EP0250757B1 - Strahlungsmesseinrichtung für Photonen-und/oder Korpuskularstrahlungen - Google Patents

Strahlungsmesseinrichtung für Photonen-und/oder Korpuskularstrahlungen Download PDF

Info

Publication number
EP0250757B1
EP0250757B1 EP87106127A EP87106127A EP0250757B1 EP 0250757 B1 EP0250757 B1 EP 0250757B1 EP 87106127 A EP87106127 A EP 87106127A EP 87106127 A EP87106127 A EP 87106127A EP 0250757 B1 EP0250757 B1 EP 0250757B1
Authority
EP
European Patent Office
Prior art keywords
probe
detector
radiation
store
calculator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87106127A
Other languages
English (en)
French (fr)
Other versions
EP0250757A2 (de
EP0250757A3 (de
Inventor
Wilhelm Dr. Buttler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automess - Automation und Messtechnik GmbH
Original Assignee
Automess - Automation und Messtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automess - Automation und Messtechnik GmbH filed Critical Automess - Automation und Messtechnik GmbH
Publication of EP0250757A2 publication Critical patent/EP0250757A2/de
Publication of EP0250757A3 publication Critical patent/EP0250757A3/de
Application granted granted Critical
Publication of EP0250757B1 publication Critical patent/EP0250757B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity

Definitions

  • the invention relates to a radiation measuring device for photon and / or corpuscular radiation according to the preamble of claim 1.
  • Such radiation measuring devices are used to perform measurement and monitoring tasks, e.g. in research institutes, monitoring authorities and in nuclear power plants. Since there are no radiation detectors that are suitable for all radiation types and intensity ranges in question, probes with different detectors can usually be connected to the measuring devices.
  • any measuring device of the same type can be used with any probe of the same type.
  • radiation detectors of the same design deliver different pulse rates or analog values for the same dose rate, which can be in the range +/- 30%, for example to the mean.
  • the readings of a measuring device fluctuate accordingly when the probe is exchanged, in addition there are usually fluctuations from other influencing variables.
  • a radiation measuring device in which measurement errors caused by scattering of different detectors can be compensated for by using an adjustable resistance.
  • the time constant of a pulse shaper circuit is influenced by this resistor.
  • the electronic dead time of this pulse shaping circuit must always exceed the self-dead time of the detector, which increases the statistical error. Correction of saturation losses and probe detection is not possible with the known device.
  • the invention has for its object to provide inexpensive radiation measuring devices that reduce the previously known display fluctuations while maintaining the largest possible measuring range and the highest possible statistical accuracy to negligible values while fully interchangeable probes and measuring devices and meet the PTB requirements.
  • This object is achieved in a generic device by the characterizing features of claim 1.
  • the above-mentioned pulse shaper circuit is not required in the radiation measuring device according to the invention.
  • Radiation measuring devices are known in which the measuring device indicates when a probe is connected, e.g. by means of a short-circuit bridge in the connector of the probe.
  • a different probe display with a large number of probe types is practically not possible with this method because of the required number of plug connections.
  • the radiation measuring device according to the invention enables different display of a larger number of probes in the measuring device without any additional line between the measuring device and the probe.
  • the high voltage required to operate the detectors can be generated by means of a voltage converter in the probe. This enables adaptation to a large number of detectors with different voltage requirements.
  • the measuring device can be equipped with one or more detectors, which also have the correction devices according to the invention and which are ignored by the computer in the measuring device when a probe is connected.
  • the advantages achieved by the invention are, in particular, that when the probes of the same type and measuring devices of the same type are exchanged as desired, those by the detector controls Conditional measurement errors are reduced so significantly that they are irrelevant for the practical use of the devices. By correcting the saturation losses of the detectors, the measuring range for higher radiation intensities is also expanded considerably because the computer can linearize the curved sensitivity curve of the detector from the correction values. This enables simple digital and / or analog display systems. Specially calibrated analog scales, which only apply to one type of detector, are not required.
  • a sample according to the invention is shown. It can be connected to the measuring device via a five-core cable with the connections SE, PL, +, I, "Masse”. A supply voltage of, for example, 5 V is fed from the measuring device to the probe via the connection “+”.
  • a counter tube Z serves as a radiation detector.
  • a DC voltage converter HV generates the counter tube operating voltage.
  • the counting tube impulses pass through amplifier V and connection I to the measuring device.
  • H1 and H2 are binary-coded hexadecimal rotary switches; they can be set to one of the 16 positions 0 to 9 and A to F.
  • the switches are connected to the 8-bit parallel series converter (PSW) PSW 2 via a resistor network WN.
  • the bit connections 3 to 8 of the PSW 1 lead to six solder bridges L, bit connection 1 is connected to "ground".
  • Two calibration points are defined for the counter tube Z.
  • the counter tube VALVO ZP 1310 photon radiation with dose rate values of 0.2 mSv / h and 0.2 Sv / h.
  • Counter tubes in the fluctuation range of +/- 30% should be used.
  • Switch H1 is used to record the correction value at 0.2 mSv / h.
  • each setting of H1 is assigned a part of the fluctuation range, e.g. 0: -26% to - 30%, 1: -22% to - 26% etc. to F: + 26% to + 30%.
  • H1 is set to 1. Accordingly, H2 is set at 0.2 Sv / h.
  • the solder bridges L are used to set the probe type, 6 bits are provided for this. In the drawing, the type designation "16" is set.
  • the computer registers that bit 1 of PSW 1 is connected to "ground", i.e. a probe is connected.
  • the computer then causes the line PL (parallel load) to be connected to "ground” for a short time and the contents of the memories L, H1 and H2 to be taken over by the PSW.
  • the contents of the memory reach the computer via line SE, which corrects the pulse rate recorded by Z according to the setting of H1 and H2 and displays it.
  • the fluctuation in the display caused by the meter tube scatter is thereby limited to approx. +/- 2%.
  • the type designation is also considered for display.
  • a probe is equipped with two counter tubes, e.g. To expand the range, another PSW 2 ⁇ with PSW 1 and PSW 2 is connected in series, which receives the correction settings for the second counter tube via two further rotary switches H1 ⁇ and H2 ⁇ . Only the SE line is required for the query. The detectors are switched over automatically by the computer.
  • the measuring devices display the same value because the computers receive the same information.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

  • Die Erfindung betrifft eine Strahlungsmeßeinrichtung für Photonen- und/oder Korpuskularstrahlungen nach dem Oberbegriff des Anspruchs 1. Derartige Strahlungsmeßeinrichtungen werden zur Erfüllung von Meß- und Überwachungsaufgaben eingesetzt, z.B. in Forschungsinstituten, bei Überwachungsbehörden und in Kernkraftwerken. Da es keine Strahlungsdetektoren gibt, die für alle in Frage kommenden Strahlungsarten und Intensitätsbereiche geeignet sind, können an die Meßgeräte meist Sonden mit unterschiedlichen Detektoren angeschlossen werden.
  • Für den praktischen Einsatz ist es wünschenswert, daß ein beliebiges Meßgerät gleicher Bauart mit einer beliebigen Sonde gleicher Bauart verwendet werden kann. Strahlungsdetektoren gleicher Bauart liefern aus fertigungstechnischen Gründen bei gleicher Dosisleistung unterschiedliche Impulsraten oder Analogwerte, die z.B. im Bereich +/-30 % liegen können, bezogen auf den Mittelwert. Entsprechend schwanken auch die Anzeigen eines Meßgerätes beim Sondentausch, hinzu kommen meist noch Schwankungen von anderen Einflußgrößen.
  • Anzeigeschwankungen in dieser Größe sind für fast alle Anwendungen nicht tragbar. In den PTB-Mitteilungen 4/74, S. 271, wird beispielsweise für die Dosisleistungsanzeige von Ortsdosimetern, die für die Eichung zugelassen sind, ein zulässiger Fehler von max.+/-20 % gefordert. Solche Forderungen lassen sich erfüllen, wenn einem bestimmten Meßgerät eine bestimmte Sonde zugeordnet wird. Bisher sind von der PTB nur derartige Zuordnungen zur Eichung zugelassen worden. Diese Zuordnung hat erhebliche Nachteile zur Folge: Mehraufwand an organisatorischen Maßnahmen, erhebliche zusätzliche Fehlerquellen, höherer Bevorratungsaufwand. Eine engere Tolerierung der Detektoren würde eine erhebliche Kostensteigerung bedeuten.
  • Aus der DE-A-29 18 611 ist eine Strahlungsmeßeinrichtung bekannt, bei der durch Streuung verschiedener Detektoren bedingte Meßfehler durch Verwendung eines einstellbaren Widerstandes ausgleichbar sind. Mit diesem Widerstand wird die Zeitkonstante einer Impulsformerschaltung beeinflußt. Die elektronische Totzeit dieser Impulsformerschaltung muß immer die Eigentotzeit des Detektors überschreiten, wodurch sich der statistische Fehler vergrößert. Eine Korrektur von Sättigungsverlusten und eine Sondenerkennung ist mit der bekannten Einrichtung nicht möglich.
  • Der Erfindung liegt die Aufgabe zugrunde, preisgünstige Strahlungsmeßeinrichtungen zu schaffen, die bei voller Austauschbarkeit von Sonden und Meßgeräten die bisher bekannten Anzeigeschwankungen unter Bewahrung des größtmöglichen Meßbereiches und der höchstmöglichen statistischen Genauigkeit auf vernachlässigbare Werte verringern und die PTB-Forderungen erfüllen. Diese Aufgabe wird bei einer gattungsgemäßen Einrichtung durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • In der erfindungsgemäßen Strahlungsmeßeinrichtung wird die oben erwähnte Impulsformerschaltung nicht benötigt.
  • Soll mit einer erfindungsgemäßen Strahlungsmeßeinrichtung ein großer Intensitätsbereich erfaßt werden, der von einem einzigen Detektor nicht überstrichen wird, und/oder sollen unterschiedliche Strahlungsarten, wie z.B. Photonen- und Neutronenstrahlung, erfaßt werden, für die unterschiedliche Detektoren notwendig sind, müssen Sonden unterschiedlicher Bauart verwendet werden.
  • Es sind Strahlungsmeßeinrichtungen bekannt, bei denen im Meßgerät angezeigt wird, wenn eine Sonde angeschlossen ist, z.B. mittels einer Kurzschlußbrücke im Steckeranschluß der Sonde. Eine unterschiedliche Sondenanzeige bei einer Vielzahl von Sondenbauarten ist mit diesem Verfahren wegen der erforderlichen Zahl von Steckeranschlüssen praktisch nicht möglich. Die erfindungsgemäße Strahlungsmeßeinrichtung ermöglicht hingegen in einer weiteren Ausbildung die unterschiedliche Anzeige einer größeren Zahl von Sonden im Meßgerät ohne irgendeine zusätzliche Leitung zwischen Meßgerät und Sonde.
  • Sollen in einer Sonde mehrere Detektoren mit Korrekturvorrichtungen gemäß Anspruch 1 verwendet werden, ist zur Übermittlung der entsprechenden Informationen ebenfalls keine weitere Leitung zwischen Meßgerät und Sonde erforderlich.
  • Die zum Betrieb der Detektoren erforderliche Hochspannung kann mittels eines Spannungswandlers in der Sonde erzeugt werden. Dadurch ist die Anpassung an eine Vielzahl von Detektoren mit unterschiedlichem Spannungsbedarf möglich. Das Meßgerät kann mit einem oder mehreren Detektoren ausgerüstet sein, die ebenfalls über die erfindungsgemäßen Korrekturvorrichtungen verfügen und die bei Anschluß einer Sonde durch den Rechner im Meßgerät ignoriert werden.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß bei einem beliebigen Austausch von Sonden gleicher Bauart und Meßgeräten gleicher Bauart die durch die Detektorsteuerungen bedingten Meßfehler so erheblich reduziert werden, daß sie für die praktische Anwendung der Geräte ohne Belang sind. Durch die Korrektur der Sättigungsverluste der Detektoren wird hierbei auch der Meßbereich für höhere Strahlungsintensitäten wesentlich erweitert, weil der Rechner aus den Korrekturwerten die gekrümmte Empfindlichkeitskurve des Detektors linearisieren kann. Dies ermöglicht einfache digitale und/oder analoge Anzeigesysteme. Speziell kalibrierte Analogskalen, die jeweils nur für eine Detektorbauart gelten, sind nicht erforderlich.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Dargestellt ist der Aufbau einer erfindungsgemäßen Sonde. Sie kann über ein fünfadriges Kabel mit den Anschlüssen SE, PL, +, I, "Masse" mit dem Meßgerät verbunden werden. Über den Anschluß "+" wird der Sonde eine Versorgungsspannung von beispielsweise 5 V aus dem Meßgerät zugeführt.
  • Ein Zählrohr Z dient als Strahlungsdetektor. Ein Gleichspannungswandler HV erzeugt die Zählrohrbetriebsspannung. Die Zählrohrimpulse gelangen über den Verstärker V und den Anschluß I zum Meßgerät. H1 und H2 sind binärcodierte Hexadezimal-Drehschalter; sie lassen sich auf eine der 16 Stellungen 0 bis 9 und A bis F einstellen. Über eine Widerstandsnetzwerk WN sind die Schalter mit dem 8-bit-Parallel-Serien-Wandler (PSW) PSW 2 verbunden. Die bit-Anschlüsse 3 bis 8 des PSW 1 führen zu sechs Lötbrücken L, bit-Anschluß 1 liegt an "Masse".
  • Für das Zählrohr Z werden zwei Kalibrierpunkte festgelegt, beim Zählrohr VALVO ZP 1310 beispielsweise eine Photonenstrahlung mit Dosisleistungswerten von 0,2 mSv/h und 0,2 Sv/h. Es sollen Zählrohre im Schwankungsbereich von +/- 30 % verwendet werden. Der Schalter H1 dient zur Erfassung des Korrekturwertes bei 0,2 mSv/h. Hierzu wird jeder Einstellung von H1 ein Teil des Schwankungsbereichs zugeordnet, z.B. 0: -26% bis - 30%, 1: -22% bis - 26% usw. bis F: + 26% bis + 30%. Wird beispielsweise bei einem bestimmten Zählrohr im Strahlenfeld von 0,2 mSv/h eine Impulsrate gemessen, die 0,15 mSv/h entspricht, wird H1 auf 1 gestellt. Entsprechend wird H2 bei 0,2 Sv/h eingestellt.
  • Die Lötbrücken L dienen zur Einstellung des Sondentyps, hierfür sind 6 bit vorgesehen. In der Zeichnung ist die Typenbezeichnung "16" eingestellt.
  • Wird die Sonde mit dem eingeschalteten Meßgerät verbunden, registriert der Rechner, daß bit 1 des PSW 1 an "Masse" liegt, d.h. eine Sonde ist angeschlossen. Daraufhin veranlaßt der Rechner, daß die Leitung PL (parallel load) kurzfristig an "Masse" gelegt wird und dadurch die Inhalte der Speicher L, H1 und H2 von den PSW übernommen werden. Über die Leitung SE gelangen die Speicherinhalte in den Rechner, der die von Z aufgenommene Impulsrate entsprechend der Einstellung von H1 und H2 korrigiert und zur Anzeige bringt. Die durch die Zählrohrstreuungen bedingte Schwankung der Anzeige wird hierdurch auf ca. +/- 2 % begrenzt. Die Typenbezeichnung wird ebenfalls zur Anzeige begracht. Nach Beendigung des Abfragezyklus wird ein neuer Abfragevorgang gestartet und somit der erfaßte Meßwert laufend aktualisiert.
  • Wird eine Sonde mit zwei Zählrohren bestückt, z.B. zur Bereichserweiterung, wird ein weiterer PSW 2ʹ mit PSW 1 und PSW 2 in Reihe geschaltet, der über zwei weitere Drehschalter H1ʹ und H2ʹ die Korrektureinstellungen für das zweite Zählrohr erhält. Zur Abfrage ist weiterhin nur die Leitung SE erforderlich. Die Umschaltung der Detektoren erfolgt automatisch durch den Rechner.
  • Wird ein und dieselbe Sonde mit einem beliebigen Meßgerät gleicher Bauart kombiniert, zeigen die Meßgeräte jeweils den gleichen Wert an, da die Rechner die gleichen Informationen erhalten.
  • Anstelle der mechanischen Speicher H1, H2 und L können auch elektronische Speicher verwendet werden. Die Erfindung ist nicht auf die Verwendung von Zählrohren beschränkt, es können z.B. auch Ionisationskammern oder Szintillatoranordnungen verwendet werden. Die Erfindung ist weiterhin nicht auf die in der Zeichnung dargestellte Schaltungsanordnung beschränkt, beispielsweise kann der bit-Anschluß 1 von PSW 1 auch zur "+"-Leitung geführt werden.

Claims (4)

  1. Strahlungsmeßeinrichtung für Photonen- und/oder Korpuskularstrahlung bestehend aus:
    - einem Meßgerät,
    - einer Sonde, die mindestens einen Detektor (Z) aufweist, der elektrische Impulsraten oder ein analoges Signal als maß für die Strahlungsintensität liefert, und
    - einer lösbaren Kabelverbindung zwischen Meßgerät und Sonde
    dadurch gekennzeichnet,
    - daß die Sonde einen digitalen Speicher (H1, H2) sowie einen daran angeschlossenen Parallel-Serien-Wandler (PSW2) aufweist
    und
    - daß im Meßgerät ein Rechner vorgesehen ist, der über die Leitung (SE) der lösbaren Kabelverbindung und den Parallel-Serien-Wandler (PSW2) mit dem digitalen Speicher (H1, H2) verbindbar ist,
    - wobei im Speicher (H1, H2) Korrekturwerte digital gespeichert sind, die bei der Kalibrierung der Sonde sowohl im Hinblick auf die Empfindlichkeitsstreuung des Detektors (Z) bei einer niedrigen Strahlungsintensität als auch im Hinblick auf die Streuung der Sättigungsverluste des Detektors (Z) bei einer hohen Strahlungsintensität erfaßt worden sind,
    und
    - wobei durch den Rechner unter Verwendung der gespeicherten Korrekturwerte die vom Detektor gelieferten Meßdaten derart korrigierbar sind, daß bei Verwendung einer beliebigen Sonde gleicher Bauart an ein und demselben Meßgerät der durch Detektorstreuungen bedingte Meßfehler vernachlässigbar klein ist und daß bei der Kombination eines beliebigen Meßgerätes gleicher Bauart mit ein und derselben Sonde jeweils derselbe Meßwert angezeigt wird.
  2. Strahlungsmeßgerät nach Anspruch 1,
    dadurch gekennzeichnet, daß an das Meßgerät wahlweise Sonden unterschiedlicher Bauart angeschlossen werden können, deren unterschiedliche Typenbezeichnungen in einem Speicher (L) innerhalb der Sonde gespeichert werden, wobei der Speicher über einen zweiten Parallel-Serien-Wandler (PSW1) und über dieselbe Leitung (SE) mit dem Rechner verbindbar ist zwecks Zuordnung der Speicherinhalte (H1, H2) zum Sondentyp.
  3. Strahlungsmeßgerät nach einem der Ansprüche 1 bis 2,
    dadurch gekennzeichnet, daß sich in einer Sonde mehr als ein Detektor befindet, wobei für jeden Detektor Korrekturvorrichtungen vorgesehen sind, deren Informationen ebenfalls über die Leitung (SE) zum Rechner gelangen.
  4. Strahlungsmeßgerät nach einem der Ansprüche 2 bis 3,
    dadurch gekennzeichnet, daß das erste bit der hintereinander geschalteten Parallel-Serien-Wandler an "Masse" liegt, wodurch der Rechner über die Leitung (SE) den erfolgten Anschluß einer Sonde registriert und daraufhin eine zweite Leitung (PL) an "Masse" legt, wodurch der Inhalt der Speicher von den PSW übernommen wird und über die Leitung (SE) vom Rechner gelesen werden kann.
EP87106127A 1986-05-03 1987-04-28 Strahlungsmesseinrichtung für Photonen-und/oder Korpuskularstrahlungen Expired - Lifetime EP0250757B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863615054 DE3615054A1 (de) 1986-05-03 1986-05-03 Strahlungsmesseinrichtung fuer photonen- und/oder korpuskularstrahlungen
DE3615054 1986-05-03

Publications (3)

Publication Number Publication Date
EP0250757A2 EP0250757A2 (de) 1988-01-07
EP0250757A3 EP0250757A3 (de) 1991-10-09
EP0250757B1 true EP0250757B1 (de) 1993-09-29

Family

ID=6300128

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87106127A Expired - Lifetime EP0250757B1 (de) 1986-05-03 1987-04-28 Strahlungsmesseinrichtung für Photonen-und/oder Korpuskularstrahlungen

Country Status (2)

Country Link
EP (1) EP0250757B1 (de)
DE (2) DE3615054A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2651331B1 (fr) * 1989-08-22 1991-10-25 Thomson Tubes Electroniques Procede de correction des signaux d'un detecteur lineaire de radiations et dispositif de correction mettant en óoeuvre ce procede.
EP2470871A1 (de) * 2009-09-24 2012-07-04 L-3 Communications Corporation Strahlungsmonitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2431875A1 (de) * 1974-07-03 1976-01-22 Bron Elektronik Ag Lichtmessgeraet
DE2634231C2 (de) * 1976-07-30 1983-09-22 Graetz Gmbh & Co Ohg, 5990 Altena Strahlungsmeßanordnung mit einem Strahlungsdetektor und einem mittels einer Einstellvorrichtung an die Strahlungsdosis anpaßbaren Impulsratenwandler
DE2635223A1 (de) * 1976-08-05 1978-02-09 Herfurth Gmbh Schaltungsanordnung zur messung ionisierender strahlung
DE2918611C2 (de) * 1979-05-09 1985-01-10 Graetz Gmbh & Co Ohg, 5990 Altena Gerät zur Messung einer ionisierenden Strahlung mit einer daran anschließbaren Meßsonde und Verfahren zur Einstellung eines Widerstandes der Meßsonde
US4373810A (en) * 1980-06-06 1983-02-15 Shreve James S Automated exposure-contrast control index meter

Also Published As

Publication number Publication date
EP0250757A2 (de) 1988-01-07
DE3615054C2 (de) 1989-02-23
DE3615054A1 (de) 1987-11-05
DE3787574D1 (de) 1993-11-04
EP0250757A3 (de) 1991-10-09

Similar Documents

Publication Publication Date Title
EP1192614B1 (de) Messumformer mit korrigiertem ausgangssignal
DE3219810C2 (de)
DE3404066C2 (de)
EP0029569B1 (de) Verfahren und Gerät zur Korrektur der räumlichen Verzerrung einer Szintillationskamera
EP0274767B1 (de) Verfahren und Schaltungsanordnung zur Ermittlung der Stellung des Abgriffes eines Widerstandsferngebers
DE3151743A1 (de) Messgeraet mit vielelementenfuehler
DE3446248A1 (de) Sensor zur messung physikalischer groessen und verfahren zum abgleich des sensors
DE68927168T2 (de) Kontrolle und schutz vor fehlern von hochspannungsschaltvorrichtungen
DE3116079A1 (de) Pruefsystem
DE20210645U1 (de) Prüfgerät mit integrierter Signalverarbeitung
DE3544095C2 (de)
EP0866976B1 (de) Elektronische messeinrichtung
EP0250757B1 (de) Strahlungsmesseinrichtung für Photonen-und/oder Korpuskularstrahlungen
DE3634052C2 (de)
DE4016922C2 (de)
DE69430268T2 (de) Verfahren und vorrichtung zur messung von röntgenstrahlen
DE3327263A1 (de) Messsystem mit verbesserter zuverlaessigkeit
DE3112286C2 (de)
DE3514371A1 (de) Elektronischer energiezaehler fuer elektrische energie
EP0877261B1 (de) PC basiertes Dosis/Dosisleistungsmesseinrichtung für ionisierende Strahlung
DE19531386C2 (de) Auswerteschaltung für einen Dickfilm-Drucksensor
DE1671439A1 (de) Anordnung zur Messung der Stromstaerke an den einzelnen Elektroden von Elektrolysezellen
DE2918611C2 (de) Gerät zur Messung einer ionisierenden Strahlung mit einer daran anschließbaren Meßsonde und Verfahren zur Einstellung eines Widerstandes der Meßsonde
DE3634053A1 (de) Verfahren und schaltungsanordnung zur messung der widerstandswerte zweier in reihe geschalteter sensorwiderstaende
DE1591978B2 (de) Verfahren und Gerät zum Messen des Rauschens eines aktiven Vierpols

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870428

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 19930201

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930929

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3787574

Country of ref document: DE

Date of ref document: 19931104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000404

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000412

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000417

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST