EP0245164B1 - Joule-Thomson-Kühler - Google Patents

Joule-Thomson-Kühler Download PDF

Info

Publication number
EP0245164B1
EP0245164B1 EP19870401003 EP87401003A EP0245164B1 EP 0245164 B1 EP0245164 B1 EP 0245164B1 EP 19870401003 EP19870401003 EP 19870401003 EP 87401003 A EP87401003 A EP 87401003A EP 0245164 B1 EP0245164 B1 EP 0245164B1
Authority
EP
European Patent Office
Prior art keywords
obturator
cooler
orifice
cooler according
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870401003
Other languages
English (en)
French (fr)
Other versions
EP0245164A1 (de
Inventor
Serge Reale
Alain Faure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP0245164A1 publication Critical patent/EP0245164A1/de
Application granted granted Critical
Publication of EP0245164B1 publication Critical patent/EP0245164B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/02Gas cycle refrigeration machines using the Joule-Thompson effect
    • F25B2309/022Gas cycle refrigeration machines using the Joule-Thompson effect characterised by the expansion element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention relates to Joule-Thomson coolers of the type comprising a high pressure line terminating in an expansion orifice which opens into a low pressure discharge circuit in heat exchange relation with the high pressure line, a shutter for this orifice and actuating means for moving the shutter from a first position where the expansion orifice is free to a second position where this orifice is masked by a surface leaving a leakage passage at the periphery of the orifice whose section is sufficient to keep the device cold.
  • Joule-Thomson coolers of the aforementioned type have been proposed.
  • advantage is taken of the differential contraction of two elements to ensure the reduction of the flow rate at the end of the cooling period, which makes it possible to lower the final temperature and increase the autonomy of the device.
  • the object of the invention is to provide a Joule-Thomson cooler which, at the same time, makes it possible to obtain a cold temperature very close to the normal boiling point of the gas used, has a very short cooling time and has a very long operating autonomy, while having a relatively simple structure with a single high pressure circuit.
  • the subject of the invention is a Joule-Thomson cooler of the aforementioned type, characterized in that said actuating means are adapted to abruptly move the shutter from its first position to its second position at the end of cooling. of the cooler and comprise a spring urging the shutter towards its second position, means for retaining the shutter in its first position against this spring during the cooling of the cooler, and means for releasing the spring in end of cooling.
  • the expansion orifice opens into a sheath in which the shutter, constituted by a needle, is slidably mounted with a clearance, when cold, of the order of a few microns.
  • the expansion orifice opens into a sheath in which the shutter, constituted by a cylinder provided with a lateral recess, is rotatably mounted with a clearance, when cold, of the order of a few microns .
  • the cooler is of the type in which the high-pressure line is wound in a helix around a tubular core
  • the actuating means of the shutter it is advantageous for the actuating means of the shutter to be housed in the core or in a head which extends it.
  • Figure 1 shows the expansion port 1 of a Joule-Thomson cooler according to the invention, during its cooling phase.
  • This orifice has a small diameter D, for example 0.1 mm. It is supplied with gas under high pressure, for example under a pressure greater than 500 bars, and opens freely into a space 2 which is part of the device's low pressure circuit.
  • the expression "opens freely” means that the closest surface located opposite the orifice 1 is at a distance from the latter considerably greater than the diameter D, so that the effective cross-section of the expanded gas is the section of orifice 1, i.e. n D2 / 4.
  • the pressure drop from space 2 to the surrounding atmosphere is relatively high, for example the order of a few bars.
  • the limit temperature is quickly reached in space 2, but this temperature is about 5 to 10 ° higher than the normal boiling temperature of the gas used.
  • Figures 3 to 10 illustrate several embodiments enabling the principle illustrated in Figures 1 and 2 to be implemented.
  • the cooler shown in FIGS. 3 and 4 is of revolution about an axis XX, assumed to be vertical for the convenience of the description, and comprises an inner tubular core 5 open at its upper end and an outer double jacket 6 insulated under vacuum and forming Dewar.
  • An upper head 7 in the form of an inverted cup closes the interior space of the core 5 and the annular space 8 comprised between the core 5 and the casing 6; the space 8 however communicates with the surrounding atmosphere through a series of holes 9 passing through the head 7.
  • the upper diameters of the core 5 and of the casing 6 are approximately 2.5 mm and approximately 5 mm, respectively.
  • the core 5 has a bottom 10 on which a sheath 11 of axis X-X projects downwards.
  • a high pressure pipe 12 consisting of a tube carrying a helical fin, is helically wound over the entire length of the core 5, in contact with the latter and with the inner wall of the casing 6; its upper end passes through the head 7 and is connected to a source of compressed gas under high pressure (not shown), and its lower end 13 is fixed in a downwardly inclined bore which is provided in the wall of the sleeve 11 and the inner part, of reduced diameter, forms the relief orifice 1.
  • the inner wall of the envelope 6 carries at its lower end a bottom 14 on which is fixed in heat exchange contact an element 15 to be cooled, which can be for example an infrared detector and which is located in the vacuum space of the Dewar. Between the bottoms 10 and 14 is thus delimited a cooling chamber 16 which constitutes the coldest part of the device and corresponds to the space 2 in FIG. 1.
  • a rod 17 is slidably mounted inside the core 5.
  • This rod carries at its lower end a shutter needle 18 and, at its upper end, an electromagnet plunger 19.
  • the needle 18 slides with narrow adjustment in the sleeve 11, that is to say with a clearance which, taking into account the coefficients of expansion, is, on the diameter, of the order of a few microns for the cold operating temperature of the cooler.
  • a clearance which, taking into account the coefficients of expansion, is, on the diameter, of the order of a few microns for the cold operating temperature of the cooler.
  • the needle is made of 100 C 6 steel and the sheath is made of bronze-beryllium, there will be a clearance, on the diameter, of 5 to 6 microns at room temperature, which corresponds to a clearance, on the diameter , from 2 to 3 microns at a cold temperature of around 90 K.
  • the plunger 19 slides in the head 7. Around the latter is arranged an electromagnet winding 20, the terminals 21, 22 of which are adapted to be connected to the terminals of a direct current source (not shown). A spring 23 is compressed axially between the bottom of the head 7 and the plunger 19. The rod 17 is guided on the one hand by the needle 18 and on the other hand by the plunger 19.
  • the device At rest, the device is in the state shown in Figure 4: the electromagnet is not supplied with electric current, so that the spring 23 is relaxed and pushes down the rod 17 to a stop position where the needle 18 closes the orifice 1 to the nearest sliding clearance (5 to 6 microns on the diameter since the device is at room temperature).
  • the high pressure gas is sent into the line 12 and is expanded at a high flow rate through the passage of the orifice 1.
  • the expanded and, consequently, cooled gas rises between the turns of the line 12 until it is evacuated into the surrounding atmosphere through the orifices 9, by cooling the high pressure gas.
  • the temperature of the expanded gas decreases more and more, until the appearance of liquid in the chamber 16, on the bottom 14.
  • the electrical supply to the winding 20 is then cut off, for example by means of a timer, so that the spring 23 instantly returns the rod 17 to its initial position in FIG. 2: the needle 18 closes the orifice 1 and , being repelled laterally by the gas jet leaving this orifice, is at a distance therefrom (FIG. 2) equal to the diametral clearance at low temperature, ie 2 to 3 microns with the numerical values indicated above.
  • the flow rate is thus reduced to a low value but sufficient to ensure that the device is kept cold; the pressure drop of the low pressure circuit is reduced by the same amount, the temperature of the liquid contained in chamber 16 descends to a value close to the boiling point at atmospheric pressure of the gas used.
  • the gas flow rate is very low, the device can be kept cold for an extended period of time.
  • the cooler illustrated in FIGS. 5 and 6 differs from the previous one only in the following points: the winding 20 is eliminated, and the head 7 has a planar shape.
  • the rod 17 is shortened and the plunger 19, which has only a guiding role, slides in the core 5.
  • Under the head 7 is provided a fusible wire 24 which, at rest and during the cooling phase , maintains the rod 17 in the high position against the spring 23 ( Figure 5).
  • a voltage is applied between the two ends 25, 26 of the wire 24, outside the head. This causes the wire to melt, and the spring 23 instantly pushes the needle 18 back into the low position for closing the orifice 1 (FIG. 6).
  • FIGS. 7 and 9 another embodiment of the cooler according to the invention is shown, the head 7 of which is the same as in FIGS. 3 and 4.
  • the sleeve 11 forms a tube partially threaded in the 'lower end of the core 5, which is constituted by a tubular section.
  • a cylindrical shutter 18 A In the bore of the sleeve is rotatably mounted, with a small clearance of the same order as before, a cylindrical shutter 18 A.
  • This shutter has in its lower part a wedge groove 27 contained in a diametral plane, with U-shaped cross section ( Figure 9) and triangular longitudinal section ( Figure 7).
  • the bottom of the groove 27 is inclined at 45 ° , parallel to the axis of the orifice 1, and extends from the lateral surface of the shutter to its end face.
  • the shutter 18 A is connected by a rod 17 A provided with an intermediate guide bulge 28 to the rotor 19 A of a stepping electric motor.
  • This rotor is contained in the head 7 and the stator 20 A of the motor is arranged around this head, as in FIGS. 3 and 4.
  • a torsion spring 23 A is fixed by one end to the rotor 19 A and by its other end to head 7.
  • the stator 20 A At rest, the stator 20 A is not supplied, and the spring 23 A is relaxed.
  • the angular position of the rod 17 A is such that the groove 27 is angularly offset relative to the orifice 1, as shown at 27 1 in FIG. 9.
  • the orifice 1 is thus closed, with a small diametral clearance of 5 to 6 microns.
  • the stator 20 A is supplied, which causes the rotor 19 A to rotate against the spring 23 A and brings the groove 27 opposite the orifice 1, as indicated in 27 2 at FIG. 9.
  • the orifice 1 is then released, and the high pressure gas sent into the line 12 expands at a high rate in the chamber 16, the jet being directed directly onto the bottom 14 of the Dewar.
  • FIGS. 8 and 9 (of which only the core 5 has been shown) is generally similar to the previous one, but the means for actuating the shutter 18 A are different: the upper end of the rod 17 A is fixed to the head 7, which is flat as in FIGS. 5 and 6, and its downstream part, from the bulge 28 to the shutter, is replaced by a bimetallic strip 29.
  • this bimetal strip consists of two plates of the same dimensions fixed to each other: a thin plate 30 of high-strength alloy, for example made of beryllium-bronze, twisted helically at rest. , and a significantly thicker plate 31 made of a so-called "shape memory" alloy.
  • a shape memory alloy is an alloy which undergoes a martensitic transformation at a determined temperature, this transformation being accompanied by great plasticity. For the low temperatures considered, it may in particular be a copper-zinc-aluminum alloy.
  • the wafer 31 behaves like an ordinary wafer. If the wafer 30 is fixed on it, by straightening it elastically, the assembly has the planar shape shown in FIG. 8.
  • the bimetallic strip 29 could be placed in the hot part of the refrigerator and be triggered by heating, for example by the Joule effect. It would then be necessary to choose for the wafer 31 an alloy having a martensitic transformation temperature greater than 0 ° C., for example a titanium-nickel alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Claims (10)

1. Joule-Thomson-Kühler mit einer Hochdruckleitung (12), die in einer Entspannungsöffnung (1) endet, welche in einem Niederdruckentleerungskreis im Wärmeaustausch mit der Hochdruckleitung mündet, einer Verschlußvorrichtung (18; 18A) für diese Öffnung und mit Betätigungsmitteln (19, 20, 23; 23, 24; 19A, 20A, 23A; 29) zum Verschieben der Verschlußvorrichtung aus einer ersten Position, wo die Entspannungsöffnung frei ist, zu einer zweiten Position, wo diese Öffnung durch eine Fläche abgedeckt ist, welche am Umfang der Öffnung einen Leckagedurchgang weiterbestehen läßt, dessen Querschnitt ausreicht, um das Kalthalten der Vorrichtung sicherzustellen, dadurch gekennzeichnet, daß die Betätigungsmittel geeignet ausgestaltet sind für das abrupte Verschieben der Verschlußvorrichtung aus ihrer ersten Stellung in ihre zweite Stellung, um den Kühler auf Kälte zu bringen, und eine Feder (23; 23A; 30), welche die Verschlußvorrichtung gegen ihre zweite Stellung belastet, Mittel (19, 20; 24; 19A, 20A; 31) zum Zurückhalten der Verschlußvorrichtung in ihrer ersten Stellung entgegen der Feder, während der Kühler auf Kälte gebracht wird, und Mittel (21, 22; 25, 26; 31) aufweisen, um die Feder für das Aufkältebringen freizugeben.
2. Kühler nach Anspruch 1, dadurch gekennzeichnet, daß die Betätigungsmittel (19, 20, 23; 19A, 20A, 23A; 29) Mittel zum Zurückbringen der Verschlußvorrichtung (18; 18A) aus der zweiten Stellung in die erste Stellung aufweisen.
3. Kühler nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Fläche gemäß einer Richtung beweglich ist, welche mit der Achse der Entspannungsöffnung (1) einen Winkel bildet.
4. Kühler nach Anspruch 3, dadurch gekennzeichnet, daß die Entspannungsöffnung (1) in einer Hülse (11A) mündet, in welcher die Verschlußvorrichtung (18), die aus einer Nadel besteht, gleitend mit Spiel, kalt, in der Größenordnung von einigen Mikron angebracht ist.
5. Kühler nach Anspruch 3, dadurch gekennzeichnet, daß die Entspannungsöffnung (1) in einer Hülse (11) mündet, in welcher die Verschlußvorrichtung (18A), die aus einem Zylinder besteht, der mit einer seitlichen Aussparung (27) versehen ist, rotatorisch mit Spiel, kalt, in der Größenordnung von einigen Mikron angebracht ist.
6. Kühler nach einem der Ansprüche 4 und 5, dadurch gekennzeichnet, daß die Verschlußvorrichtung (18; 18A) durch eine Stange (17, 17A) getragen ist, welche sich bis zum warmen Teil des Kühlers erstreckt, wobei die Betätigungsmittel (19, 20, 23; 23, 24; 19A, 20A, 23A) in diesem warmen Teil vorgesehen sind.
7. Kühler nach Anspruch 6, dadurch gekennzeichnet, daß die Rückhaltemittel einen Elektromagneten (19, 20; 19A, 20A) aufweisen.
8. Kühler nach Anspruch 6, dadurch gekennzeichnet, daß die Rückhaltemittel einen Schmelzdraht (24) aufweisen.
9. Kühler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Rückhaltemittel ein Element (31) aus Material mit Formgedächtnis aufweisen.
10. Kühler nach einem der Ansprüche 7 bis 9, in welchem die Hochdruckleitung (12) im Schraubengang um einen rohrförmigen Kern (5) aufgerollt ist, dadurch gekennzeichnet, daß die Feder (23; 23A) und das bewegliche Element (19; 19A) des Elektromagneten respektive die Feder (23) und der Schmelzdraht (24) respektive das Element (31) aus Material mit Formgedächtnis (31) und die Feder (30) in dem Kern (5) oder in einem Kopf (7) angeordnet sind, welcher diesen verlängert.
EP19870401003 1986-05-05 1987-04-30 Joule-Thomson-Kühler Expired - Lifetime EP0245164B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8606440A FR2598206B1 (fr) 1986-05-05 1986-05-05 Refroidisseur joule-thomson.
FR8606440 1986-05-05

Publications (2)

Publication Number Publication Date
EP0245164A1 EP0245164A1 (de) 1987-11-11
EP0245164B1 true EP0245164B1 (de) 1990-11-07

Family

ID=9334910

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870401003 Expired - Lifetime EP0245164B1 (de) 1986-05-05 1987-04-30 Joule-Thomson-Kühler

Country Status (4)

Country Link
EP (1) EP0245164B1 (de)
DE (1) DE3765994D1 (de)
ES (1) ES2019391B3 (de)
FR (1) FR2598206B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235752A1 (de) * 1992-10-23 1994-04-28 Licentia Gmbh Kryogene Kühlvorrichtung
WO2008047357A2 (en) 2006-10-16 2008-04-24 Rafael-Armament Development Authority Ltd. Temperature controlled valve for regulating cooling gas flow

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721361B2 (ja) * 1987-07-02 1995-03-08 三菱電機株式会社 冷凍機
FR2642510B1 (fr) * 1989-02-02 1995-06-16 Albagnac Rene Regulateur de debit de gaz pour refroidisseur a effet joule-thomson
FR2645256B1 (fr) * 1989-03-15 1994-12-23 Air Liquide Refroidisseur joule-thomson a deux debits
DE4226820A1 (de) 1992-08-13 1994-02-17 Bodenseewerk Geraetetech Kühlsystem zum Abkühlen eines Kühlobjektes auf tiefe Temperaturen mittels eines Joule-Thomson-Kühlers
FR2725013B1 (fr) * 1994-09-22 1996-12-13 Air Liquide Refroidisseur joule-thomson
US5913889A (en) * 1996-08-20 1999-06-22 Hughes Electronics Fast response Joule-Thomson cryostat
FR2833073B1 (fr) * 2001-12-05 2004-05-21 Air Liquide Systeme de controle de debit de fluide cryogenique et refroidisseur joule-thomson comportant un tel systeme de controle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2586248A (en) * 1949-01-07 1952-02-19 Carl A Newman Thermo safety valve
US3095711A (en) * 1962-01-31 1963-07-02 Jr Howard P Wurtz Double cryostat
US3320755A (en) * 1965-11-08 1967-05-23 Air Prod & Chem Cryogenic refrigeration system
US3942010A (en) * 1966-05-09 1976-03-02 The United States Of America As Represented By The Secretary Of The Navy Joule-Thomson cryostat cooled infrared cell having a built-in thermostat sensing element
US3469818A (en) * 1966-11-14 1969-09-30 Bobrick Corp Balanced shutoff valve
US3415078A (en) * 1967-07-31 1968-12-10 Gen Dynamics Corp Infrared detector cooler
GB1318023A (en) * 1970-06-17 1973-05-23 Hymatic Eng Co Ltd Cryogenic cooling apparatus
US3714796A (en) * 1970-07-30 1973-02-06 Air Prod & Chem Cryogenic refrigeration system with dual circuit heat exchanger
FR2176544B1 (de) * 1972-03-23 1982-02-19 Air Liquide
DE7626566U1 (de) * 1975-08-26 1977-02-03 L'air Liquide, S.A. Pour L'etude Et L'exploitation Des Procedes Georges Claude, Paris Vorrichtung zur speisung einer miniaturkaeltemaschine und kuehlvorrichtung
DE2806829C3 (de) * 1978-02-17 1984-09-20 Deutsche Forschungs- Und Versuchsanstalt Fuer Luft- Und Raumfahrt E.V., 5000 Koeln Vorrichtung zur Tiefstkühlung von Objekten
SU922452A2 (ru) * 1980-06-10 1982-04-23 За витель Дроссельный регул тор микрохолодильника
GB2085139A (en) * 1980-10-10 1982-04-21 Hymatic Engineering The Co Ltd Cryogenic cooling apparatus
FR2520131B1 (fr) * 1982-01-19 1985-09-20 Telecommunications Sa Dispositif de regulation d'un refrigerateur a effet joule-thomson
BE895037A (nl) * 1982-11-17 1983-03-16 Leuven Res & Dev Voedingsklep voor vloeibaar gemaakt gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235752A1 (de) * 1992-10-23 1994-04-28 Licentia Gmbh Kryogene Kühlvorrichtung
WO2008047357A2 (en) 2006-10-16 2008-04-24 Rafael-Armament Development Authority Ltd. Temperature controlled valve for regulating cooling gas flow

Also Published As

Publication number Publication date
EP0245164A1 (de) 1987-11-11
DE3765994D1 (en) 1990-12-13
ES2019391B3 (es) 1991-06-16
FR2598206B1 (fr) 1988-07-08
FR2598206A1 (fr) 1987-11-06

Similar Documents

Publication Publication Date Title
EP0245164B1 (de) Joule-Thomson-Kühler
FR2577278A1 (fr) Robinet a soupape thermostatique pour la regulation de la temperature du liquide de refroidissement d'un moteur a combustion interne
EP1625772B1 (de) Einrichtung zur erwärmung einer flüssigkeit für ein haushaltsgerät, mit der einrichtung ausgestattetes haushaltsgerät
CA2038874A1 (fr) Installation permettant de realiser la refrigeration (ou rechauffement) rapide de produits emballes, notamment de bouteilles
FR2502761A1 (fr) Refrigerateur cryogenique
EP0388277B1 (de) Joule-Thomson-Kühlvorrichtung
FR2647942A1 (fr) Dispositif de commande sensible a la temperature pour dispositif de reglage
CA2009771A1 (fr) Dispositif de reenclenchement automatique de disjoncteurs et disjoncteurs equipes d'un tel dispositif
EP0084308B1 (de) Regelvorrichtung für eine nach dem Joule-Thomson-Effekt arbeitende Kühleinrichtung
EP3216993B1 (de) Kolben-kühldüse
FR2748598A1 (fr) Disjoncteur a haute tension a auto-soufflage
EP0069346B1 (de) Regelvorrichtung für eine nach dem Joule-Thomson-Effekt arbeitende Kühleinrichtung
EP0247935B1 (de) Zuleitungsverfahren für einen Joule-Thomson-Kühler und Kühlvorrichtung zu seiner Durchführung
EP0170948B1 (de) Regler für einen Kühler nach dem Joule-Thomsoneffekt
EP3059602B1 (de) Verfahren und vorrichtung zur temperaturkontrolle eines fluidflusses, der zur verwendung durch eine nmr-analysesonde bestimmt ist, und entsprechendes nmr-analysesystem
EP0066510A1 (de) Vorrichtung zur Speicherung und Erzeugung von Wasserstoff aus einer festen Verbindung
FR2665753A1 (fr) Appareil de refroidissement cryogene utilisant l'effet joule thompson.
EP0076727A1 (de) Thermostatischer Schalter und Kühlapparat mit semi-automatischer Enteisungsanlage versehen mit einem solchen Schalter
WO2019228973A1 (fr) Cartouche thermostatique
FR2662540A1 (fr) Disjoncteur a moyenne tension.
EP0305257B1 (de) Verfahren und Vorrichtung zur Kryokühlung eines Objekts
FR2790301A1 (fr) Soupape a section de passage variable
FR2725013A1 (fr) Refroidisseur joule-thomson
FR2682178A1 (fr) Appareil de froidissement par cryogenie.
EP4049107A1 (de) Thermostatventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 19880728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3765994

Country of ref document: DE

Date of ref document: 19901213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000313

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000320

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000321

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000324

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000406

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010529

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020417

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030203

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20030430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050430