EP0247367A1 - Procédé pour régler une installation magnétique pour l'autoprotection servant à la compensation du champs magnétique perturbateur d'un véhicule, notamment un navire - Google Patents

Procédé pour régler une installation magnétique pour l'autoprotection servant à la compensation du champs magnétique perturbateur d'un véhicule, notamment un navire Download PDF

Info

Publication number
EP0247367A1
EP0247367A1 EP87106093A EP87106093A EP0247367A1 EP 0247367 A1 EP0247367 A1 EP 0247367A1 EP 87106093 A EP87106093 A EP 87106093A EP 87106093 A EP87106093 A EP 87106093A EP 0247367 A1 EP0247367 A1 EP 0247367A1
Authority
EP
European Patent Office
Prior art keywords
coil
field
mes
data
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87106093A
Other languages
German (de)
English (en)
Other versions
EP0247367B1 (fr
Inventor
Johann Dr. Flecken
Rudolf Dipl.-Ing. Kock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesrepublik Deutschland Vertr Durch D Bundesm D Vert Vertr Durch Den Pras D Bundesamt fur Wehrtech U Beschaffung
Bundesrepublik Deutschland
Original Assignee
Bundesrepublik Deutschland Vertr Durch D Bundesm D Vert Vertr Durch Den Pras D Bundesamt fur Wehrtech U Beschaffung
Bundesrepublik Deutschland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesrepublik Deutschland Vertr Durch D Bundesm D Vert Vertr Durch Den Pras D Bundesamt fur Wehrtech U Beschaffung, Bundesrepublik Deutschland filed Critical Bundesrepublik Deutschland Vertr Durch D Bundesm D Vert Vertr Durch Den Pras D Bundesamt fur Wehrtech U Beschaffung
Publication of EP0247367A1 publication Critical patent/EP0247367A1/fr
Application granted granted Critical
Publication of EP0247367B1 publication Critical patent/EP0247367B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G9/00Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
    • B63G9/06Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines for degaussing vessels

Definitions

  • Every ship equipped with an MES system initially experiences a basic (initial) setting of the MES system based on a so-called magnetic measurement, in which an optimal compensation value is achieved by setting suitable winding currents.
  • the MES system then switched on controls the currents in the individual coils while driving so that the set compensation for the interference field is retained.
  • each ship must be magnetically measured again at certain intervals and the MES system may have to be readjusted accordingly (setting control).
  • the settings are disproportionately complex due to the strong magnetic interactions between the individual coils (and partial coils) of the MES system. Because of the irregular geometric shapes of the coils, the problem also eludes simple mathematical calculation methods, especially as far as the influence of ferromagnetic internals on the gastric field of the coils (real effects) is concerned. In addition, erroneous geometric data for specifying the coil position in the ship limit the usefulness of field calculations.
  • the invention has for its object to carry out the setting of the MES system of a vehicle with automatically obtained values for the compensation currents so that it is as realistic as possible and therefore accurate, so that the lowest possible mine threat is achieved.
  • This object is achieved in a method for setting an MES system for compensating for the magnetic interference field of a vehicle, in particular the ship according to the invention, in that - Each individual coil is acted upon by a standard current in a predetermined direction and at least one component of the associated magnetic field is measured, and that -
  • a first algorithm when correcting position coordinate errors - the "winding effect" of each coil, ie the difference between the real coil, whose field is influenced by ferromagnetic masses, and the corresponding undisturbed coil field (air flow) is determined iteratively and that -
  • optimal currents for approximating the coil system field to the vehicle interference field to be compensated are determined in a second algorithm.
  • FIG. 1-3 shows the large-scale, three-axis coil system of an MES system of a ship 1 (as an example of a vehicle as a ferromagnetic interference body).
  • This coil system consists of coils 3, 4, 5 in the three orthogonal axes.
  • Each coil 3 or 4 or 5 is usually divided into three sub-coils, which are no longer shown.
  • One coil serves to compensate for a permanent interference field component (and is fed with permanent current).
  • a second coil section is used to compensate for an interference field component induced by the earth field (and is supplied with current depending on the earth field and the course).
  • the X-Y-Z coordinate system is assumed to be fixed, i.e. is aimed at the generator of the magnetic interference field - in the exemplary embodiment the ship 1.
  • the coils are in turn named according to their main magnetic direction effects.
  • the coils 3 according to FIG. 1, which are parallel to the Y-Z plane, are the L coils (L-MES winding), whose magical axes of action lie in the longitudinal direction of the ship (X) (L corresponds to longitudinal).
  • the coils 4 according to FIG. 2 (only one is shown), which lie parallel to the X-Y plane, are the V-coils (V-MES winding) with vertical magnetic axes (V corresponds to vertical). 3, which are parallel to or in the X-Z plane, are the A-coils (A-MES winding) with the magnetic direction of action in the Y-direction (A corresponds to athwort-ship).
  • the coils 3, 4, 5 are fed with direct currents in different directions.
  • the positive current directions result from the positive directions of the coordinate system shown in FIG. 1.
  • the currents are set so that the interference field is optimally compensated for the magnetic field of the hull.
  • a controller ensures that the set current values are retained.
  • the invention relates to the magnetic measurement of a ship.
  • This measurement is carried out in the usual way that, according to FIG. 4, the ship 1 is brought into a measurement system with a measuring carpet of magnetic field measuring probes 2 and the coil currents are set in such a way that the interference field is optimally compensated for.
  • the determination of the optimal coil currents in the shortest possible time is the typical problem of magnetic measurement.
  • the measuring probes 2 are arranged in two different measuring levels in order to be able to make a statement at different measuring depths.
  • the measuring probes record the magnetic interference field of the ship 1 in size and direction.
  • the interference field of the ship 1 to be compensated is measured.
  • the interference field measured values are saved.
  • all the coils 3, 4, 5 of the MES system are charged with a current of a defined size and direction (standard current) and the magnetic interference fields of the respectively charged coils 3 or 4 or 5 are measured.
  • winding effect also called winding coefficient
  • the proportional change P i, k of the undisturbed coil field is referred to in the magnetics as the "winding effect".
  • this term also includes errors in the coil geometries.
  • the influence of errors in the coil geometry is generally of a disproportionate, ie serious, nature; these errors must therefore be “corrected”.
  • the “winding effect” thus corrected is then called the "winding coefficient”.
  • the magnetic field of a system consisting of several, in total Nsp coils, is obtained by summing up the fields of the individual coils at a point n according to location:
  • the algorithm should now - the position coordinate (nonlinear influencing variable) and - the proportionality parameter P i, k (linear influencing variable) Determine for each individual coil 3 or 4 or 5 of the system in such a way that the unit field measured values Bk n, i are approximated as closely as possible at the measurement locations Xm n, i .
  • an extended minimum least squares approach of the following form is used:
  • the measurement value scatter ⁇ serves as a weighting variable and has the effect that measurement values are taken into account less the larger their scatter.
  • the formula (1.11) represents a system of equations with which improvements ⁇ U can be calculated for a predefined approximation of the sought quantities U o (winding coefficients and coil position).
  • Formula (1.8) then gives the improved quantities U o + 1 , which in turn lead to the calculation of new improvements ⁇ U o + 1 .
  • This iteration - using convergence-securing procedures - must be repeated until a minimum of the mean square of error has been established or until two successive approximations no longer differ significantly from one another.
  • the result then consists in a corrected coil position coordinates and in the winding coefficients Pi for the respectively examined coil 3 or 4 or 5.
  • the compensation currents are now to be determined, ie the task of determining the currents I k in the individual coils of an MES coil system is concerned, so that the magnetic interference field measured in the "unprotected vehicle" state is canceled as well as possible .
  • the measured values are now also subject to a scatter ⁇ n, i ; the underlying measurement error distribution is normal with the mean o.
  • the sought compensation currents in the coils 3, 4, 5 are intended to generate a magnetic field which approximates or eliminates the measured interference field at the locations Xm in the sense of the smallest square of the error.
  • the process is repeated:
  • RS n, i represents the magnetic field generated by all coils of the system in the N measuring points; if you use the formula expression (1.6), the mean square of the error becomes:
  • the currents I k are obviously a linear influencing variable; the minimum of the mean square of the error is thus without iteration for a.
  • the method according to the invention determines the "winding effects", i.e. a value that takes into account the realities of the ship, which depends on the material properties of the outer wall to be penetrated in real terms and the real built-in parts, as well as obtaining a correction for inaccurate coil geometry data.
  • the winding effect ultimately describes the difference between a real coil 3 or 4 or 5 located in the ship 1, the field of which is changed by the ferromagnetic masses of built-in parts and the outer skin and a correspondingly undisturbed coil field (air coil).
  • the compensation that can be achieved by the method according to the invention is better adapted to reality (which cannot be represented so comprehensively in a mathematical model), ie it is essential Lich more precisely, especially since coil errors are also detected or corrected, which likewise cannot be taken into account in the case of a mathematical model.
  • Compensation currents are determined from the measured interference field of the ship 1 with the aid of the winding effects.
  • the super-positioned field of the individual MES coils gives the measured interference field with the opposite sign after one or more optimization steps (computational optimization).
  • the individual correction MES currents are thus determined, which must be added to the previously set MES currents with the correct sign.
  • the mutual influence of the coil fields is sufficiently known by measuring the coil fields with a measuring carpet and can be taken into account accordingly; so the risk of overcompensation has been countered.
  • essential data are stored in a database, for example the winding currents causing the compensation according to size and direction (switching state of the coils), the (corrected) coil data, the winding effects.
  • the induced fields not only have information value, but can also be used to determine errors.
  • the transmission functions for the compensation of the horizontal and vertical induced fields, once determined for a ship, are fixed and are only dependent on the disturbances "course" and "area of application”.
  • the MES control system is responsible for correcting the course dependency. If the area of application changes, the feeds of the MES to compensate for the induced components are easy to determine. If extensive conversions have been carried out on a ship, the induced field determination must be carried out again.
  • FIG. 5 shows a data flow plan "database creation" for a ship database 11.
  • This data flow plan contains, in addition to the actual technical values, also the necessary secondary data, steps for data checking and data management.
  • the identifiers and secondary data for statistical and control purposes are created, and thus a "profile ship".
  • a downstream test unit 7 checks the data for completeness and timeliness.
  • the data can be forwarded from the test device 7 to a document output 8 or a data management 9.
  • the data management 9 provides information for the surveyors and tests and plausibility checks of the measurements are carried out.
  • the data management 9 works together with a unit 10 containing the measurement program and the ship database 11.
  • the boat database 11 contains the identifiers, coil data, winding effects and the PJ separation.
  • the data flow is indicated by arrows between the different device units.
  • the switching states and coil currents of the MES system are transmitted to the measuring point 12 and measured with the ones stored in the ship database 11 until the measurement of the ship 1, as shown in FIG then compared current values.
  • MES setting The associated data flow diagram "MES setting" is shown in FIG. 7, with measured value transmission positions being identified by lightning symbols.
  • the ship is then measured with the MES system switched on and, if necessary, the information from the database is used to recalculate or reset the MES compensation currents in accordance with the method described in the third step of the initial setting with a subsequent control measurement to determine whether the desired minimization has been achieved an update of the ship's database.
  • the magnetic measurement and recording of the data can take place in a stationary system or in an overflow process in a land or ship-based probe system, with distance determination.
  • the setting data is expediently transferred using a display.
  • the setting data is expediently transferred to the automatic control cabinet in the ship or to the MES on-board computer.
  • the number of measurements can be limited to an arrival and a discharge measurement.
  • the MES systems it is advantageously possible for the MES systems to be set quickly, precisely and reproducibly even at measuring points which do not have a measuring carpet, or the method allows MES setting with a mobile measuring system, i.e. from a surveying ship with a route determination for the object to be surveyed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measuring Magnetic Variables (AREA)
  • Ticket-Dispensing Machines (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Magnetic Ceramics (AREA)
EP19870106093 1986-04-29 1987-04-27 Procédé pour régler une installation magnétique pour l'autoprotection servant à la compensation du champs magnétique perturbateur d'un véhicule, notamment un navire Expired - Lifetime EP0247367B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3614527 1986-04-29
DE19863614527 DE3614527A1 (de) 1986-04-29 1986-04-29 Verfahren zur einstellung einer magnetischen eigenschutz (mes) - anlage zur kompensation des magnetischen stoerfeldes eines fahrzeuges, insbesondere schiffes

Publications (2)

Publication Number Publication Date
EP0247367A1 true EP0247367A1 (fr) 1987-12-02
EP0247367B1 EP0247367B1 (fr) 1991-02-27

Family

ID=6299803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870106093 Expired - Lifetime EP0247367B1 (fr) 1986-04-29 1987-04-27 Procédé pour régler une installation magnétique pour l'autoprotection servant à la compensation du champs magnétique perturbateur d'un véhicule, notamment un navire

Country Status (3)

Country Link
EP (1) EP0247367B1 (fr)
DE (1) DE3614527A1 (fr)
NO (1) NO871767L (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013801A1 (fr) * 1990-03-16 1991-09-19 Thomson-Csf Procede de compensation automatique des aimantations induites par le champ magnetique terrestre dans des materiaux ferromagnetiques, notamment compris dans un batiment naval
FR2679514A1 (fr) * 1991-07-23 1993-01-29 Thomson Csf Station portable de mesure et de reglage de la signature magnetique d'un batiment naval.
EP0901959A1 (fr) * 1997-09-12 1999-03-17 Thomson Marconi Sonar Sas Procédé pour minimiser la signature magnétique d'un bâtiment naval
WO2022094672A1 (fr) * 2020-11-05 2022-05-12 Mission Systems Holdings Pty Ltd. Dispositif et procédé de désactivation d'une mine sous-marine, transport sous-marin et procédés associés

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3936985C2 (de) * 1989-11-07 1994-12-22 Bundesrep Deutschland Verfahren und Vorrichtung zur Kompensation von objekteigenen magnetischen Störfeldern, insbesondere bei Schiffen, mittels feldgeregelter magnetischer Eigenschutzanlage
SE9301426D0 (sv) * 1993-04-28 1993-04-28 Asea Brown Boveri Ab Aktiv daempning av kraftfrekventa magnetfaelt
DE102018003250B3 (de) 2018-04-20 2019-06-19 Bundesrepublik Deutschland, vertr. durch das Bundesministerium der Verteidigung, vertr. durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr Verfahren zur magnetischen Signaturvermessung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024307A1 (fr) * 1979-07-24 1981-03-04 Licentia Patent-Verwaltungs-GmbH Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique
FR2510805A1 (fr) * 1981-06-06 1983-02-04 Licentia Gmbh Dispositif de compensation des champs magnetiques de corps mobiles
EP0217712A1 (fr) * 1985-09-27 1987-04-08 Thomson-Csf Dispositif de désaimantation notamment pour bâtiments navals
WO1987002324A1 (fr) * 1985-10-18 1987-04-23 The Secretary Of State For Defence In Her Britanni Systeme magnetique a reglage automatique utilise pour la demagnetisation des navires

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3132933C2 (de) * 1981-08-20 1984-09-06 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur Bestimmung der Wicklungsströme in magnetischen Eigenschutz (MES)-Anlagen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024307A1 (fr) * 1979-07-24 1981-03-04 Licentia Patent-Verwaltungs-GmbH Dispositif pour la compensation du champ magnétique parasite d'un objet à l'aide d'une installation d'auto-protection magnétique
FR2510805A1 (fr) * 1981-06-06 1983-02-04 Licentia Gmbh Dispositif de compensation des champs magnetiques de corps mobiles
EP0217712A1 (fr) * 1985-09-27 1987-04-08 Thomson-Csf Dispositif de désaimantation notamment pour bâtiments navals
WO1987002324A1 (fr) * 1985-10-18 1987-04-23 The Secretary Of State For Defence In Her Britanni Systeme magnetique a reglage automatique utilise pour la demagnetisation des navires

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 24 (E-377)[2081], 30. Januar 1986; & JP-A-60 182 706 (SHIMAZU SEISAKUSHO K.K.) 18-09-1985 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013801A1 (fr) * 1990-03-16 1991-09-19 Thomson-Csf Procede de compensation automatique des aimantations induites par le champ magnetique terrestre dans des materiaux ferromagnetiques, notamment compris dans un batiment naval
FR2659787A1 (fr) * 1990-03-16 1991-09-20 Thomson Csf Procede de compensation automatique des aimantations induites par le champ magnetique terrestre dans les materiaux ferromagnetiques, notamment compris dans un batiment naval.
FR2679514A1 (fr) * 1991-07-23 1993-01-29 Thomson Csf Station portable de mesure et de reglage de la signature magnetique d'un batiment naval.
WO1993001971A1 (fr) * 1991-07-23 1993-02-04 Thomson-Csf Station portable de mesure et de reglage de la signature magnetique d'un batiment naval
EP0901959A1 (fr) * 1997-09-12 1999-03-17 Thomson Marconi Sonar Sas Procédé pour minimiser la signature magnétique d'un bâtiment naval
FR2768394A1 (fr) * 1997-09-12 1999-03-19 Thomson Marconi Sonar Sas Procede pour minimiser la signature magnetique d'un batiment naval
WO2022094672A1 (fr) * 2020-11-05 2022-05-12 Mission Systems Holdings Pty Ltd. Dispositif et procédé de désactivation d'une mine sous-marine, transport sous-marin et procédés associés
AU2021375080B2 (en) * 2020-11-05 2023-11-23 Mission Systems Holdings Pty Ltd. A device and method for disabling an undersea mine, an underwater transport and methods therefor

Also Published As

Publication number Publication date
DE3614527A1 (de) 1987-11-05
DE3614527C2 (fr) 1990-12-13
NO871767L (no) 1987-10-30
NO871767D0 (no) 1987-04-28
EP0247367B1 (fr) 1991-02-27

Similar Documents

Publication Publication Date Title
DE69013108T2 (de) Gleichstromortungsmessanordnung.
DE3109779C2 (fr)
DE69323514T2 (de) Mess-/Anordnung und -verfahren ab Grundniveau für Hochspannungsluftleitungen
DE4439691A1 (de) Verfahren zur Bestimmung der räumlichen Feldverteilung
DE2203624C2 (de) Eichverfahren und Eichsystem für Magnetfelddetektoren
DE69202178T2 (de) Verfahren und System zum Abgleich der Einrichtungen an Bord eines Fahrzeugs unter Verwendung von Mitteln zur Messung des irdischen Schwere- und Magnetfelds.
DE3734057C2 (fr)
EP0791169B1 (fr) Procede de stabilisation de la direction indiquee par des compas magnetiques
EP0247367B1 (fr) Procédé pour régler une installation magnétique pour l'autoprotection servant à la compensation du champs magnétique perturbateur d'un véhicule, notamment un navire
EP0249838B1 (fr) Equipement pour commander une installation magnétique pour l'autoprotection
DE1623382B1 (de) Vorrichtung und anordnung zur kompensation magnetischer eigen störfelder für ein von einem fahrzeug getragenes magnetometer
EP0457200A2 (fr) Méthode pour la mesure des angles et des caractéristiques d'angles utilisant un gyroscope
DE69202861T2 (de) Verfahren zur Eigenüberwachung und Steuerung der magnetischen Immunisations eines Schiffes.
DE2552397C1 (de) Anordnung von einer oder mehreren Magnetometer-Sonden
DE3132933C2 (de) Verfahren zur Bestimmung der Wicklungsströme in magnetischen Eigenschutz (MES)-Anlagen
DE3936985C2 (de) Verfahren und Vorrichtung zur Kompensation von objekteigenen magnetischen Störfeldern, insbesondere bei Schiffen, mittels feldgeregelter magnetischer Eigenschutzanlage
DE69001376T2 (de) Navigationshilfsvorrichtung und terrestrisches navigationssystem.
DE977846C (de) Verfahren zur Kompensation der magnetischen Erdfeldstoerung durch Schiffe
DE3904936B3 (de) Verfahren zur magnetischen Immunisierung, insbesondere für Schiffsaufbauten
DE977817C (de) Einrichtung zur Kompensation des magnetischen Wirbelstromstoerfeldes, das durch einen metallischen Hohlkoerper bei dessen Bewegung im Erdfeld entsteht
DE3134811C1 (de) Anordnung zur Bestimmung des räumlichen Verlaufs von magnetischen Feldgradienten
DE69100832T2 (de) Verfahren zur automatischen kompensation des durch das magnetische feld der erde induzierten magnetismusses eines ferromagnetischen stoffes, insbesondere eines schiffes.
LU503815B1 (de) Verfahren und Mess-Anordnung zur Messung der Stromstärke eines durch einen Leiter fließenden elektrischen Stroms
DE19704956C1 (de) Anordnung und Verfahren zum Messen der Richtung des Erdmagnetfeldes
DE112017004617T5 (de) Verfahren zum Bestimmen einer Abtastimpedanz in einem kapazitiven Schutz-Abtast-Sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR GB GR IT NL SE

17P Request for examination filed

Effective date: 19880506

17Q First examination report despatched

Effective date: 19900731

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR GB GR IT NL SE

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910430

Year of fee payment: 5

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940411

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940418

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951229

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950427

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050427