichiometric fuel / air mixture is ignited.
- Fuel injection radially inward of the combustion air layer close to the wall isolates it from the core of the incompletely burned combustion mixture to approximately the lower half of the housing 2, so that the latter cannot continue to burn with air from the layer close to the wall and only becomes ignitable again after additional air has been mixed in from the additional air duct 13 , whereby it can be completely burned in the afterburning chamber 16.
- the speed of the air injection into the pre-combustion chamber 1 should be significantly higher than the flame propagation speed, which creates a spiral flame front, which ideally does not hit the inner surface of the housing 2. At the time of ignition, the mixing process has progressed so far that lean mixture zones no longer occur.
- Fig. 2 shows a pre-combustion chamber 17 of a simplified design, in which the liquid fuel through a Axis of symmetry of the housing 18 coaxial fuel line 19 is fed to the injection nozzles 20 arranged at the end thereof. While the air for the pre-combustion is blown into the housing 18 close to the wall from below, as in the embodiment according to FIG. 1, the fuel is injected in the opposite direction from above at high speed.
- the nozzle axes are oriented in such a way that the air jets near the wall are also shielded from the burning mixture ignited in the center.
- Such a pre-combustion chamber 17 can advantageously be combined with gas burners arranged uniformly distributed over the circumference, two of which are shown in FIG.
- the fuel gas flowing in through the gas burner is indicated by the arrows 22, the combustion air by the arrows 23.
- the combustion air flow is dimensioned such that it is at least sufficient for the complete combustion of the gas and for the post-combustion of the incompletely burned combustion mixture flowing out of the pre-combustion chamber in the after-combustion chamber 24.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2748/86A CH671449A5 (enrdf_load_stackoverflow) | 1986-07-08 | 1986-07-08 | |
CH2748/86 | 1986-07-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0252315A1 EP0252315A1 (de) | 1988-01-13 |
EP0252315B1 true EP0252315B1 (de) | 1992-10-07 |
Family
ID=4240721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87108265A Expired - Lifetime EP0252315B1 (de) | 1986-07-08 | 1987-06-08 | Brennkammereinrichtung mit einer Vorbrennkammer für unterstöchiometrische Verbrennung |
Country Status (5)
Country | Link |
---|---|
US (1) | US4894005A (enrdf_load_stackoverflow) |
EP (1) | EP0252315B1 (enrdf_load_stackoverflow) |
JP (1) | JPS6325418A (enrdf_load_stackoverflow) |
CH (1) | CH671449A5 (enrdf_load_stackoverflow) |
DE (1) | DE3782097D1 (enrdf_load_stackoverflow) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114404A (en) * | 1990-07-24 | 1992-05-19 | Paxton Gerald R | Multifunctional retractable needle type general purpose disabling syringe having enhanced safety features and related method of operation |
DE59208364D1 (de) * | 1992-10-23 | 1997-05-22 | Asea Brown Boveri | Brenner mit elektrischer Zündeinrichtung |
DE4416650A1 (de) * | 1994-05-11 | 1995-11-16 | Abb Management Ag | Verbrennungsverfahren für atmosphärische Feuerungsanlagen |
DE19502796B4 (de) * | 1995-01-30 | 2004-10-28 | Alstom | Brenner |
DE59808762D1 (de) | 1998-08-27 | 2003-07-24 | Alstom Switzerland Ltd | Brenneranordnung für eine Gasturbine |
US6874452B2 (en) | 2002-01-15 | 2005-04-05 | Joseph S. Adams | Resonant combustion chamber and recycler for linear motors |
US7168949B2 (en) | 2004-06-10 | 2007-01-30 | Georgia Tech Research Center | Stagnation point reverse flow combustor for a combustion system |
JP2010507067A (ja) * | 2006-10-18 | 2010-03-04 | リーン フレイム インコーポレイテッド | エネルギー放出/変換装置と組合せて使用されるガス及び燃料の予混合器 |
US8015814B2 (en) * | 2006-10-24 | 2011-09-13 | Caterpillar Inc. | Turbine engine having folded annular jet combustor |
JP5296320B2 (ja) * | 2007-01-30 | 2013-09-25 | ゼネラル・エレクトリック・カンパニイ | 逆流噴射機構を有するシステム及び燃料及び空気を噴射する方法 |
EP2006606A1 (de) * | 2007-06-21 | 2008-12-24 | Siemens Aktiengesellschaft | Drallfreie Stabilisierung der Flamme eines Vormischbrenners |
KR20120098619A (ko) | 2009-09-13 | 2012-09-05 | 린 플레임 인코포레이티드 | 연소 기구를 위한 입구 선혼합기 |
RU2633982C1 (ru) * | 2016-06-29 | 2017-10-20 | Акционерное общество "ОДК-Авиадвигатель" | Жаровая труба камеры сгорания газотурбинного двигателя |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US871070A (en) * | 1903-01-16 | 1907-11-12 | Hawley Down Draft Furnace Company | Furnace. |
US792642A (en) * | 1903-06-20 | 1905-06-20 | William Erastus Williams | Melting-furnace. |
US1052588A (en) * | 1911-04-12 | 1913-02-11 | John Janicki | Hydrocarbon power-generator. |
CH163686A (de) * | 1932-09-08 | 1933-08-31 | Fricker Fritz | Brenner für flüssige Brennstoffe. |
US1987400A (en) * | 1933-01-07 | 1935-01-08 | Charles B Hillhouse | Method of burning oil as city gas |
US2143259A (en) * | 1937-06-21 | 1939-01-10 | Clarkson Alick | Fluid burner |
US2217649A (en) * | 1939-06-05 | 1940-10-08 | Robert H Goddard | Combustion chamber for rocket apparatus |
US2346333A (en) * | 1942-08-07 | 1944-04-11 | Bruno A Schaumann | Hydrocarbon burner |
US2456402A (en) * | 1942-10-20 | 1948-12-14 | Daniel And Florence Guggenheim | Combustion chamber and means for supplying plural liquid fuels thereto |
US2483780A (en) * | 1946-10-30 | 1949-10-04 | Benjamin J Parmele | Cyclone burner |
US2694291A (en) * | 1948-02-07 | 1954-11-16 | Henning C Rosengart | Rotor and combustion chamber arrangement for gas turbines |
US2635564A (en) * | 1948-09-15 | 1953-04-21 | Power Jets Res & Dev Ltd | Combustion system for pulverulent fuel |
US2715816A (en) * | 1950-10-27 | 1955-08-23 | Ruston & Hornsby Ltd | Combustion chamber for use with internal combustion turbines |
US2651913A (en) * | 1951-03-13 | 1953-09-15 | Solar Aircraft Co | Gas turbine combustion chamber |
US2778327A (en) * | 1953-02-27 | 1957-01-22 | Babcock & Wilcox Co | Cyclone furnace |
DE1021646B (de) * | 1953-12-07 | 1957-12-27 | Gen Elek C Company | Brennkammer |
DE1000189B (de) * | 1955-06-28 | 1957-01-03 | Bmw Studiengesellschaft Fuer T | Gasturbine, insbesondere Kleingasturbine |
US2869629A (en) * | 1955-12-08 | 1959-01-20 | Gen Electric | Burner assembly |
US2933296A (en) * | 1955-12-27 | 1960-04-19 | Carleton D Spangler | Apparatus for producing an insulated stream of hot fluid |
US2967394A (en) * | 1959-12-14 | 1961-01-10 | Gen Electric | Combustion apparatus |
US3306334A (en) * | 1965-04-26 | 1967-02-28 | Goubsky Gregory Michael | Space heaters |
FR2203023B1 (enrdf_load_stackoverflow) * | 1972-10-13 | 1976-08-20 | Onera (Off Nat Aerospatiale) | |
US3808803A (en) * | 1973-03-15 | 1974-05-07 | Us Navy | Anticarbon device for the scroll fuel carburetor |
US4035137A (en) * | 1973-04-26 | 1977-07-12 | Forney Engineering Company | Burner unit |
DE2341904B2 (de) * | 1973-08-18 | 1978-07-27 | Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen | Brennkammer für Gasturbinentriebwerke |
DE2511172A1 (de) * | 1975-03-14 | 1976-09-30 | Daimler Benz Ag | Filmverdampfungs-brennkammer |
JPS5217219A (en) * | 1975-07-31 | 1977-02-09 | Nisshin Steel Co Ltd | Exhaust-gas recycle type low-nox burner |
US4040252A (en) * | 1976-01-30 | 1977-08-09 | United Technologies Corporation | Catalytic premixing combustor |
US4098075A (en) * | 1976-06-01 | 1978-07-04 | United Technologies Corporation | Radial inflow combustor |
SU589452A1 (ru) * | 1976-06-03 | 1978-01-25 | Тольяттинский политехнический институт | Вихрева камера сгорани |
JPS5913641B2 (ja) * | 1978-05-22 | 1984-03-31 | 三菱電機株式会社 | 燃焼装置 |
JPS56119404A (en) * | 1980-02-25 | 1981-09-19 | Toshio Uchino | Rotary swirling combustion boiler |
GB2098719B (en) * | 1981-05-20 | 1984-11-21 | Rolls Royce | Gas turbine engine combustion apparatus |
US4504211A (en) * | 1982-08-02 | 1985-03-12 | Phillips Petroleum Company | Combination of fuels |
US4606720A (en) * | 1984-09-17 | 1986-08-19 | Foster-Miller, Inc. | Pre-vaporizing liquid fuel burner |
US4683541A (en) * | 1985-03-13 | 1987-07-28 | David Constant V | Rotary fluidized bed combustion system |
-
1986
- 1986-07-08 CH CH2748/86A patent/CH671449A5/de not_active IP Right Cessation
-
1987
- 1987-06-08 DE DE8787108265T patent/DE3782097D1/de not_active Expired - Lifetime
- 1987-06-08 EP EP87108265A patent/EP0252315B1/de not_active Expired - Lifetime
- 1987-06-18 US US07/063,480 patent/US4894005A/en not_active Expired - Fee Related
- 1987-07-08 JP JP62168937A patent/JPS6325418A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JPS6325418A (ja) | 1988-02-02 |
DE3782097D1 (de) | 1992-11-12 |
CH671449A5 (enrdf_load_stackoverflow) | 1989-08-31 |
EP0252315A1 (de) | 1988-01-13 |
US4894005A (en) | 1990-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69412572T2 (de) | Hybridbrenner einer Gasturbine | |
DE69306950T2 (de) | Brennkammer und verfahren dafür | |
DE69632111T2 (de) | Vormischbrenner für eine Gasturbinen-Brennkammer mit niedriger Schadstoffemission | |
DE69405281T2 (de) | Vormischbrennkammer mit konzentrischen Ringkanälen | |
DE19533055B4 (de) | Doppelbrennstoffmischer für eine Gasturbinenbrennkammer | |
EP0576697B1 (de) | Brennkammer einer Gasturbine | |
DE69828916T2 (de) | Emissionsarmes Verbrennungssystem für Gasturbinentriebwerke | |
DE69513542T2 (de) | Brennstoffdüse | |
EP0193838B1 (de) | Brenneranordnung für Feuerungsanlagen, insbesondere für Brennkammern von Gasturbinenanlagen sowie Verfahren zu ihrem Betrieb | |
DE19903770B4 (de) | Vergasungsbrenner für einen Gasturbinenmotor | |
DE69830131T2 (de) | Drallerzeuger ohne Venturi | |
EP1436546B1 (de) | Brenner für synthesegas | |
EP0252315B1 (de) | Brennkammereinrichtung mit einer Vorbrennkammer für unterstöchiometrische Verbrennung | |
EP0924470B1 (de) | Vormischbrennkammer für eine Gasturbine | |
DE4110759A1 (de) | Magere, abgestufte verbrennungsvorrichtung | |
DE2940431A1 (de) | Brennkammer mit abgestufter brennstoffeinspritzung und verfahren zum betreiben einer hochtemperaturbrennkammer | |
EP0029619A1 (de) | Brennkammer einer Gasturbine mit Vormisch/Vorverdampf-Elementen | |
EP0571782A1 (de) | Verfahren zum Betrieb einer Brennkammer einer Gasturbine | |
DE2555007A1 (de) | Brennkammer und verfahren zum erzeugen einer emissionsarmen verbrennung | |
DE3841269A1 (de) | Brennstoffduese mit katalytischem glueheinsatz | |
DE2555085A1 (de) | Brennkammer und verfahren zum erzeugen einer emissionsarmen verbrennung | |
EP0433789A1 (de) | Verfahren für eine Vormischverbrennung eines flüssigen Brennstoffes | |
EP0392158A2 (de) | Verfahren zum Betrieb einer Feuerungsanlage mit fossilen Brennstoffen | |
EP1754937B1 (de) | Brennkopf und Verfahren zur Verbrennung von Brennstoff | |
DE2525292A1 (de) | Mantelstromtriebwerk mit wirbelstrombrennerkammer zur verstaerkung des auslasstrahles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE GB LI NL SE |
|
17P | Request for examination filed |
Effective date: 19880701 |
|
17Q | First examination report despatched |
Effective date: 19900207 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3782097 Country of ref document: DE Date of ref document: 19921112 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19921216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930512 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19930524 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19930630 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930819 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19930917 Year of fee payment: 7 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19940630 Ref country code: CH Effective date: 19940630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950101 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87108265.7 Effective date: 19950110 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940608 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950301 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87108265.7 |