EP0244644A1 - Schaltungsanordnung zum hochfrequenten Betrieb einer Niederdruckentladungslampe - Google Patents

Schaltungsanordnung zum hochfrequenten Betrieb einer Niederdruckentladungslampe Download PDF

Info

Publication number
EP0244644A1
EP0244644A1 EP87104991A EP87104991A EP0244644A1 EP 0244644 A1 EP0244644 A1 EP 0244644A1 EP 87104991 A EP87104991 A EP 87104991A EP 87104991 A EP87104991 A EP 87104991A EP 0244644 A1 EP0244644 A1 EP 0244644A1
Authority
EP
European Patent Office
Prior art keywords
capacitor
circuit arrangement
circuit
center tap
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87104991A
Other languages
English (en)
French (fr)
Other versions
EP0244644B1 (de
Inventor
Hans-Jürgen Fähnrich
Walter Hirschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0244644A1 publication Critical patent/EP0244644A1/de
Application granted granted Critical
Publication of EP0244644B1 publication Critical patent/EP0244644B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/02High frequency starting operation for fluorescent lamp

Definitions

  • the invention relates to a circuit arrangement for the high-frequency operation of a low-pressure discharge lamp with a mains rectifier with a backup capacitor connected in parallel with the DC output, a push-pull frequency generator, the control of the alternating switching transistors via feedback with a current transformer and a series resonance circuit comprising resonance inductance, coupling capacitor and resonance capacitor, the resonance capacitor the center tap of the two transistors and the corresponding electrode of the lamp and the resonance capacitor is connected to the heating circuit of the lamp.
  • a current saturation transformer in the form of a toroid is particularly suitable as a current transformer, since it has a high magnetic permeability.
  • Such a circuit is from the book “Electronics Circuits” by Walter Hirschmann from SIEMENS AG. known. This circuit ensures a safe start of the lamp by automatic ignition voltage generation and has a low power loss. However, the circuit requires a high mains current harmonic content, which does not meet the limits according to IEC publication 82 and which causes the mains power factor to drop far below 0.9.
  • the circuit has a series circuit comprising a storage inductor and a diode, two capacitors being connected at the junction of these two components.
  • the circuit arrangement has serious disadvantages.
  • the transistors experience a heavy load.
  • the storage choke is part of the RF circuit and therefore only partially suppresses radio interference.
  • Such a circuit arrangement results in a strong dependency of the output power when the mains voltage changes.
  • the aim of the invention is therefore to provide a circuit arrangement for operating a low-pressure discharge lamp which fulfills the requirements specified in IEC publication 82 with regard to mains current harmonic content and radio interference suppression without performance-related disadvantages and manages with a few inexpensive components.
  • the circuit arrangement with the features mentioned in the preamble of the main claim is characterized in that two diodes are connected in series to the supporting capacitor in series in the forward DC direction, the center tap between the two diodes via a capacitor with the center tap between the two transistors is connected and a line choke is connected in the line frequency part of the circuit arrangement.
  • the line-frequency part of the circuit is to be understood here to mean the area of the circuit in which, during operation, there is no up-transformed, but only a line-frequency direct or alternating voltage.
  • Such a circuit design ensures that the third harmonic in the mains current complies with the existing regulations and that the circuit causes only slight changes in the output power when the mains voltage changes. It is also achieved that the voltage at the output, i.e. on the smoothing capacitor has approximately the height of the peak value of the mains voltage, so that the capacitor does not have to be designed for high operating voltages.
  • the line reactor is connected either between the line input of the circuit arrangement and the line rectifier or between the DC output of the line rectifier and the backup capacitor lying parallel to this output. In the latter case, a diode is also connected in the reverse direction in parallel with the backup capacitor in order to largely reduce higher-order harmonics.
  • the line reactor can consist of two winding blocks, one winding in each of the two AC or DC supply lines block is switched. A circuit arrangement of this type is particularly suitable for the operation of fluorescent lamps with a lower power consumption.
  • a further reduction in the transistor power losses is necessary for the operation of lamps with a high power consumption. This is achieved with the aid of a capacitor which is connected between the center tap between the two diodes and the center tap between the resonance inductance and the corresponding electrode of the lamp.
  • the ratio of the capacitances of this capacitor to that which is connected to the center tap between the two transistors influences the sinusoid shape and adjusts the energy to be fed back.
  • the first capacitor can also be connected directly to a tap of the resonance inductance.
  • the circuit arrangement described so far is suitable for lighting devices in which the low-pressure discharge lamp is firmly connected to the circuit.
  • the center tap between the two diodes via a capacitor should not be connected to the center tap between the resonance inductance and the corresponding electrode in the circuit arrangement, but rather to the heating circuit-side power supply of the same electrode.
  • each of the heating circuit-side power supply of the electrodes be connected via a capacitor to the mains-side power supply of the other electrode of the lamp. This increases the quality of the resonance circuit, so that this circuit variant is particularly suitable for operating low-pressure discharge lamps with high operating voltages or for operating normal low-pressure discharge lamps at low mains voltages, such as 110 V.
  • FIG. 1 shows a circuit arrangement for operating a low-pressure discharge lamp, in which the lamp is firmly connected to the circuit arrangement.
  • the main component of the circuit arrangement is the push-pull frequency generator, consisting of the two transistors T1, T2 with the flyback diodes D2, D3 (these can be omitted when integrated into the transistors), the series resistors R2 to R5 and the start-up generator, consisting of the resistors R1 and R6, the Start capacitor C3 and the Diac DK and the feedback toroid transformer RK.
  • the low-pressure discharge lamp LP is connected to an electrode E1 with the center tap M1 between the collector-emitter paths of the two transistors T1, T2 and with the other electrodes E2 to the positive pole of the mains rectifier GL.
  • the series resonance circuit consists of the resonance inductance L1, the coupling capacitor C5 and the resonance capacitor C6, the resonance inductance L1 and the coupling capacitor C5 being placed between the center tap M1 and the electrode E1 and the resonance capacitor C6 in the heating circuit of the lamp LP.
  • the mode of operation of the push-pull frequency generator in combination with the series resonance circuit for operating the lamp can be found in the book "Electronics Circuits" by W. Hirschmann (Siemens Aktiengesellschaft), p. 148, and will therefore not be explained in more detail here.
  • a winding block of a mains iron choke L2 is connected in each supply line.
  • two high-speed diodes D4, D5 are connected in series to the backup capacitor C2, which is parallel to the DC output of the line rectifier GL, in the forward DC direction.
  • the center tap M2 between the two diodes D4, D5 is via a capacitor C7 with the center tap M1 between the collector-emitter paths of the two transistors T1, T2 and also via a capacitor C8 with the center tap M3 between the resonance inductance L1 and the coupling capacitor C5 connected.
  • An electrolytic capacitor C4 is connected in parallel with the switching paths of the transistors T1, T2 as a smoothing capacitor.
  • FIG. 2 and 3 show two circuit variants for the circuit arrangement shown in FIG. 1.
  • Figure 2 shows a circuit variant A ⁇ for the line frequency part A of the circuit arrangement with matching connection points P1 and P2.
  • this variant only one filter capacitor C1 ⁇ and one winding block of a current-compensated filter choke FD ⁇ as well as one fuse SI ⁇ are connected in each supply line between the mains input and the rectifier GL ⁇ .
  • the two winding blocks of the line reactor L2 ⁇ are each placed in the two DC outputs of the line rectifier GL ⁇ .
  • this circuit variant has a parallel to the capacitor C2 ⁇ Reverse diode D6 to reduce higher order harmonics.
  • FIG. 3 shows a circuit variant B ⁇ for the type of connection B of the second capacitor of the harmonic filter with identical connection points P3 to P7.
  • the capacitor C8 ⁇ is directly connected to a tap winding of the resonance inductor L1 ⁇ .
  • the other circuit elements such as the two capacitors C4 ⁇ and C8 ⁇ , the feedback transformer winding RK ⁇ , the resonance capacitor L1 ⁇ and the coupling capacitor C5 ⁇ corresponding to the elements C4, C8, RK, L1 and C5 in FIG. 1.
  • the direct voltage U2 is present in front of the diode D4 on the supporting capacitor C2, the direct voltage U3 is located behind the diode D5 on the smoothing capacitor C4.
  • the two diodes D4, D5 clamp the high-frequency alternating voltage U4 supplied via the capacitor C7 from the push-pull frequency generator to the voltage U2 or U3 in a half-wave alternating manner in accordance with the respective difference U2-U3.
  • This enables a current to flow during the differential phases "up” and “down” of the rectified 100 Hz AC voltage, so that a substantially sinusoidal current flow occurs from the network.
  • An excellent sine current shape is achieved in particular by a large capacitance value of the capacitor C7.
  • the higher power loss at the transistors T1, T2 which occurs as a result of the above measures is switched off by the capacitor C8 which is likewise connected to the center tap M2, the sinusoidal shape being able to be influenced accordingly by the ratio C7, C8.
  • Figure 4a, 4b shows the sinusoidal current flow absorbed by the network when using a harmonic filter from the diodes D4, D5 and capacitors C7, C8 listed above.
  • Figure 4a shows the current flow I N absorbed by the network per time unit t without additional network iron choke L2
  • Figure 4b shows the current flow I N per time unit t with additional network iron choke L2.
  • the iron choke L2 converts the charging peaks protruding beyond the fundamental wave 1 into smoothed current peaks 3, so that the final current form which is produced fulfills the corresponding regulations.
  • the line iron choke creates two further significant advantages: The radio interference that comes from the DC voltage U2 at the support capacitor C2 is greatly reduced and the input impedance remains inductive for ripple control signals.
  • FIG. 1 For the operation of a 36 W compact fluorescent lamp, the circuit elements for a circuit arrangement according to the invention are compiled in the following equipment list as in FIG. 1: SI 1 A medium slow C1 68 nF L2 0.6 H FD 130 mH current compensated GL rectifier bridge circuit B 250, C 800 C2 33 nF D4, D5 1N4937 R1 470 k ⁇ C3 47 nF D1 1N4004 R2, R3 10 ⁇ T1, T2 BUV 93 R4, R5 1.1 ⁇ DK A9903 D2, D3 BA157 C7 13 nF R6 330 k ⁇ RK primary 10 turns, secondary 2 x 4 turns C4 22 ⁇ F L1 0.8 mH C8 3.3 nF C5 47 nF C6 6.8 nF
  • FIG. 5 shows a variant of the circuit arrangement which enables the low-pressure discharge lamp to be changed safely.
  • the circuit arrangement largely corresponds to the circuit shown in FIG. 1.
  • the capacitor C8 which connects the center tap M2 between the two diodes D4, D5 with the center tap M3 between the resonance inductor L1 and the coupling capacitor C5
  • only a capacitor C9 is provided here, which connects the center tap M2 to the heating circuit of the lamp LP. If the lamp is removed, the push-pull frequency generator is also switched off in this circuit variant.
  • FIG. 6 shows a circuit arrangement that is specific for the operation of low pressure discharge lamps with high operating voltage or the operation of low-pressure discharge lamps with normal high operating voltage at low mains voltages, such as 110 V, is suitable. Except for the heating circuit, this circuit arrangement corresponds to the circuit arrangement shown in FIG. In the heating circuit, in this circuit, the network-side connection of the electrode E2 is connected via a capacitor C10 to the heating circuit-side connection of the electrode E1 and the network-side connection E1 is connected via a capacitor C11 to the heating circuit-side connection of the electrode E2. This change reduces the damping effect of the two electrodes E1, E2 on the resonant circuit to a quarter. This results in higher voltage pulses, which can ignite the lamp even at low mains voltage or high operating voltage

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

Bei einer Schaltungsanordnung zum hochfrequenten Betrieb einer Niederdruckentladungslampe (LP) sind am Gleichstromausgang des Netzgleichrichters (GL) in Serie zwei Dioden (D4, D5) in Gleichstromvorwärts­richtung angeschlossen, wobei der Mittenabgriff (M2) zwischen den beiden Dioden (D4, D5) über einen Konden­sator (C7) mit dem Mittenabgriff (M1) zwischen den beiden Transistoren (T1, T2) des Gegentaktfrequenz­generators verbunden ist. Außerdem ist in den netz­frequenten Teil der Schaltungsanordnung eine Netzdrossel (L2) geschaltet. Die oben aufgeführten Schaltungselemente bilden zusammen ein Oberwellen­filter, durch die die nach IEC-Publikation 82 fest­gelegten Anforderungen hinsichtlich Netzstrom-Ober­wellengehalt und Funkentstörung ohne leistungstech­nische Nachteile erfüllt werden.

Description

  • Die Erfindung betrifft eine Schaltungsanordnung zum hochfrequenten Betrieb einer Niederdruckentladungs­lampe mit einem Netzgleichrichter mit parallel zum Gleichstromausgang geschaltetem Stützkondensator, einem Gegentaktfrequenzgenerator, wobei die Ansteuerung der alternierend schaltenden Transistoren über Rückkopplung mit einem Stromtrafo erfolgt und einem Serienresonanzkreis aus Resonanzinduktivität, Kopplungskondensator und Resonanzkondensator, wobei die Resonanzinduktivität zwischen den Mittenabgriff der beiden Transistoren und der entsprechenden Elektrode der Lampe und der Resonanzkondensator in den Heizkreis der Lampe geschaltet ist.
  • Als Stromtrafo eignet sich hierzu insbesondere ein Stromsättigungstrafo in Ringkernform, da dieser eine hohe magnetische Permeabilität besitzt.
  • Eine solche Schaltung ist aus dem Buch "Elektronik­schaltungen" von Walter Hirschmann der SIEMENS AG. bekannt. Diese Schaltung bewirkt einen sicheren Anlauf der Lampe durch eine automatische Zündspannungsbildung und weist eine geringe Verlustleistung auf. Aller­dings bedingt die Schaltung einen hohen Netzstrom-­Oberwellengehalt, der die Grenzen nach IEC-Publi­kation 82 nicht einhält und den Netzleistungsfaktor weit unter 0,9 sinken läßt.
  • Eine Lösung zur Reduzierung des Oberwellengehaltes bei einer solchen Schaltungsanordnung wird in der DE-OS 32 22 534 dargestellt. Die Schaltung weist als wesentliches Merkmal zur Reduzierung des Oberwellen­gehaltes eine Reihenschaltung aus einer Speicher­drossel und einer Diode auf, wobei am Verbindungspunkt dieser beiden Bauelemente zwei Kondensatoren ange­schlossen sind. Die Schaltungsanordnung hat jedoch schwerwiegende Nachteile. Die obengenannten Schal­tungselemente bilden zusammen mit den beiden Transistoren des Gegentaktfrequenzgenerators einen Hochsetzsteller, der für die Unterdrückung der Oberwellen sorgt. Dadurch erfahren die Transistoren eine starke Belastung. Die Speicherdrossel ist Teil des HF-Kreises und wirkt deshalb nur teilweise funkentstörend. Durch eine solche Schaltungsanordnung ergibt sich eine starke Abhängigkeit der Ausgangs­leistung bei Netzspannungsänderungen.
  • Ziel der Erfindung ist es daher, eine Schaltungsan­ordnung zum Betrieb einer Niederdruckentladungs­lampe zu schaffen, die die durch die IEC-Publi­kation 82 festgelegten Anforderungen hinsichtlich Netzstrom-Oberwellengehalt und Funkentstörung ohne leistungstechnische Nachteile erfüllt und mit wenigen kostengünstigen Bauteilen auskommt.
  • Die Schaltungsanordnung mit den im Oberbegriff des Hauptanspruchs genannten Merkmalen ist erfindungsge­mäß dadurch gekennzeichnet, daß in Reihe zum Stütz­kondensator in Serie zwei Dioden in Gleichstromvor­wärtsrichtung angeschlossen sind, der Mittenabgriff zwischen den beiden Dioden über einen Kondensator mit dem Mittenabgriff zwischen den beiden Transistoren verbunden ist und in den netzfrequenten Teil der Schaltungsanordnung eine Netzdrossel geschaltet ist.
  • Unter dem netzfrequenten Teil der Schaltung ist hierbei der Bereich der Schaltung zu verstehen, in dem bei Betrieb keine hochtransformierte, sondern lediglich eine netzfrequente Gleich- bzw. Wechsel­spannung vorliegt.
  • Durch einen solchen Schaltungsaufbau wird sicherge­stellt, daß die dritte Harmonische im Netzstrom den bestehenden Vorschriften entspricht und die Schaltung lediglich geringe Änderungen der Ausgangsleistung bei Netzspannungsänderungen bewirkt. Außerdem wird erreicht, daß die Spannung am Ausgang, d.h. am Glät­tungskondensator etwa die Höhe des Scheitelwertes der Netzspannung besitzt, so daß der Kondensator nicht für hohe Betriebsspannungen ausgelegt sein muß.
  • Die verbleibenden höheren harmonischen Schwingungen werden durch die Induktivität der Netzdrossel begrenzt, wobei die Drossel gleichzeitig die betriebs­frequente Störspannung auf den Netzzuleitungen auf die nach VDE 0875, Teil 2, zulässigen Werte senkt. Die Netzdrossel ist dazu entweder zwischen den Netzeingang der Schaltungsanordnung und den Netzgleichrichter oder zwischen den Gleichstromausgang des Netzgleichrichters und den parallel zu diesem Ausgang liegenden Stütz­kondensator geschaltet. Im letzten Fall ist zusätzlich parallel zum Stützkondensator eine Diode in Sperrich­tung geschaltet, um Oberwellen höherer Ordnung weit­gehend zu verkleinern. Die Netzdrossel kann aus zwei Wicklungsblöcken bestehen, wobei in jede der beiden Wechsel- bzw. Gleichstromzuleitungen ein Wicklungs­ block geschaltet ist. Eine Schaltungsanordnung dieser Art eignet sich insbesondere für den Betrieb von Leuchtstofflampen mit kleinerer Leistungsaufnahme.
  • Für den Betrieb von Lampen mit hoher Leistungsauf­nahme ist eine weitere Senkung der Transistor-Ver­lustleistungen notwendig. Dies wird mit Hilfe eines Kondensators erreicht, der zwischen dem Mittenabgriff zwischen den beiden Dioden und dem Mittenabgriff zwischen der Resonanzinduktivität und der entspre­chenden Elektrode der Lampe geschaltet ist. Durch das Verhältnis der Kapazitäten dieses Kondensators zu dem, der mit dem Mittenabgriff zwischen den beiden Transistoren verbunden ist, wird die Sinusform beeinflußt und die rückzuspeisende Energie eingestellt. Je nach Lampentyp kann der erste Kondensator auch direkt mit einer Anzapfung der Resonanzinduktivität verbunden sein.
  • Die bisher beschriebene Schaltungsanordnung eignet sich für Beleuchtungsgeräte, bei denen die Niederdruckentladungslampe fest mit der Schaltung verbunden ist. Im Fall, daß das Gerät eine Auswechs­lung der Lampe gestattet, ist bei der Schaltungsan­ordnung der Mittenabgriff zwischen den beiden Dioden über einen Kondensator nicht mit dem Mittenabgriff zwischen der Resonanzinduktivität und der entspre­chenden Elektrode, sondern mit der heizkreisseitigen Stromzuführung derselben Elektrode zu verbinden. Beim Wechseln der Niederdruckentladungslampe liegen dann keine hohen Spannungen an den Lampenanschlüssen an, so daß ein gefahrloser Wechsel ermöglicht wird.
  • In einer weiteren speziellen Ausführungsform der Schaltungsanordnung kann auch jede der heizkreis­seitigen Stromzuführung der Elektroden über einen Kondensator mit der netzseitigen Stromzuführung der anderen Elektrode der Lampe verbunden sein. Dadurch wird die Güte des Resonanzkreises erhöht, so daß sich diese Schaltungsvariante insbesondere zum Betrieb von Niederdruckentladungslampen mit hohen Brennspannungen oder zum Betrieb normaler Niederdruckentladungslampen an niedrigen Netzspannungen, wie z.B. 110 V eignet.
  • Die Erfindung ist anhand der nachfolgenden Figuren näher veranschaulicht.
    • Figur 1 zeigt eine erfindungsgemäße Schaltungsanord­nung zum Betrieb einer Niederdruckentla­dungslampe, bei der die Lampe fest mit der Schaltungsanordnung verbunden ist.
    • Figur 2 zeigt eine Schaltungsvariante Aʹ für den netz­frequenten Teil A der Schaltungsanordnung gemäß Figur 1.
    • Figur 3 zeigt eine Schaltungsvariante Bʹ für die Anknüpfung B des Oberwellenfilters in der Schaltungsanordnung gemäß Figur 1.
    • Figur 4 zeigt den vom Netz aufgenommenen sinusförmigen Stromfluß bei einer Schaltungsanordnung ohne und mit Netzdrossel
    • Figur 5 zeigt eine erfindungsgemäße Schaltungsan­ordnung zum Betrieb einer Niederdruckentla­dungslampe, die einen gefahrlosen Wechsel der Lampe ermöglicht.
    • Figur 6 zeigt eine erfindungsgemäße Schaltungsan­ordnung zum Betrieb von Niederdruckentla­dungslampen mit hoher Brennspannung bzw. zum Betrieb von Niederdruckentladungslampen an niedrigen Netzspannungen.
  • Figur 1 zeigt eine Schaltungsanordnung zum Betrieb einer Niederdruckentladungslampe, bei der die Lampe fest mit der Schaltungsanordnung verbunden ist. Hauptbestandteil der Schaltungsanordnung ist der Gegentaktfrequenzgenerator, bestehend aus den beiden Transistoren T1, T2 mit den Rücklaufdioden D2, D3 (diese können bei Integration in die Transistoren entfallen), den Vorschaltwiderständen R2 bis R5 und dem Anlaufgenerator, bestehend aus den Widerständen R1 und R6, dem Startkondensator C3 und dem Diac DK sowie dem Rückkopplungsringkerntrafo RK. Die Niederdruck­entladungslampe LP ist mit einer Elektrode E1 mit dem Mittenabgriff M1 zwischen den Kollektor-Emitter-­Strecken der beiden Transistoren T1, T2 und mit der anderen Elektroden E2 mit dem Pluspol des Netzgleich­richters GL verbunden. Der Serienresonanzkreis besteht aus der Resonanzinduktivität L1, dem Kopplungskonden­sator C5 und dem Resonanzkondensator C6, wobei die Resonanzinduktivität L1 und der Kopplungskondensator C5 zwischen den Mittenabgriff M1 und die Elektrode E1 und der Resonanzkondensator C6 in den Heizkreis der Lampe LP gelegt ist. Die Funktionsweise des Gegentakt­frequenzgenerators in Kombination mit dem Serienreso­nanzkreis zum Betrieb der Lampe kann dem Buch "Elektronik-Schaltungen" von W. Hirschmann (Siemens Aktiengesellschaft), S. 148, entnommen werden und soll daher hier nicht näher erläutert werden.
  • Zwischen den Netzeingang und den Gleichrichter GL ist neben der Sicherung SI und dem üblichen Filterkon­densator C1 parallel zum Netzeingang sowie neben je einem Wicklungsblock einer stromkompensierten Filterdrossel FD in jede Zuleitung ein Wicklungsblock einer Netz-Eisendrossel L2 geschaltet. Außerdem sind in Reihe zum Stützkondensator C2, der parallel zum Gleichstromausgang des Netzgleichrichters GL liegt, in Gleichstromvorwärtsrichtung hintereinander zwei schnelle Dioden D4, D5 geschaltet. Der Mittenabgriff M2 zwischen den beiden Dioden D4, D5 ist über einen Kondensator C7 mit dem Mittenabgriff M1 zwischen den Kollektor-Emitter-Strecken der beiden Transistoren T1, T2 und außerdem über einem Kondensator C8 mit dem Mittenabgriff M3 zwischen der Resonanzinduktivität L1 und dem Kopplungskondensator C5 verbunden. Parallel zu den Schaltstrecken der Transistoren T1, T2 ist als Glättungskondensator ein Elektrolytkondensator C4 geschaltet.
  • In Figur 2 und 3 sind zwei Schaltungsvarianten für die in Figur 1 dargestellte Schaltungsanordnung abgebil­det. Figur 2 zeigt eine Schaltungsvariante Aʹ für den netzfrequenten Teil A der Schaltungsanordnung mit übereinstimmenden Anschlußpunkten P1 und P2. Zwischen Netzeingang und Gleichrichter GLʹ ist bei dieser Variante parallel zum Eingang nur ein Filterkonden­sator C1ʹ und in jede Zuleitung je ein Wicklungs­block einer stromkompensierten Filterdrossel FDʹ sowie in eine Zuleitung eine Sicherung SIʹ geschaltet. Die beiden Wicklungsblöcke der Netzdrossel L2ʹ sind jeweils in die beiden Gleichstromausgänge des Netz­gleichrichters GLʹ gelegt. Zusätzlich weist diese Schaltungsvariante parallel zum Kondensator C2ʹ eine Diode D6 in Sperrichtung auf, um die Oberwellen höherer Ordnung zu verringern.
  • Figur 3 zeigt eine Schaltungsvariante Bʹ für die Art der Anknüpfung B des zweiten Kondensators des Oberwellenfilters mit identischen Anknüpfungspunkten P3 bis P7. Der Kondensator C8ʹ ist hierbei direkt mit einer Anzapfungswindung der Resonanzinduktivität L1ʹ verbunden. Die anderen Schaltungselemente, wie die beiden Kondensatoren C4ʹ und C8ʹ , die Rückkopplungs­trafowicklung RKʹ, der Resonanzkondensator L1ʹ und der Kopplungskondensator C5ʹ entsprechend den Elementen C4, C8, RK, L1 und C5 der Figur 1.
  • Vor der Diode D4 liegt am Stützkondensator C2 die Gleichspannung U2, hinter der Diode D5 am Glättungs­kondensator C4 die Gleichspannung U3. Die beiden Dioden D4, D5 klemmen entsprechend der jeweiligen Differenz U2 - U3 die über den Kondensator C7 gelie­ferte hochfrequente Wechselspannung U4 vom Gegentakt­frequenzgenerator halbwellenalternierend an die Spannung U2 bzw. U3. Damit wird ein Stromfluß während der Differenzphasen "aufwärts" und "abwärts" der gleichgerichteten 100 Hz-Wechselspannung ermöglicht, so daß ein im wesentlichen sinusförmiger Stromfluß vom Netz her auftritt. Insbesondere durch einen großen Kapazitätswert des Kondensators C7 wird eine ausge­zeichnete Sinusstromform erreicht. Die durch obige Maßnahmen auftretende höhere Verlustleistung an den Transistoren T1, T2 wird durch den ebenfalls am Mittenabgriff M2 angeschlossenen Kondensator C8 aus­geschaltet, wobei sich durch das Verhältnis C7, C8 die Sinusform entsprechend beeinflussen läßt.
  • Figur 4a, 4b zeigt den vom Netz her aufgenommenen sinusförmigen Stromfluß bei Verwendung eines Ober­wellenfilters aus den oben aufgeführten Dioden D4, D5 und Kondensatoren C7, C8. Figur 4a stellt dabei den pro Zeiteinheit t vom Netz aufgenommenen Strom­fluß IN ohne zusätzliche Netz-Eisendrossel L2 und Figur 4b den Stromfluß IN pro Zeiteinheit t mit zusätzlicher Netz-Eisendrossel L2 dar. Ohne Eisendrossel L2 ist der Stromfluß weitgehend sinusförmig, wie durch die Grundwelle 1 verdeutlicht wird. Es sind jedoch noch Rest-Ladespitzen 2 vorhanden. Durch die Eisendrossel L2 werden die über die Grundwelle 1 hinausragenden Ladespitzen in verschliffene Stromspitzen 3 umgeformt, so daß die entstandene Endstromform die entsprechenden Vorschriften erfüllt. Die Netz-Eisendrossel schafft noch zwei weitere wesentliche Vorteile: Die Funkstörungen, die von der Gleichspannung U2 am Stützkondensator C2 stammen, werden stark reduziert und die Eingangsimpedanz bleibt für Rundsteuersignale induktiv.
  • Zum Betrieb einer 36 W-Kompaktleuchtstofflampe sind in der nachfolgenden Bestückungsliste die Schaltungs­elemente für eine erfindungsgemäße Schaltungsanordnung wie in Figur 1 zusammengestellt:
    SI 1 A mittelträge
    C1 68 nF
    L2 0,6 H
    FD 130 mH stromkompensiert
    GL Gleichrichter-Brückenschaltung B 250, C 800
    C2 33 nF
    D4, D5 1N4937
    R1 470 kΩ
    C3 47 nF
    D1 1N4004
    R2, R3 10 Ω
    T1, T2 BUV 93
    R4, R5 1,1 Ω
    DK A9903
    D2, D3 BA157
    C7 13 nF
    R6 330 kΩ
    RK primär 10 Windungen, sekundär 2 x 4 Windungen
    C4 22 µF
    L1 0,8 mH
    C8 3,3 nF
    C5 47 nF
    C6 6,8 nF
  • In Figur 5 ist eine Variante der Schaltungsanordnung dargestellt, die einen gefahrlosen Wechsel der Nieder­druckentladungslampe ermöglicht. Die Schaltungsan­ordnung entspricht weitgehend der in der Figur 1 dargestellten Schaltung. Anstelle des Kondensators C8, der den Mittenabgriff M2 zwischen den beiden Dioden D4, D5 mit dem Mittenabgriff M3 zwischen Resonanz­induktivität L1 und Kopplungskondensator C5 verbindet, ist hier lediglich ein Kondensator C9 vorgesehen, der den Mittenabgriff M2 mit dem Heizkreis der Lampe LP verbindet. Im Fall der Herausnahme der Lampe wird bei dieser Schaltungsvariante auch der Gegentaktfrequenz­generator abgeschaltet.
  • Figur 6 zeigt eine Schaltungsanordnung, die sich speziell für den Betrieb von Niederdruckentladungs­ lampen mit hoher Brennspannung oder den Betrieb von Niederdruckentladungslampen mit normal hoher Brenn­spannung an niedrigen Netzspannungen, wie z.B. 110 V eignet. Diese Schaltungsanordnung stimmt bis auf den Heizkreis mit der in Figur 1 dargestellten Schaltungs­anordnung überein. Im Heizkreis wird bei dieser Schaltung der netzseitige Anschluß der Elektrode E2 über einen Kondensator C10 mit dem heizkreisseitigen Anschluß der Elektrode E1 und der netzseitige Anschluß E1 über einen Kondensator C11 mit dem heizkreisseiti­gen Anschluß der Elektrode E2 verbunden. Durch diese Änderung wird die dämpfende Wirkung der beiden Elektroden E1, E2 auf den Schwingkreis auf ein Viertel reduziert. Dadurch ergeben sich höhere Spannungs­impulse, die auch bei niedriger Netzspannung bzw. hoher Brennspannung die Lampe zu zünden vermögen

Claims (9)

1. Schaltungsanordnung zum hochfrequenten Betrieb einer Niederdruckentladungslampe (LP) mit einem Netz­gleichrichter (GL) mit parallel zum Gleichstrom­ausgang geschaltetem Stützkondensator (C2), einem Gegenktaktfrequenzgenerator, wobei die Ansteuerung der alternierend schaltenden Transistoren (T1, T2) über Rückkopplung mit einem Stromtrafo (RK) erfolgt und einem Serienresonanzkreis aus Resonanzinduktivität (L1), Kopplungskondensator (C5) und Resonanzkon­densator (C6), wobei die Resonanzinduktivität (L1) zwischen den Mittenabgriff (M1) der beiden Transisto­ren (T1, T2) und der entsprechenden Elektrode (E1) der Lampe (LP) und der Resonanzkondensator (C6) in den Heizkreis der Lampe (LP) geschaltet ist, dadurch gekennzeichnet, daß in Reihe zum Stützkondensator (C2) in Serie zwei Dioden (D4, D5) in Gleichstromvor­wärtsrichtung angeschlossen sind, der Mittenabgriff (M2) zwischen den beiden Dioden (D4, D5) über einen Kondensator (C7) mit dem Mittenabgriff (M1) zwischen den beiden Transistoren (T1, T2) verbunden ist und in den netzfrequenten Teil der Schaltungsanordnung eine Netzdrossel (L2, L2ʹ) geschaltet ist.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Netzdrossel (L2) zwischen den Netzeingang der Schaltungsanordnung und den Netz­gleichrichter (GL) geschaltet ist.
3. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Netzdrossel (L2ʹ) zwischen den Gleichstromausgang des Netzgleichrichters (GLʹ) und den parallel zu diesem Ausgang liegenden Stützkon­densator (C2ʹ) geschaltet ist.
4. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, daß eine Diode (D6) in Sperrichtung parallel zum Stützkondensator (C2ʹ) geschaltet ist.
5. Schaltungsanordnung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Netzdrossel (L2, L2ʹ) aus zwei Wicklungsblöcken besteht, wobei in jede der beiden Wechsel- bzw. Gleichstromzuleitungen ein Wicklungsblock geschaltet ist.
6. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Mittenabgriff (M2) zwischen den beiden Dioden (D4, D5) außerdem über einen Kondensator (C8) mit dem Mittenabgriff (M3) zwischen der Resonanzinduktivität (L1) und der Elektrode (E1) der Lampe (LP), verbunden ist.
7. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Mittenabgriff (M2) zwischen den beiden Dioden außerdem über einen Kondensator (C8ʹ) mit einer Anzapfung der Resonanzinduktivität (L1ʹ) verbunden ist.
8. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Mittenabgriff (M2) zwischen den beiden Dioden (D4, D5) außerdem über einen Kondensator (C9) mit der heizkreisseitigen Stromzuführung der Elektrode (E1) der Lampe (LP) verbunden ist, deren andere Stromzuführung an den Mittenabgriff (M1) zwischen den Transistoren (T1, T2) geführt ist.
9. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß jede der heizkreisseitigen Stromzuführungen der Elektroden (E1, E2) über einen Kondensator (C10, C11) mit der netzseitigen Stromzu­führung der anderen Elektrode (E2, E1) der Lampe (LP) verbunden ist.
EP87104991A 1986-04-07 1987-04-03 Schaltungsanordnung zum hochfrequenten Betrieb einer Niederdruckentladungslampe Expired - Lifetime EP0244644B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3611611 1986-04-07
DE19863611611 DE3611611A1 (de) 1986-04-07 1986-04-07 Schaltungsanordnung zum hochfrequenten betrieb einer niederdruckentladungslampe

Publications (2)

Publication Number Publication Date
EP0244644A1 true EP0244644A1 (de) 1987-11-11
EP0244644B1 EP0244644B1 (de) 1991-04-10

Family

ID=6298117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87104991A Expired - Lifetime EP0244644B1 (de) 1986-04-07 1987-04-03 Schaltungsanordnung zum hochfrequenten Betrieb einer Niederdruckentladungslampe

Country Status (4)

Country Link
US (1) US4782268A (de)
EP (1) EP0244644B1 (de)
JP (1) JPS62243293A (de)
DE (2) DE3611611A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013391A1 (en) * 1995-10-03 1997-04-10 Pal Sandor Improvements in or relating to an electronic ballast for fluorescent lamps
US6091207A (en) * 1997-06-18 2000-07-18 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluelampen Mbh Pump support choke
EP1028606A2 (de) * 1999-02-11 2000-08-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb mindestens einer Niederdruckentladungslampe
US6525489B2 (en) 2001-01-03 2003-02-25 Osram Sylvania Inc. Circuit arrangement for operating electric lamps
CN104052256A (zh) * 2013-03-12 2014-09-17 浙江海洋学院 单极性开关电源续流降噪及其参数计算方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008596A (en) * 1987-12-02 1991-04-16 Patent Treuhand Gesellschaft Fur Elektrische Gluhlampen M.B.H. Fluorescent lamp high frequency operating circuit
JP2810662B2 (ja) * 1987-12-23 1998-10-15 松下電工株式会社 放電灯点灯装置
JP2810663B2 (ja) * 1987-12-23 1998-10-15 松下電工株式会社 放電灯点灯装置
DE3829388A1 (de) * 1988-08-30 1990-03-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum betrieb einer last
US4945278A (en) * 1988-09-20 1990-07-31 Loong-Tun Chang Fluorescent tube power supply
DE3841227A1 (de) * 1988-12-07 1990-06-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum betrieb einer niederdruckentladungslampe
IN171097B (de) * 1989-03-16 1992-07-18 Holec Syst & Componenten
DE68910814T2 (de) * 1989-06-13 1994-04-28 Techem Co Elektronisches Vorschaltgerät für eine Leuchtstofflampe.
US4985664A (en) * 1989-10-12 1991-01-15 Nilssen Ole K Electronic ballast with high power factor
US5047691A (en) * 1989-11-29 1991-09-10 Gte Products Corporation High-pass t-networks with integral transformer for gaseous discharge lamps
DE4005850A1 (de) * 1990-02-23 1991-08-29 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum betrieb einer entladungslampe
US5063331A (en) * 1991-01-04 1991-11-05 North American Philips Corporation High frequency oscillator-inverter circuit for discharge lamps
US5150013A (en) * 1991-05-06 1992-09-22 Motorola, Inc. Power converter employing a multivibrator-inverter
DE4238409A1 (de) * 1992-11-13 1994-05-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb von Niederdruckentladungslampen
US5400241A (en) * 1992-11-26 1995-03-21 U.S. Philips Corporation High frequency discharge lamp
US5371438A (en) * 1993-01-19 1994-12-06 Bobel; Andrzej A. Energy conversion device having an electronic converter with DC input terminal for delivering a high frequency signal
US5448137A (en) * 1993-01-19 1995-09-05 Andrzej A. Bobel Electronic energy converter having two resonant circuits
JPH0673899U (ja) * 1993-03-26 1994-10-18 東西電工株式会社 放電灯用点灯装置
US5371444A (en) * 1993-04-20 1994-12-06 The Genlyte Group Incorporated Electronic ballast power supply for gas discharge lamp including booster start circuit responsive to power up condition
US5410221A (en) * 1993-04-23 1995-04-25 Philips Electronics North America Corporation Lamp ballast with frequency modulated lamp frequency
US5404082A (en) * 1993-04-23 1995-04-04 North American Philips Corporation High frequency inverter with power-line-controlled frequency modulation
CN1113101A (zh) * 1993-08-05 1995-12-06 莫托罗拉照明公司 带有升压电路的并联谐振镇流器
US5434480A (en) * 1993-10-12 1995-07-18 Bobel; Andrzej A. Electronic device for powering a gas discharge road from a low frequency source
US5483125A (en) * 1993-12-06 1996-01-09 General Electric Company Ballast circuit for a gas discharge lamp having a cathode pre-heat arrangement
CN1118980A (zh) 1994-08-18 1996-03-20 丹尼尔·慕斯里 用于控制气体放电灯的电路结构
US6118225A (en) * 1994-08-22 2000-09-12 U.S. Philips Corporation High frequency discharge lamp operating circuit with resonant power factor correction circuit
EP0700134B1 (de) 1994-08-30 1998-04-01 Daniel Muessli Stromsparlampe
DE59507691D1 (de) 1994-10-10 2000-03-02 Pinbeam Ag Saland Ansteuerschaltung für eine Stromsparlampe
FI96734C (fi) 1994-11-22 1996-08-12 Helvar Oy Purkauslampun elektronisen liitäntälaitteen häiriösuodatin
US5488269A (en) 1995-02-10 1996-01-30 General Electric Company Multi-resonant boost high power factor circuit
US5786670A (en) * 1996-03-15 1998-07-28 Valmont Industries, Inc. High-frequency converter for fluorescent lamps using an improved trigger circuit
US5801492A (en) * 1996-05-30 1998-09-01 Bobel; Andrzej Electronic ballast for gas discharge lamp having primary and auxiliary resonant circuits
US5982107A (en) * 1997-04-08 1999-11-09 Pinbeam Ag Drive circuit for a power-saving lamp
US5994848A (en) * 1997-04-10 1999-11-30 Philips Electronics North America Corporation Triac dimmable, single stage compact flourescent lamp
US5998941A (en) * 1997-08-21 1999-12-07 Parra; Jorge M. Low-voltage high-efficiency fluorescent signage, particularly exit sign
US6034485A (en) * 1997-11-05 2000-03-07 Parra; Jorge M. Low-voltage non-thermionic ballast-free energy-efficient light-producing gas discharge system and method
US5917717A (en) * 1997-07-31 1999-06-29 U.S. Philips Corporation Ballast dimmer with passive power feedback control
US5982159A (en) * 1997-07-31 1999-11-09 Philips Electronics North America Corporation Dimmable, single stage fluorescent lamp
US6300722B1 (en) 1997-11-05 2001-10-09 Jorge M. Parra Non-thermionic ballast-free energy-efficient light-producing gas discharge system and method
US6465971B1 (en) 1999-06-02 2002-10-15 Jorge M. Parra Plastic “trofer” and fluorescent lighting system
US6411041B1 (en) 1999-06-02 2002-06-25 Jorge M. Parra Non-thermionic fluorescent lamps and lighting systems
US6936973B2 (en) * 2002-05-31 2005-08-30 Jorge M. Parra, Sr. Self-oscillating constant-current gas discharge device lamp driver and method
US8736189B2 (en) * 2006-12-23 2014-05-27 Fulham Company Limited Electronic ballasts with high-frequency-current blocking component or positive current feedback
US7923941B2 (en) * 2008-10-16 2011-04-12 General Electric Company Low cost compact size single stage high power factor circuit for discharge lamps
CN102665309A (zh) * 2012-05-06 2012-09-12 何林 应急用日光灯
US9531255B2 (en) * 2015-01-12 2016-12-27 Technical Consumer Products, Inc. Low-cost driver circuit with improved power factor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075476A (en) * 1976-12-20 1978-02-21 Gte Sylvania Incorporated Sinusoidal wave oscillator ballast circuit
US4396866A (en) * 1980-12-29 1983-08-02 Gte Products Corporation Lamp filament drive scheme providing for control of filament voltages by use of lamp current in solid state ballasts

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941822A1 (de) * 1979-10-16 1981-04-30 Patra Patent Treuhand Vorschaltanordnung zum betreiben von niederdruckentladungslampen
US4370600A (en) * 1980-11-26 1983-01-25 Honeywell Inc. Two-wire electronic dimming ballast for fluorescent lamps
DE3101568C2 (de) * 1981-01-20 1986-01-09 Wollank, Gerhard, Prof. Dipl.-Phys., 5040 Brühl Schaltungsanordnung zum Betrieb von Niederdruckentladungslampen mit einstellbarem Lichtstrom
DE3112499A1 (de) * 1981-03-30 1982-10-14 Patra Patent Treuhand Vorschaltanordnung zum betreiben von niederdruckentladungslampen
DE3112577A1 (de) * 1981-03-30 1982-10-14 Patra Patent Treuhand Vorschaltanordnung zum betreiben von niederdruckentladungslampen
JPS57191950A (en) * 1981-05-22 1982-11-25 Hitachi Ltd Charged-particle source
AU555174B2 (en) * 1981-09-18 1986-09-18 Oy Helvar Electronic ballast for a discharge lamp
US4481460A (en) * 1982-02-08 1984-11-06 Siemens Aktiengesellschaft Inverter with charging regulator having a variable keying ratio
DE3222534A1 (de) * 1982-06-16 1983-12-22 Werner Schoenfeld Vorschaltgeraet
DE3246454A1 (de) * 1982-12-15 1984-06-20 Siemens AG, 1000 Berlin und 8000 München Wechselrichter mit einem einen reihenresonanzkreis und eine entladungslampe enthaltenden lastkreis
US4544863A (en) * 1984-03-22 1985-10-01 Ken Hashimoto Power supply apparatus for fluorescent lamp
DE3441992A1 (de) * 1984-11-16 1986-05-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Schaltungsanordnung zur zuendung einer niederdruckentladungslampe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075476A (en) * 1976-12-20 1978-02-21 Gte Sylvania Incorporated Sinusoidal wave oscillator ballast circuit
US4396866A (en) * 1980-12-29 1983-08-02 Gte Products Corporation Lamp filament drive scheme providing for control of filament voltages by use of lamp current in solid state ballasts

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013391A1 (en) * 1995-10-03 1997-04-10 Pal Sandor Improvements in or relating to an electronic ballast for fluorescent lamps
US6091207A (en) * 1997-06-18 2000-07-18 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluelampen Mbh Pump support choke
EP1028606A2 (de) * 1999-02-11 2000-08-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb mindestens einer Niederdruckentladungslampe
EP1028606A3 (de) * 1999-02-11 2003-03-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb mindestens einer Niederdruckentladungslampe
US6525489B2 (en) 2001-01-03 2003-02-25 Osram Sylvania Inc. Circuit arrangement for operating electric lamps
CN104052256A (zh) * 2013-03-12 2014-09-17 浙江海洋学院 单极性开关电源续流降噪及其参数计算方法
CN104052256B (zh) * 2013-03-12 2017-04-12 浙江海洋学院 单极性开关电源续流降噪及其参数计算方法

Also Published As

Publication number Publication date
DE3611611A1 (de) 1987-10-08
US4782268A (en) 1988-11-01
JPS62243293A (ja) 1987-10-23
DE3769196D1 (de) 1991-05-16
EP0244644B1 (de) 1991-04-10

Similar Documents

Publication Publication Date Title
EP0244644B1 (de) Schaltungsanordnung zum hochfrequenten Betrieb einer Niederdruckentladungslampe
EP0253224B1 (de) Schaltungsanordnung zum Betrieb von Niederdruckentladungslampen
DE60024215T2 (de) Modulares hochfrequenz-vorschaltgerät
DE69531521T2 (de) Vorschaltgerät mit hohem Leistungsfaktor und niedriger Verzerrung
EP0763276B1 (de) Getaktete stromversorgung zum betreiben elektrischer lampen
EP0372303B1 (de) Schaltungsanordnung zum Betrieb einer Niederdruckentladungslampe
CH656753A5 (de) Gleichrichtervorrichtung mit gesiebter ausgangsspannung.
DE2705969A1 (de) Vorschaltanordnung fuer entladungslampe
DE19813187A1 (de) Stromversorgungseinrichtung
EP0356818A2 (de) Schaltungsanordnung zum Betrieb einer Last
DE4430397A1 (de) Schaltungsanordnung zum Betrieb von Niederdruckentladungslampen
DE3711814C2 (de) Elektronisches Vorschaltgerät zum Betrieb von Leuchtstofflampen
EP1585372B1 (de) EVG mit Resonanzanregung zur Übernahmespannungserzeugung
EP0541909B1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen
EP3539207B1 (de) Schweissstromquelle
DE19914505A1 (de) Schaltung zur Korrektur des Leistungsfaktors
EP1553810A2 (de) Schaltungsanordnung zum Betrieb von Lichtquellen mit Leistungsfaktorkorrektur
EP1485982B1 (de) Schaltung zur elektrischen leistungsfaktorkorrektur
EP0697803A2 (de) Schaltungsanordnung zur Ansteuerung von Gasentladungslampen
EP0949851B1 (de) Schaltungsanordnung zum Betrieb von Niederdruckentladungslampen
EP1028606A2 (de) Schaltungsanordnung zum Betrieb mindestens einer Niederdruckentladungslampe
EP1248344B1 (de) Reaktanz-Zweipolschaltung für nichtlineare Verbraucher
DE3408426A1 (de) Schaltungsanordnung zum wechselstrombetrieb von hochdruck-gasentladungslampen
DE3025421C2 (de) Schaltungsanordnung zur Versorgung einer Gasentladungslampe aus einem Wechselstromnetz
EP0671867B1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19871204

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUE

17Q First examination report despatched

Effective date: 19900719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3769196

Country of ref document: DE

Date of ref document: 19910516

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060411

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060425

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060619

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070402

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20