EP0240527B1 - Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke et procede de chauffage electrique a l'aide d'un lit granule conducteur d'un fluide - Google Patents

Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke et procede de chauffage electrique a l'aide d'un lit granule conducteur d'un fluide Download PDF

Info

Publication number
EP0240527B1
EP0240527B1 EP86905848A EP86905848A EP0240527B1 EP 0240527 B1 EP0240527 B1 EP 0240527B1 EP 86905848 A EP86905848 A EP 86905848A EP 86905848 A EP86905848 A EP 86905848A EP 0240527 B1 EP0240527 B1 EP 0240527B1
Authority
EP
European Patent Office
Prior art keywords
furnace
coke
area
balls
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86905848A
Other languages
German (de)
English (en)
Other versions
EP0240527A1 (fr
Inventor
Jean Armand Ghislain Cordier
Bernard Emile André DUSSART
Pierre Henri Rollot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA filed Critical Sollac SA
Priority to AT86905848T priority Critical patent/ATE48441T1/de
Publication of EP0240527A1 publication Critical patent/EP0240527A1/fr
Application granted granted Critical
Publication of EP0240527B1 publication Critical patent/EP0240527B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B1/00Retorts
    • C10B1/02Stationary retorts
    • C10B1/04Vertical retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like

Definitions

  • the invention relates to a process for the production of molded coke and a shaft furnace for the production of such coke in which the heating and coking heat is supplied by an electrical energy supply and transferred by a recycled gas stream.
  • the invention also relates to a method and an electrical heating device using a fluid-conducting granulated bed.
  • Processes are known for manufacturing coke molded in a shaft furnace, in which a mass of molded coal balls circulates from top to bottom, against the flow of a recycled gas stream originating from a fraction of the gas produced by the coking and taken from the top of the oven to be reintroduced at the base of the latter.
  • the coking of the molded balls takes place in a central zone of the furnace by gaseous contribution from the distillation.
  • the heat energy was provided by an external electric heating, of the resistance electric oven type, however this technique has a poor yield and efficiency because the coke block is not heated uniformly. In fact, the coke undergoes excessive and too rapid overheating in the walls, which is detrimental to the mechanical strength of the balls (bursting and cracking) and to their metallurgical quality (reactivity).
  • the cell furnace is in the form of a column with a straight section, substantially uniform over the entire interior height of the bed of circulating molded balls, comprising, on the one hand, electrodes arranged in a median zone of the side wall of the furnace, and on the other hand, mobile electrodes, which are introduced by the upper part of the furnace into the bed of circulating balls, and arranged in an adjustable manner at a level of the furnace higher than that of fixed electrodes.
  • the localized current flow causing local heating by the Joule effect of the mass of balls, considerably reduces the resistivity and causes a concentration of electric currents in an area which is already too hot.
  • the object of the invention is to remedy these drawbacks by providing a process for the manufacture of coke molded in a vertical tank oven, the structure of which optimizes the distribution of the supply of heat energy suitably distributed over the entire section of the oven, while by ensuring correct circulation of the coke mass and by achieving the optimum conditions for coking the molded coal balls.
  • the subject of the invention is also a process for manufacturing metallized molded coke, characterized in that a coke, by a process as defined above, is coked with a charge of molded balls prepared by compacting a paste consisting of a binder, simple or mixed, of a mixture of suitable coals, and fine particles of a material based on the metallic element to be incorporated into the coke, in metallic or oxidized form.
  • the material based on the metallic element consists of iron oxides, manganese ores and dust resulting from the production of ferro-manganese, chromite concentrates for the production of ferro-chromium, quartz fines and silica powders that must be recycled for the production of ferro-silicon.
  • the subject of the invention is also a pot furnace for the manufacture of molded coke in the form of a substantially tubular enclosure delimiting a first preheating zone corresponding to the upper part of the enclosure, a second carbonization zone and coking corresponding to the central zone of the enclosure and a third coke cooling zone corresponding to the lower part of the enclosure, the oven comprising at its top sealed means for introducing a charge consisting of raw molded balls and means for recovering the gases produced and at its base sealed means for removing the coke and means for admitting a recycled gas stream, the intake means being connected, outside the oven, to the means for recovery of gases produced by recycling means, and electric heating means arranged in the wall of the second carbonization and coking zone, characterized in that the oven comprises a qu atrieme sealed secondary cooling zone connected upstream to the evacuation means of the third zone and downstream to a sealed evacuation airlock, the fourth zone comprising at its base at least one secondary cooling gas supply line connected the recycling means, and at its apex, at least one return pipe for the secondary cooling gases
  • the watertight means for introducing the load consist of a sealed load supply airlock opening at its lower part into the first zone of the furnace by a distribution bell, the supply airlock being itself supplied by a rotating hopper.
  • the means for evacuating the coke from the third zone comprises a rotating and movable floor in vertical translation opening out, via a sealed airlock, into the fourth secondary cooling zone.
  • the electrical heating means are of the conduction type and consist of at least one pair of diametrically opposite electrodes, disposed at the base of the wall of the second zone of the enclosure of the oven, said wall forming, in this zone, a constriction of the internal section of passage of the bed of molded balls delimited by a shoulder against which the fixed electrodes are housed.
  • the electrodes consist of segments, the profile of which in vertical section is L-shaped extending along each side of the shoulder so that one of the branches of L is horizontal.
  • the electrode segments are circular and separated from the others by an intermediate wall of refractory and insulating material in the form of an inclined plane corresponding to the slope of the shoulder delimited by the L-profile. electrodes.
  • This L-shaped profile is preferably chosen because it causes an embankment accumulation of coked balls and very conductive on the electrode that they protect.
  • This protective slope is constantly renewed; it extends the electrode while protecting it from abrasion from the descending molded coke bed, and it isolates it from the hot zone of cooking and gases from the recycled gas stream, very hot at this level. This results in a reduction in heat losses and better mechanical resistance of the electrodes, especially if they are made of cooled alloy copper.
  • the oven comprises an internal enclosure in the shape of a warhead in a refractory material provided with a central electrode cooperating with a peripheral electrode circulating along the internal wall of the enclosure.
  • the two electrodes are supplied by a direct or single-phase current source.
  • the electric heating means are of the induction type and consist of an induction coil coaxial with the tank and housed in the refractory lining of the furnace.
  • the oven comprises an internal enclosure in the form of a warhead made of a refractory material, in which is housed a laminated magnetic core.
  • the correct distribution of the heating energy is further improved by winding around this magnetic core an internal induction coil, coaxial with the external induction coil, and supplied in phase with the latter, by the same current source at medium frequency.
  • the induction heating means consist of a set of pairs of induction coils arranged radially in the refractory wall of the furnace, defining an external inductor generating a rotating field passing horizontally through the tank.
  • the oven comprises an internal enclosure in the shape of a warhead of refractory material in which is housed an internal inductor consisting of a set of radial coils arranged opposite the coils of the external inductor and determining a set of pairs of coupled coils which cooperate to generate a rotating field between the external inductor and the internal inductor.
  • the electrical heating means consist of the combination of at least one pair of electrodes as described above generating conduction heating, and at least one coil generating induction heating .
  • the process of the invention consists in coking, continuously, in an electrically heated tank furnace, by conductor and / or by induction, balls of dried coal agglomerated by binders and molded in press.
  • the pyrolysis of the balls in the furnace causes the emission of distillation gases from the coals and binders, a large part of which is recycled at the base of the furnace, after brief purification. These recycled gases form an ascending gas stream which cools the balls in the lower part of the furnace and the progressive heating, in counter-current, of the balls which descend the upper part of the furnace.
  • the balls are successively preheated and dried, then smoked.
  • the carbonization then ensures the mechanical consolidation of the balls.
  • the progressive heating of the balls completely eliminates the volatile matter around 850 ° C and the balls then become electrically conductive.
  • This conductivity is used to pass electric currents through the ball bed which cause the balls to be heated by the Joule effect in their mass and at the points of contact between them. This electric heating completes the cooking and coking of the balls at the desired temperature.
  • the ball of balls then behaves like a heating grid which overheats against the current the ascending gas flow coming from the lower part of the oven in which the coked balls are cooled.
  • the ascending gas stream then essentially consists of hydrogen (and methane). By its particular thermal and electrical properties, it constitutes an excellent vector of heat exchange between the gases and the balls, which avoids the formation of arcs and discharges between the balls.
  • the raw molded balls are prepared by first making a paste by kneading with a mixed binder (pitch, tar, asphalt ...) of coals previously mixed, dried, crushed and preheated. The preheated dough is then compacted into balls in a tangential cylindrical hoop press.
  • a mixed binder pitch, tar, asphalt
  • the shaft furnace shown in FIG. 1 comprises a metal casing or shield 1 provided on its internal face with a refractory lining 2 delimiting an enclosure 3 substantially tubular, and slightly frustoconical in its upper part, in which is loaded a mass of molded balls constituting the moving bed 4.
  • the enclosure 3 is of circular section, but may also have a rectangular section as illustrated in FIG. 6.
  • the shaft furnace is loaded at its top by sealed means for introducing the raw molded balls, which comprise a rotating hopper 5 supplied with balls by a belt conveyor 6 controlled by a charge level detector 7 placed in the hopper.
  • the hopper 5 has at its lower part a rotating bell 8 whose opening, under the action of a jack 9, frees the introduction of the balls into a sealed lock airlock 10 comprising pipes 11 a, 11 b of purge with neutral gas.
  • the sealed airlock 10 is closed at its lower part opening into the oven, by a distribution bell 12, the opening of which is controlled by a jack 13 according to the indications of a charge level detector 14 placed at the head of the tank. .
  • the bells 12 and 8 are opened in sequence according to the indications of the sensor 14.
  • the furnace is also provided at its top with means for recovering the gases produced, which consist of two pipes 15a, 15b, of large diameter, opening into the enclosure of the furnace on either side of the rotating distribution bell 12.
  • the coke oven gas recovered by the lines 15a, 15b is sent to a primary purification installation shown diagrammatically at 16 to undergo a cooling, washing, drainage and summary condensation treatment of the water and the naphthalene.
  • the gas thus treated is recycled for a fraction of 60 to 80% to the oven by a recycling line 17 and sent for the remaining fraction by a line 18 to a storage gasometer not shown via a conventional secondary purification installation shown schematically in 19.
  • the oven enclosure 3 has three separate functional areas.
  • the upper part of the enclosure corresponds to a first cooking zone 20 where the balls are progressively preheated, smoked by distillation of the coals and binders and undergo a first phase of carbonization, by the current of ascending hot gases flowing in countercurrent.
  • the middle part corresponds to a second zone 21 at the end of carbonization and coking at the base of which the electrical heating means 22 are installed, housed in the internal wall of the refractory lining 2.
  • a third zone 23 for primary cooling of the coke formed occupies the lower part of the enclosure and comprises at its base means for admitting a recycled gaseous stream coming from the primary purification installation 16.
  • These means comprise a set of pipes 24 for admission of the primary recycled current coming from a supply circular 25, itself connected to the recycling pipe 17 by a pipe 26 on which is mounted a valve 27 for adjusting the flow rate controlled as a function of the indications supplied by temperature sensors 28 located at the head of the oven.
  • the circulation of the recycled gas in the pipe 17 is ensured by a fan 29 and the admission flow rate of a first part of the recycled gases, corresponding to the primary current, sent in the pipe 26 is adjusted to maintain the temperature detected by the sensors 28 at a predetermined set point, to avoid condensation of gou drons on the balls in the oven and on the internal walls of the oven.
  • the oven comprises at its base means for evacuating the coke from the third zone 23 which comprise a rotary hearth 30 driven in rotation by a geared motor group 31 and movable in vertical translation by means of a cylinder for adjusting height 32.
  • the rotary hearth 30 puts the third zone 23 of the oven in communication with an airlock 33 opening itself into a fourth zone 34 for secondary cooling of the coke.
  • the fourth secondary cooling zone 34 has at its base inlet pipes 35 for a secondary cooling current corresponding to the remaining part of the recycled gas stream.
  • These pipes 35 come from a circular 36 connected by a pipe 37, via a flow control valve 38, to the recycling pipe 17.
  • the valve 38 is controlled according to the indications provided by a temperature sensor 39 measuring the average temperature of the coke present in the fourth zone 34 for secondary cooling of the coke.
  • the flow rate of the remaining part of the recycled gases introduced in the form of a secondary cooling stream is adjusted to maintain the temperature of the coke detected by the sensor 39 at a predetermined set point, lower than the maximum normal handling temperature of the coke. .
  • This fourth secondary cooling zone 34 has, at its upper part, conduits 40 opening into a circular 41 collecting the secondary cooling current, itself connected by a conduit 42, on which a fan 43 is mounted, to a return circular 44 of the secondary cooling current surrounding the upper part of the furnace where the recovery of the gases produced and opening into it takes place via return pipes 45.
  • the fourth cooling zone 34 is connected, downstream, to a sealed lock airlock 46 provided with purge lines 47, 48 and itself connected to an evacuation hopper 49 releasing the cold coke on a strip dosing extractor 50.
  • valves 51, 52 and 53 for communication between the airlock 33, the fourth zone 34 and the sealed lock airlock 46 is controlled respectively by jacks 54, 55 and 56 according to the indications provided by a charge level detector 57 located at the head of the fourth zone.
  • the balls leaving the first zone reach a temperature of about 850 ° C, from which the electrical conductivity becomes appreciable and increases considerably to cap around 1100 C.
  • the coked balls descend into the lower part of the oven corresponding to the third primary cooling zone 23, at the base of which is injected the stream of recycled cold gas which is used as a heat transfer vector in the various zones of the oven.
  • the coke balls continuously extracted from the third zone by means of a rotating hearth are removed in two stages.
  • the balls are completely cooled by a secondary stream of recycled gas, which is then returned to the top of the furnace; then, they are discharged by the final lock airlock, purged with neutral gas, which eliminates any risk of explosion.
  • the molded coke is extracted cold and then screened before shipment.
  • the manufacture of electric molded coke combines the advantages of gas coke with those of the electric process.
  • electric molded coke has the following advantages:
  • the homogeneity of the cooking temperature ensures the regularity of the coke quality.
  • the cooking temperature control makes it possible to control the reactivity of the coke produced: reactive coke for electrometallurgy (cooked at low temperature), foundry coke with very low reactivity (cooked at high temperature: 1300 ° C), blast coke with reactivity adjusted.
  • the heating means 22 arranged in the lower part of the second zone 21 correspond to two embodiments which will be described below.
  • the internal wall of the refractory lining 2 delimiting the enclosure 3 forms a narrowing of the internal passage section of the bed of molded balls at the bottom of the second zone 21. This narrowing is delimited by a shoulder 58 formed along the wall of the enclosure 3.
  • electrodes 59 having an L-shaped vertical sectional profile extend along each side of the shoulder 58 so that one of the branches of the L is horizontal.
  • the electrode 59 is made of an electrically conductive material, for example copper and fixed by a tie rod 60 which passes through it, as well as the refractory lining 2, outside the shield 1 by conventional means such as nut and against nut.
  • the tie rod 60 is electrically isolated from the shield 1 by the interposition of an electrical insulating material in the form of discs 61.
  • the end of the tie rod 60 outside the shield forms a terminal 62 on which is fixed an electric power cable 63 of the electrode connected to the current source 64, shown in FIG. 1.
  • the area of the refractory lining 2 immediately adjacent to the electrode 59 is cooled by a tube 65 for internal circulation of cooling fluid arranged in a serpentine fashion along the two faces of the electrode 59 facing the refractory lining.
  • the electrode can also be cooled directly by internal circulation of the cooling fluid.
  • the electrodes 59 are in the form of diametrically opposite circular segments and separated from each other by an intermediate wall 66 of separation more clearly visible in FIG. 5.
  • This wall 66 is in the form of an inclined plane at an inclination corresponding to the slope of the shoulder 58 against which the electrodes 59 are housed.
  • a pair of electrodes 59 are arranged around the tank per phase.
  • the electrodes of the same phase are diametrically opposite in the tank, as shown in Figs. 2A and 3A, so as to ensure the passage of current to the center of the furnace.
  • Their supply voltage is adjustable (phase by phase) by acting on the secondary of the supply transformer.
  • a two-phase supply is produced, as illustrated in FIGS. 2A and 2B, using a SCOTT transformer, according to the connection diagram in Fig. 2A, which transforms a three-phase primary supply into a two-phase secondary (phases marked 1 and 1b on the one hand and 2 and 2b on the other hand) of adjustable voltage.
  • the electrodes 59 made up of circular segments the cross section of which is L-shaped rest inside the furnace on a cooled refractory edge 67 (FIG. 4). Is formed on each of these electrodes, a ball of repose strongly graph i silly things (by local surcokéfaction driven by the long residence time at high temperature ball) and highly conductive, which protect the electrodes 59 and divided densities current in the ascending load.
  • Each electrode is separated from its neighbor by the insulating refractory, insulating, abrasion-resistant wall 66 (for example made of silicon carbide bricks, linked to silicon nitride) whose conicity ensures a slight progressive compression of the charge at right copper electrodes in order to improve and homogenize the electrical conductivity of the ball bed during coking.
  • the insulating refractory, insulating, abrasion-resistant wall 66 for example made of silicon carbide bricks, linked to silicon nitride
  • the diameter of the furnace rapidly expands so as to loosen the l i t of balls, to increase the electrical resistances of contact between the cannonballs and avoid stray currents in the cooling zone where they would heat already coked cannonballs in pure loss.
  • the developed width of the circular segments of the electrodes 59 is chosen to be approximately equal to the width of the refractory intermediate walls 66 so as to avoid preferential passages between phases or even short circuits from one phase to another on the periphery of the furnace.
  • Fig. 6 is shown a variant in which the section of the tank is rectangular.
  • This oven is substantially similar to that described with reference to FIG. 1 with regard to the means for introducing the charge of raw molded balls and recovery of coke, as well as with regard to the recycling of coke oven gas recovered by two collecting pipes 70 and 71 located at the top of the furnace returned to the base of the primary cooling zone by two pipes 72 and 73. In this case also the cooling of the coke takes place in two stages between which the fractions of recycled gas are divided, as previously indicated.
  • These electrodes also have an L-shaped profile, on which a slope accumulates. highly graphitized balls.
  • each phase of the current supplies a pair of copper electrodes from a transformer 76.
  • the electrodes of the same phase are arranged opposite one another along each of the large faces of the furnace and are separated from the pair of adjacent electrodes by a refractory insulating wall 77.
  • the circular oven has an inner enclosure 80 in the form of a warhead made of a refractory material, while the structure of the enclosure 3 of the oven remains identical in all its peripheral parts.
  • This enclosure 80 carries a central electrode 81, frustoconical, which ensures the return of the currents passing through the solid mass of hot balls during coking and coming from a circular peripheral electrode 82 of L-shaped section current along the interior perimeter of the tank above the edge 67.
  • This provision aims to avoid parasitic currents between the electrodes supplied by different phases, and to ensure the passage of current in the center of the furnace.
  • Power is supplied between the peripheral electrode 82 connected as an anode and the central electrode 81 forming the cathode, by a direct current source, for example a rectifier 83, or a single-phase current source for a small capacity oven.
  • the ogival enclosure 80 is mounted on a rod 84 passing through its center a column 85 ensuring the support and the mobility of the annular rotary hearth 86.
  • the ogival enclosure 80 is movable vertically under the action of a jack 87 placed under the rod 84.
  • the rod 84 is surmounted by an insulator 88 which prevents the passage of parasitic currents back along the rod 84.
  • the central electrode 81 in the form of a truncated cone is made of an abrasion-resistant material such as densified silicon carbide sufficiently electrically conductive to limit the localized heating of the walls of the cathode 81.
  • the cathode 81 rests on a sleeve 89 made of a refractory insulating material.
  • the return currents through the cathode 81 flow to the base of the furnace through a cooled, insulated conductor 90 housed in the hollow axis of the rod 84.
  • the column 85 is slidably mounted, for example by a system of grooves not shown, in a conical toothed crown 91 ensuring the rotational drive of the column thanks to a conical pinion 92 with which it engages. the pinion 92 being mounted at the end of the output shaft of a geared motor group 93.
  • the vertical sliding of the column is ensured by a jack 94.
  • the coke extraction rate, homogeneous over the entire periphery is adjusted by adjusting the speed of rotation of the metering bed and the height thereof.
  • the cathode 81 is cooled by circulation from a line 95 of a stream of refrigerated gas which escapes through the annular clearance formed between the ogival enclosure and the column 85 at the place where the enclosure 80 comes to style the latter.
  • the electric heating is carried out by induction.
  • the heating means arranged at the base of the coking zone 21 comprise an induction coil 100 coaxial with the enclosure 3 and housed in the refractory wall 2 of the furnace.
  • Vertically laminated mild steel cores 101 are arranged radially around the coil 100 and channel the field return lines.
  • the coil 100 is supplied by a generator 102 at medium frequency, between approximately 50 and 1000 Hertz.
  • the electrical conductor which constitutes the coil 100 is a hollow tube, in which circulates a cooling fluid introduced at 103 and withdrawn at 104, which is itself connected by conductors 105 and 106 to the generator 102.
  • the laminated cores 101 constitute a magnetic yoke cooled by circulation of cooling fluid introduced by the pipe 107 and withdrawn by the pipe 108.
  • the expression for the power density (electrical power dissipated per unit of coke volume), established for the variant in FIG. 9 shows that the radius of the tank and the conductivity of the balls have a determining influence on the powers developed locally in the bed.
  • this first variant has the disadvantage of unevenly heating the balls passing through the wall and those passing through the center of the oven, which risk being insufficiently heated.
  • the ball beds arranged outside will have a temperature and an electrical conductivity significantly higher than the center balls, which will lead to different end-of-coking temperatures and an uneven quality of the coke balls, at the center and at the wall.
  • the oven comprises means of electric induction heating which comprise, in addition to an induction coil 110 coaxial with the enclosure 3 and housed in the refractory wall 2 of the oven, an interior enclosure 111 in the form of an ogive made of a refractory material which includes means for strengthening the magnetic field near the axis of the furnace.
  • the refractory material constituting the enclosure 111 may for example be made of silicon carbide bonded to silicon nitride, the electrical insulation properties of which are sufficient for the intended application and the resistance to abrasion and to thermal shock is excellent. .
  • These means may consist of a set of vertically laminated mild steel cores 112, arranged radially, housed in the warhead enclosure 111.
  • an internal induction coil 113 coaxial with the coil 110 supplied in phase with the latter and housed in the warhead enclosure 111.
  • the mild steel cores laminated vertically 112 and arranged radially are inserted into the coil 113 coaxial with the latter.
  • the induction coil 110 consists of a hollow electrical conductor with helical winding in which circulates a cooling fluid supplied at 114 and withdrawn at 115.
  • the internal induction coil 113 is produced in a similar manner and cooled by circulation of a cooling fluid between the points of arrival 116 and of exit 117, this cooling circuit emerging outside the oven by circulation in a column 118, of smaller diameter than the enclosure in the shape of a warhead 111 and supporting the latter.
  • Column 118 crosses the rotary hearth of the furnace as illustrated in more detail for the first embodiment of the induction heater shown in FIG. 7.
  • All of the laminated cores 113 constitute an internal induction cylinder head also cooled by circulation of a cooling fluid supplied by a central pipe 119 arranged along the axis of the column and opening at the top of the cores, the return of the fluid being provided by a line coaxial and external to line 119.
  • a medium frequency generator 123 supplies the coils 110 and 113 in series via a conductor 124 connected to the input of the coil 110, then a conductor 125 connecting the output of the coil 110 to the input of the coil 113 and a conductor 126 ensuring the return of the output of the coil 113 to the generator 123.
  • the coils 110 and 113 placed in the furnace opposite one another make it possible to associate their respective field of induction to simultaneously and homogeneously heat the balls passing along the peripheral walls of the enclosure 3, and of the walls of the inner enclosure 111.
  • the induction heating means consist of a set of pairs of induction coils arranged radially in the refractory wall of the furnace, thus defining an external inductor generating a rotating field passing horizontally across the tank.
  • FIG. 11 two coils 130, 131 having their axes merged and arranged radially and diametrically opposite are wound on horizontally laminated magnetic steel cores forming inductors 132, 133.
  • the coils 130 and 131 are supplied on the same phase of a polyphase current identified 1, so that the magnetic field passes radially through the tank, that is to say that the opposite end faces of the coils 130 and 131 are of opposite polarities.
  • Each pair of coils 130, 131 which represents a phase is regularly shifted in the inductor so that the resulting field rotates at the frequency of the supply currents and generates eddy currents in the mass of the coked balls.
  • the inductors 132, 133 are cooled by circulation of a cooling fluid supplied by a circuit entering through the line 135 and leaving through the line 136.
  • a generator 137 three-phase medium frequency, supplies the coils as shown in FIG. 11 for two coils in an axial cutting plane.
  • the horizontal section shows the feeding which takes place as shown in Fig. 13 by considering only the inductors outside the oven enclosure.
  • the oven further comprises an internal enclosure 140 in the form of a warhead, made of a refractory material, in which is housed an internal inductor constituted by a set of radial coils arranged opposite the coils of the external inductor and determining a set of pairs of coupled coils which cooperate to generate a radially rotating field between the external inductor and the internal inductor.
  • a coil 130 of the external inductor is associated with a coil 130a supplied in such a way that the opposite end faces of the coils are of opposite polarities.
  • the coil 131 is associated with a coil 131 a.
  • the coils 130a and 131a are wound on a horizontally laminated magnetic steel inductor traversed by a cooling circuit consisting of a central supply tube 141 and peripheral return tubes 142 (Fig. 13).
  • the electric heating means of the oven comprise, in the coking zone, conduction heating means with L-shaped peripheral electrode 150 and central electrode 151 as described with reference to FIG. 7, supplied from a rectifier 152 and induction heating means comprising an axial coil 153, as described with reference to FIG. 9, supplied from a medium frequency current source 154, and optionally a set of vertically laminated mild steel cores 156, arranged radially, housed in the support column 157 of the electrode 151, as described with reference in Figure 10.
  • the axial coil 153 is then housed in the coping 155 projecting from which the electrode 150 sits and below the latter.
  • Inductive heating uses variable fluxes generated by induction coils completely external to the mass of the balls during coking and makes it possible to overcome, in large part, the problems of variation of the contact resistance between balls and in contact electrodes.
  • the electromagnetic induction developed in a ball of balls allows density levels varying within wide limits.
  • the developed power can reach 5 to 10 Megawatts per m 3 of hot and coked balls, while it is considerably lower by conduction.
  • This electrical power greater than the only thermal requirement of the electrical coking developed in the mass of balls, can be used to reduce, by the carbon of the coke and by the volatile matters of the binders, fines of oxidized ores or dusts which can be incorporated into composite bullets.
  • the rate of mineral fines incorporated in the coke paste is limited by the electrical conductivity of the ball bed which cannot be less than 100 mhos (electrical conductivity of the homogeneous medium equivalent to the bed of balls at the start temperature electric coking, i.e. 850 ° C to 900 ° C).
  • the invention also relates to a method and a device making it possible to dissipate, in a uniform and homogeneous manner, significant volumetric electric powers, developed by the Joule effect of induced electric currents, in a medium. conductive granule which can thus be brought to high temperature.
  • This granulated bed having a high specific surface can be used to heat or superheat gases, liquids, melt solids, and vaporize liquids by superheating the vapors thus produced.
  • the conductive granulated bed consists of refractory and sufficiently conductive materials, in calibrated pieces, in grains, in solid or hollow and tubular cylindrical elements, in rings, in balls or pellets, in briquettes.
  • the refractory materials composing the conductive granulated bed can be constituted by calibrated pieces and grains of carbon, graphite, cokes, or by rings, pellets, and cylinders of silicon carbide, molybdenum silicide, diboride of zirconium or by balls, pellets, briquettes of coal paste and coking mixtures.
  • the granulated bed is chosen according to its electrical resistivity, its refractoriness, its specific surface and its permeability, and finally its resistance to oxidation and corrosion for the use which is made of it.
  • an oven comprising heating means as shown in FIGS. 7 to 14.
  • the conductive granulated bed is compacted in the tubular enclosure of the oven whose walls are lined with insulating refractories. This granulated bed rests on a refractory grid through which the gas to be overheated is blown. It can also be placed between two layers of non-conductive material such as sand, so as to center the lines of flight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Le procédé consiste à introduire une première partie de la fraction des gaz de tête recyclés à la base de la partie inférieure (23) du four pour assurer un refroidissement primaire du coke; et à introduire le reste de la fraction des gaz de tête recyclés sous forme d'un courant de refroidissement secondaire circulant à contre-courant de la masse de coke issue de la partie inférieure (23) du four dans une zone (34) relié de façon étanche à la sortie de la partie inférieure (23); le courant de refroidissement secondaire étant ensuite soutiré (40) de la zone (34) et réintroduit en tête de four pour diluer les gaz produits et maintenir les moyens de récupération (15a et 15b) de ces gaz, à une température suffisamment élevée pour empêcher toute condensation; et le coke froid étant évacué de la zone (34) par un sas étanche (46). L'invention concerne également un procédé et un dispositif de chauffage électrique à l'aide d'un lit granulé conducteur d'un fluide.

Description

  • L'invention concerne un procédé de fabrication de coke moulé et un four à cuve pour la fabrication d'un tel coke dans lequel la chaleur de chauffage et de cokéfaction est fournie par un apport d'énergie électrique et transférée par un courant gazeux recyclé. L'invention concerne également un procédé et un dispositif de chauffage électrique à l'aide d'un lit granulé conducteur d'un fluide.
  • On connaît des procédés de fabrication de coke moulé dans un four à cuve, dans lequel un massif de boulets de charbon moulés circule de haut en bas, à contre-courant d'un courant gazeux recyclé provenant d'une fraction du gaz produit par la cokéfaction et prélevé en tête du four pour être réintroduit à la base de ce dernier.
  • La cokéfaction des boulets moulés a lieu dans une zone médiane du four par apport gazeux de la distillation.
  • On a proposé de réaliser cet apport de chaleur, initialement réalisé à l'aide de brûleurs, par dissipation d'énergie électrique par effet Joule, ce qui a pour conséquence d'éviter la dilution des gaz de cokéfaction récupérés en tête de four par les fumées résultant de la combustion, dont le volume est important, en particulier, lorsque les brûleurs sont alimentés à l'air, et accroît ainsi considérablement la valeur calorifique des gaz de cokéfaction récupérés en tête de four.
  • Dans une première approche, l'énergie calorifique a été apportée par un chauffage électrique extérieur, du type four électrique à résistance, cependant cette technique a un rendement et une effica cité médiocres car le massif de coke n'est pas chauffé uniformément. En effet le coke subit en parois une surchauffe excessive et trop rapide qui est préjudiciable à la tenue mécanique des boulets (éclatement et fissuration) et à leur qualité métallurgique (réactivité).
  • Diverses publications, à savoir les brevets FR-A-628 168, US-A-2 127 542, DE-A-409 341 et FR-A-2 529220 ont proposé, pour résoudre ces problèmes, d'apporter l'énergie calorifique de cokéfaction directement dans la zone concernée, par conduction électrique dans le massif de boulets chauds, en générant des courants électriques entre des électrodes diamétralement opposées, séparées par le massif de boulets à cokéfier.
  • Dans le brevet FR-A-2 529 220, le four à cuve se présente sous forme d'une colonne à section droite, sensiblement uniforme sur toute la hauteur intérieure du lit de boulets moulés en circulation, comportant, d'une part des électrodes disposées dans une zone médiane de la paroi latérale du four, et d'autre part, des électrodes mobiles, qui sont introduites par la partie supérieure du four dans le lit même de boulets en circulation, et disposées de façon réglable à un niveau du four supérieur à celui des électrodes fixes.
  • Un des inconvénients majeurs de ce type de four réside dans la difficulté d'assurer une conduction électrique appropriée du lit de boulets de charbon moulé en circulation, afin de régler de façon homogène et optimale l'apport calorifique nécessaire à la cokéfaction des boulets. En effet la conductibilité électrique du massif de boulets est liée, pour une part, à la qualité et à la reproductibilité des contacts individuels des boulets entre eux et donc à la répartition des pressions internes de ce massif obtenues par compactage. Or, un compactage localité ou généralisé, exçes- sif de ce lit, constitue une entrave à l'écoulement "fluide" des matériaux et à une circulation correcte du lit, qui n'est pas admissible.
  • Par ailleurs, le passage de courant localisé, provoquant un échauffement local par effet Joule du massif de boulets, diminue considérablement la résistivité et provoque une concentration des courants électriques dans une zone qui est déjà trop chaude.
  • Cette difficulté n'est pas convenablement mai- trisée par les moyens décrits ci-dessus, et le réglage de l'équilibre thermique du lit de boulets en circulation n'est pas assuré, ce qui est pourtant nécessaire au contrôle de la qualité de la cuisson des boulets, (progressive, régulière, homogène, précise).
  • L'invention a pour but de remédier à ces inconvénients en fournissant un procédé de fabrication de coke moulé dans un four à cuve verticale dont la structure optimise la répartition de l'apport d'énergie calorifique convenablement réparti sur toute la section du four, tout en assurant une circulation correcte du massif de coke et en réalisant les conditions optimales de cokéfaction des boulets de charbon moulés.
  • Elle a ainsi pour objet un procédé de fabrication de coke moulé dans un four à cuve verticale du type comprenant à sa partie supérieure des moyens étanches d'introduction d'une charge de boulets moulés crus et des moyens de récupération des gaz produits; et à sa partie inférieure, des moyens étanches d'évacuation du coke et des moyens d'introduction d'un courant gazeux, dans lequel on fait circuler un courant gazeux recyclé en écoulement ascendant à contre-courant de la charge descendante de boulets de charbon moulés constituant un lit mobile descendant; on soumet les boulets de charbon moulés à une étape de préchauffage et de dévolatilisation dans une première zone correspondant à la partie supérieure du four; puis à une étape de carbonisation et de cokéfaction dans une seconde zone correspondant à la partie médiane du four, et une étape de refroidissement des boulets cokéfiés dans une troisième zone correspondant à la partie inférieure du four on récupère au sommet du four les gaz de tête produits par la distillation et la cokéfaction des charbons; et on recycle une fraction de ces gaz de tête pour constituer le courant gazeux recyclé, caractérisé en ce que l'on introduit une première partie de la fraction des gaz de tête recyclés à la base de la troisième zone pour assurer un refroidissement primaire du coke et le reste de la fraction des gaz de tête recyclés sous forme d'un courant de refroidissement secondaire circulant à contre-courant de la masse de coke issue de la troisième zone, dans une quatrième zone reliée de façon étanche à la sortie de la troisième zone, le courant de refroidissement secondaire étant ensuite soutiré de la quatrième zone et réintroduit en tête de four pour diluer les gaz produits et maintenir les moyens de récupération de ces gaz à une température suffisamment élevée pour empêcher toute condensation; et le coke froid étant évacué de la quatrième zone par un sas étanche.
  • Selon d'autres caractéristiques de l'invention:
    • - La phase de cokéfaction terminale est réalisée par dissipation d'énergie électrique par effet Joule, dans le lit de boulets devenus conducteurs, jusqu'à la température finale souhaitée. Les gaz recyclés, réchauffés par échange thermique lors du refroidissement primaire des boulets, sont surchauffés sur les boulets chauffés électriquement; ils transportent et transfèrent successivement cette chaleur aux boulets en cours de carbonisation, distillation et préchauffage dans les zones supérieures du four.
    • - Le chauffage électrique est réalisé par conduction électrique dans le lit mobile de boulets moulés cokéfiés d'un courant généré entre au moins deux électrodes diamétralement opposées, placées dans les parois de la cuve au niveau de la seconde zone.
    • - Le chauffage électrique est réalisé par induction de courants électriques dans le lit mobile de boulets cokéfiés qui garnissent la partie inférieure de la deuxième zone.
  • L'invention a encore pour objet un procédé de fabrication de coke moulé métallisé, caractérisé en ce qu'on cokéfie, par un procédé tel que défini ci-dessus, une charge de boulets moulés préparés en compactant une pâte constituée d'un liant, simple ou mixte, d'un mélange de charbons appropriés, et de fines particules d'un matériau à base de l'élément métallique à incorporer au coke, sous forme métallique ou oxydée.
  • Le matériau à base de l'élément métallique est constitué d'oxydes de fer, de minerais de manganèse et de poussières résultant de la production du ferro-manganèse, de concentrés de chromites pour la production de ferro-chrome, de fines de quartz et de poudres de silice qu'il faut recycler pour la production de ferro-silicium.
  • L'invention a en outre pour objet un four à cuve pour la fabrication de coke moulé se présentant sous forme d'une enceinte sensiblement tubulaire délimitant une première zone de préchauffage correspondant à la partie supérieure de l'enceinte, une seconde zone de carbonisation et cokéfaction correspondant à la zone médiane de l'enceinte et une troisième zone de refroidissement du coke correspondant à la partie inférieure de l'enceinte, le four comportant à son sommet des moyens étanches d'introduction d'une charge constituée de boulets moulés crus et des moyens de récupération des gaz produits et à sa base des moyens étanches d'évacuation du coke et des moyens d'admission d'un courant gazeux recyclé, les moyens d'admission étant reliés, à l'extérieur du four, aux moyens de récupération des gaz produits par des moyens de recyclage, et des moyens de chauffage électrique disposés dans la paroi de la seconde zone de carbonisation et cokéfaction, caractérisé en ce que le four comprend une quatrième zone étanche de refroidissement secondaire reliée en amont aux moyens d'évacuation de la troisième zone et en aval à un sas étanche d'évacuation, la quatrième zone comportant à sa base au moins une conduite d'alimentation en courant gazeux secondaire de refroidissement reliée aux moyens de recyclage, et à son sommet, aux moins une conduite de retour des gaz de refroidissement secondaire connectée à la partie supérieure du four au voisinage des moyens de récupération des gaz produits par la distillation et la cokéfaction du charbon.
  • Les moyens étanches d'introduction de la charge sont constitués par un sas étanche d'alimentation de la charge débouchant à sa partie inférieure dans la première zone du four par une cloche de distribution, le sas d'alimentation étant lui-même alimenté par une trémie tournante.
  • Les moyens d'évacuation du coke issu de la troisième zone comprennent une sole tournante et mobile en translation verticale débouchant, par l'intermédiaire d'un sas étanche, dans la quatrième zone de refroidissement secondaire.
  • Selon un premier mode de réalisation de l'invention, les moyens de chauffage électrique sont du type par conduction et constitués par au moins une paire d'électrodes diamétralement opposées, disposées à la base de la paroi de la seconde zone de l'enceinte du four, ladite paroi formant, dans cette zone, un étranglement de la section intérieure de passage du lit de boulets moulés délimité par un épaulement contre lequel sont logées les électrodes fixes.
  • Dans un mode de réalisation préféré de l'invention, les électrodes sont constituées de segments dont le profil en coupe verticale est en forme de L s'étendant le long de chaque côté de l'épaulement de sorte qu'une des branches du L soit horizontale.
  • Dans le cas d'une cuve à section circulaire, les segments d'électrodes sont circulaires et séparés des autres par une paroi intercalaire en matériau réfractaire et isolant en forme de plan incliné correspondant à la pente de l'épaulement délimité par le profil en L des électrodes.
  • Ce profil en L est choisi de préférence car il provoque une accumulation en talus de boulets cokéfiés et très conducteurs sur l'électrode qu'ils protègent. Ce talus protecteur est constamment renouvelé; il prolonge l'électrode tout en la proté- geànt de l'abrasion du lit de coke moulé descendant, et il isole celui-ci de la zone chaude de cuisson et des gaz du courant gazeux recyclé, très chauds à ce niveau. Il en résulte une diminution des pertes thermiques et une meilleure tenue mécanique des électrodes, surtout si celles-ci sont en cuivre allié refroidi.
  • Selon une variante du mode de réalisation du chauffage par conduction, le four comporte une enceinte intérieure en forme d'ogive en un matériau réfractaire munie d'une électrode centrale coopérant avec une électrode périphérique circulant le long de la paroi interne de l'enceinte. Les deux électrodes sont alimentées par une source de courant continu ou monophasé.
  • Selon un second mode de réalisation de l'invention, les moyens de chauffage électrique sont du type par induction et constitués par une bobine d'induction coaxiale à la cuve et logée dans le revêtement réfractaire du four.
  • Dans une variante, le four comporte une enceinte intérieure en forme d'ogive en un matériau réfractaire, dans laquelle est logé un noyau magnétique feuilleté.
  • On améliore encore la bonne répartition de l'énergie de chauffage en enroulant autour de ce noyau magnétique une bobine d'induction interne, coaxiale à la bobine d'induction externe, et alimentée en phase avec cette dernière, par une même source de courant à moyenne fréquence.
  • Selon encore une autre variante, les moyens de chauffage par induction sont constitués d'un ensemble de paires de bobines d'induction disposées radialement dans la paroi réfractaire du four, définissant un inducteur externe générant un champ tournant traversant horizontalement la cuve.
  • Selon une modification de cette variante adaptée aux fours de gros diamètre, le four comporte une enceinte intérieure en forme d'ogive en matériau réfractaire dans laquelle est logé un inducteur interne constitué d'un ensemble de bobines radiales disposées en regard des bobines de l'inducteur externe et déterminant un ensemble de paires de bobines couplées qui coopèrent pour générer un champ tournant entre l'inducteur externe et l'inducteur interne.
  • Selon encore un autre mode de réalisation mixte, les moyens de chauffage électrique sont constitués de la combinaison d'au moins une paire d'électrodes telles que décrites précédemment générant un chauffage par conduction, et d'au moins une bobine générant un chauffage par induction.
  • L'invention sera décrite, ci-après, en détail à l'aide des dessins annexés qui en représentent plusieurs modes de réalisation. Sur ces dessins:
    • La Fig. 1 est une vue schématique en coupe axiale d'un four de cokéfaction circulaire selon la présente invention.
    • La Fig. 2A est une vue en coupe horizontale selon le plan 2 - 2 de la Fig. 1 d'une première variante, à deux paires d'électrodes alimentées par une source de courants diphasés (transformateur Scott).
    • La Fig. 2B est un schéma de principe de l'alimentation des électrodes de la Fig. 2A.
    • La Fig. 3A est une vue en coupe horizontale selon le plan 2 - 2 de la Fig. 1 d'une seconde variante à trois paires d'électrodes alimentées par une source de courants triphasés.
    • La Fig. 3B est un schéma de principe de l'alimentation des électrodes de la Fig. 3A.
    • La Fig. 4 est une vue en coupe radiale verticale selon la ligne 4 - 4 de la Fig 3A de la paroi du four dans la zone d'une électrode.
    • La Fig. 5 est une vue en coupe radiale et verticale selon la ligne 5 - 5 de la Fig. 3A de la paroi du four.
    • La Fig. 6 est une vue en perspective d'une batterie à trois unités de fours à coke selon l'invention dans une variante à section droite rectangulaire, avec trois paires d'électrodes opposées alimentées en courant triphasé.
    • La Fig. 7 est une vue partielle, en coupe axiale, de la partie inférieure d' une variante du four de la Fig. 1, avec une alimentationen courant monophasé ou continu.
    • La Fig. 8 est une vue en coupe horizontale selon le plan 8 - 8 du four de la Fig. 7.
    • La Fig. 9 est une vue schématique partielle en coupe axiale verticale d'un second mode de réalisation du four selon rinvention, chauffé par induction simple.
    • La Fig. 10 est une vue schématique partielle en coupe axiale verticale d'une seconde variante du four selon la Fig. 9, avec chauffage par induction extérieure et axiale.
    • La Fig. 11 est une vue schématique partielle en coupe axiale verticale d'une troisième variante du four selon la Fig. 9 avec chauffage par induction extérieure de champs tournants.
    • La Fig. 12 est une vue schématique partielle en coupe axiale verticale d'une quatrième variante du four selon la Fig. 9, avec chauffage par induction extérieure et intérieure de champs tournants.
    • La Fig. 13 est une vue schématique en coupe horizontale selon le plan 13 -13 du four selon la Fig. 12 illustrant le principe de branchement des inducteurs.
    • La Fig. 14 est une vue schématique partielle d'un mode de réalisation mixte de l'invention, avec un chauffage par conduction monophasé et par induction extérieure.
  • Le procédé de l'invention consiste à cokéfier, de façon continue, dans un four à cuve chauffé électriquement, par conducteur et/ou par induction, des boulets de charbons séchés agglomérés par des liants et moulés sous presse.
  • La pyrolyse des boulets dans le four provoque l'émission de gaz de distillation des charbons et des liants, dont une grande partie est recyclée à la base du four, après épuration sommaire. Ces gaz recyclés forment un courant gazeux ascendant qui assure le refroidissement des boulets dans la partie inférieure du four et l'échauffement progressif, à contre-courant, des boulets qui descendent la partie supérieure du four.
  • Les boulets sont successivement préchauffés et séchés, puis défumés. La carbonisation assure alors la consolidation mécanique des boulets.
  • Le chauffage progressif des boulets élimine complètement les matières volatiles vers 850°C et les boulets deviennent alors conducteurs de l'électricité. On utilise cette conductibilité pour faire passer dans le lit de boulets des courants électriques qui provoquent un chauffage des boulets par effet Joule dans leur masse et aux points de contact entre eux. Ce chauffage électrique achève la cuisson et la cokéfaction des boulets à la température souhaitée.
  • Le lit de boulets se comporte alors comme une grille chauffante qui surchauffe à contre-courant le courant gazeux ascendant issu de la partie inférieure du four dans laquelle les boulets cokéfiés sont refroidis.
  • Cette surchauffe du gaz a aussi pour effet de craquer les hydrocarbures lourds encore contenus dans le gaz. Le courant gazeux ascendant est alors essentiellement constitué d'hydrogène (et de méthane). Par ses propriétés thermiques et électriques particulières, il constitue un excellent vecteur d'échange de chaleur entre les gaz et les boulets, qui évite la formation d'arcs et de décharges entre les boulets.
  • Les boulets moulés crus sont préparés en réalisant tout d'abord une pâte par malaxage avec un liant mixte (brai, goudron, asphalte ...) des charbons préalablement mélangés, séchés, broyés et préchauffés. La pâte préchauffée est ensuite compactée sous forme de boulets dans une presse à frettes cylindriques tangentes.
  • Le four à cuve représenté à la Fig. 1 comporte une enveloppe métallique ou blindage 1 munie sur sa face interne d'un revêtement réfractaire 2 délimitant une enceinte 3 sensiblement tubulaire, et légèrement tronconique dans sa partie supérieure, dans laquelle est chargé un massif de boulets moulés constituant le lit mobile 4. Dans la variante représentée à la Fig. 1, l'enceinte 3 est de section circulaire, mais peut également présenter une section rectangulaire comme illustré à la Fig. 6.
  • Le four à cuve est chargé à son sommet par des moyens étanches d'introduction des boulets moulés crus, qui comprennent une trémie tournante 5 alimentée en boulets par un transporteur à bande 6 commandé par un détecteur 7 de niveau de charge placé dans la trémie. La trémie 5 comporte à sa partie inférieure une cloche tournante 8 dont l'ouverture, sous l'action d'un vérin 9, libère l'introduction des boulets dans un sas étanche d'éclusage 10 comportant des conduites 11 a, 11 b de purge par un gaz neutre. Le sas étanche 10 est fermé à sa partie inférieure débouchant dans le four, par une cloche de distribution 12 dont l'ouverture est commandée par un vérin 13 en fonction des indications d'un détecteur 14 de niveau de charge placé en tête de la cuve.
  • L'ouverture des cloches 12 et 8 est réalisée en séquence en fonction des indications du capteur 14.
  • Le four est également muni à son sommet de moyens de récupération des gaz produits qui sont constitués par deux conduites 15a, 15b, de grand diamètre, débouchant dans l'enceinte du four de part et d'autre de la cloche tournante de distribution 12.
  • Le gaz de cokerie récupéré par les conduites 15a, 15b est envoyé dans une installation d'épuration primaire schématisée en 16 pour subir un traitement de refroidissement, lavage, dégou- dronnage et condensation sommaire de l'eau et de la naphtaline. Le gaz ainsi traité est recyclé pour une fraction de 60 à 80 % vers le four par une conduite de recyclage 17 et envoyé pour la fraction restante par une conduite 18 vers un gazomètre de stockage non représenté via une installation d'épuration secondaire classique schématisée en 19.
  • L'enceinte 3 du four comporte trois zones fonctionnelles distinctes. La partie supérieure de l'enceinte correspond à une première zone 20 de cuisson où les boulets sont progressivement préchauffés, défumés par distillation des charbons et liants et subissent une première phase de carbonisation, par le courant de gaz chauds ascendant s'écoulant à contrecourant.
  • La partie médiane correspond à une deuxième zone 21 de fin de carbonisation et de cokéfaction à la base de laquelle sont installés les moyens 22 de chauffage électrique, logés dans la paroi interne du revêtement réfractaire 2.
  • Une troisième zone 23 de refroidissement primaire du coke formé occupe la partie inférieure de l'enceinte et comporte à sa base des moyens d'admission d'un courant gazeux recyclé provenant de l'installation d'épuration primaire 16. Ces moyens comprennent un ensemble de conduites 24 d'admission du courant recyclé primaire issues d'une circulaire d'alimentation 25, elle-même reliée à la conduite de recyclage 17 par une conduite 26 sur laquelle est montée une vanne 27 de réglage de débit commandée en fonction des indications fournies par des capteurs de température 28 situés en tête de four. La circulation du gaz recyclé dans la conduite 17 est assurée par un ventilateur 29 et le débit d'admission d'une première partie des gaz recyclés, correspondant au courant primaire, envoyés dans la conduite 26 est réglé pour maintenir la température détectée par les capteurs 28 à un point de consigne prédéterminé, pour éviter la condensation des goudrons sur les boulets enfournés et sur les parois internes du four.
  • Le four comporte à sa base des moyens d'évacuation du coke issu de la troisième zone 23 qui comprennent une sole tournante 30 entrai- née en rotation par un groupe moto-réducteur 31 et mobile en translation verticale grâce à un vérin d'ajustement de hauteur 32.
  • La sole tournante 30 met en communication la troisième zone 23 du four avec un sas 33 débouchant lui-même dans une quatrième zone 34 de refroidissement secondaire du coke.
  • La quatrième zone 34 de refroidissement secondaire comporte à sa base des conduites d'admission 35 d'un courant secondaire du refroidissement correspondant à la partie restante du courant gazeux recyclé. Ces conduites 35 sont issues d'une circulaire 36 reliée par une conduite 37, via une vanne de réglage de débit 38, à la conduite de recyclage 17. La vanne 38 est commandée en fonction des indications fournies par un capteur de température 39 mesurant la température moyenne du coke présent dans la quatrième zone 34 de refroidissement secondaire du coke. Le débit de la partie restante des gaz recyclés introduits sous forme d'un courant de refroidissement secondaire, est réglé pour maintenir la température du coke détectée par le capteur 39 à un point de consigne prédéterminé, inférieur à la température maximale de manutention normale du coke.
  • Cette quatrième zone 34 de refroidissement secondaire comporte à sa partie supérieure des conduites 40 débouchant dans une circulaire 41 collectrice du courant de refroidissement secondaire, elle-même reliée par une conduite 42, sur laquelle est monté un ventilateur 43, à une circulaire 44 de retour du courant secondaire de refroidissement entourant la partie supérieure du four ou s'effectue la récupération des gaz produits et débouchant dans celle-ci par des conduites de retour 45.
  • La quatrième zone 34 de refroidissement est reliée, en aval, à un sas étanche d'éclusage 46 muni de conduites de purge 47, 48 et lui-même relié à une trémie d'évacuation 49 libérant le coke froid sur un extracteur doseur à bande 50.
  • L'ouverture séquentielle et automatique des clapets 51, 52 et 53 de communication entre le sas 33, la quatrième zone 34 et le sas d'éclusage étanche 46, est commandée respectivement par des vérins 54, 55 et 56 en fonction des indications fournies par un détecteur de niveau de charge 57 situé en tête de la quatrième zone.
  • La structure du four tel que précédemment décrit, permet par son dispositif de recyclage des gaz divisés en un courant primaire et un courant secondaire, d'une part l'optimisation du profil thermique du four dans la zone de carbonisation par le réglage du courant primaire, et d'autre part d'éviter une accumulation de goudrons condensables dans le haut de la cuve grâce au maintien de la température en tête du four, à au moins 150°C, et à l'entraînement de ces goudrons par dilution dans le courant secondaire extrait de la quatrième zone de refroidissement.
  • Les boulets quittant la première zone atteignent une température de 850°C environ, à partir de laquelle la conductibilité électrique devient appréciable et augmente de façon considérable pour plafonner aux environs de 1100 C.
  • C'est dans la partie inférieure de la seconde zone où règnent des températures supérieures à 900°C que sont amenés ou induits des courants électriques qui surchauffent les boulets jusqu'à la température finale de cokéfaction, ajustée de 950 à 1250°C suivant la réactivité du coke que l'on souhaite produire (1100°C pour un coke sidérur- gique).
  • Les boulets cokéfiés descendent dans la partie inférieure du four correspondant à la troisième zone 23 de refroidissement primaire, à la base de laquelle est injecté le courant de gaz froid recyclé qui est utilisé comme vecteur de transfert thermique dans les différentes zones du four.
  • Après refroidissement, les boulets cokéfiés extraits en continu de la troisième zone au moyen d'une sole tournante, sont évacués en deux temps. Dans une quatrième zone de refroidissement secondaire du coke, les boulets sont complètement refroidis par un courant secondaire de gaz recyclé, qui est ensuite renvoyé en tête du four; puis, ils sont défournés par le sas d'éclusage final, purgé avec du gaz neutre, ce qui élimine tout risque d'explosion. Le coke moulé est extrait froid puis criblé, avant expédition.
  • Par rapport au coke produit dans une batterie de fours classiques, la fabrication de coke moulé électrique cumule les avantages du coke cuit au gaz, à ceux du procédé électrique.
  • Tout d'abord, par rapport au coke classique, la fabrication du coke moulé présente les avantages suivants:
    • - Diversification des approvisionnements en charbons et diminution du prix de revient de la pâte à coke. Le procédé permet l'utilisation massive d'anthracites,. de charbons maigres, d'inertes, de poussier de coke, de coke de pétrole et la substitution de charbons fusibles fondants par des liants, tels que brais, goudrons et résidus asphaltiques.
    • - La décentralisation de la production du coke. Le procédé permet de produite du coke moulé avec des unités plus petites, adaptées aux besoins en quantité et qualité (formes, dimensions, température de cuisson et réactivité du coke).
    • - La diminution des coûts d'investissements de plus de 20 %, pour une même production.
    • - Une efficacité. thermique bien supérieure puisque les gaz de tête sortent à environ 150°C et les boulets sont extraits froids du four à cuve alors que dans une batterie classique, les gaz sortent à 500°C, le coke est défourné à plus de 1000°C, et les fumées sont à plus de 400°C à la cheminée.
  • Un meilleur rendement en coke, car le refroidissment à sec des boulets, dans du gaz neutre, n'oxyde pas le carbone du coke comme le fait la vapeur d'eau de l'extinction humide classique.
  • Par ailleurs, par rapport au coke moulé cuit dans une flamme de gaz, le coke moulé électrique présente les avantages suivants:
  • La production d'un gaz de distillation riche, sans hydrocarbures lourds, car le gaz n'est pas dilué dans les fumées de combustion, et le recyclage provoque le craking des hydrocarbures. Ce gaz peut être valorisé comme combustible de four, ou bien pour en extraire l'hydrogène qu'il contient.
  • Un excellent rendement en coke attribuable à l'absence de toute combustion et/ou oxydation superficielle des boulets dans le four.
  • La maîtrise de la qualité physique et chimique du coke.
  • La combinaison du chauffage électrique et du contre-courant gazeux de recyclage permet une cokéfaction progressive avec un contrôle précis de la température des différentes zones défumage et précuisson, carbonisation et cokéfaction électrique, refroidissement des boulets.
  • L'homogénéité de la température de cuisson assure la régularité de la qualité du coke.
  • Le contrôle de température de cuisson permet de maîtriser la réactivité du coke produit: coke réactif pour électrométallurgie (cuit à basse température), coke de fonderie à très faible réactivité (cuit à haute température: 1300°C), coke de haut fourneau à réactivité ajustée.
  • Le choix du calibre du coke. L'apport de l'énergie électrique au front de cokéfaction dans chaque boulet permet une cuisson progressive interne dans la zone à haute température. Il est possible de produire des cokes de plus gros calibre, homogènes qui conviennent mieux au haut-fourneau ou au cubilot, car leur résistance mécanique est nettement meilleure que celle des boulets cuits au gaz.
  • La faible inertie du four.
  • Le contrôle électrique rapide du chauffage permet l'adaptation à des changements d'allure, les corrections aux disfonctionnements (cuisson) et facilite les arrêts et démarrages.
    • - L'absence de pollution et des conditions de travail améliorées. L'extraction des boulets s'effectue à sec. Le four est étanche à l'enfournement et au défournement. La pollution de l'atmosphère est donc limitée et les conditions de travail sont, par conséquent, considérablement meilleures.
    • - La faisabilité des petites et moyennes unités.
  • Les petites unités produisant sur place la quantité et la qualité du coke souhaitées, peuvent être rentables, car elles sont automatisables et ne sont pas lourdement pénalisées par un investissement plus élevé.
  • Les moyens de chauffage 22 disposés dans la partie inférieure de la seconde zone 21 correspondent à deux modes de réalisation qui vont être décrits ci-après.
  • Selon un premier mode de réalisation correspondant à un chauffage électrique du type par conduction, la paroi interne du revêtement réfractaire 2 délimitant l'enceinte 3, forme un rétrécissement de la section intérieure de passage du lit de boulets moulés à la partie inférieure de la seconde zone 21. Ce rétrécissement est délimité par un épaulement 58 formé le long de la paroi de l'enceinte 3.
  • Comme cela est plus particulièrement visible à la Fig. 4, des électrodes 59 présentant un profil en coupe verticale en forme de L s'étendent le long de chaque côté de l'épaulement 58 de sorte que l'une des branches du L soit horizontale. L'électrode 59 est en un matériau conducteur de l'électricité, par exemple en cuivre et fixée par un tirant 60 qui la traverse, ainsi que le revêtement réfractaire 2, à l'extérieur du blindage 1 par des moyens classiques tels qu'écrou et contre écrou. Le tirant 60 est électriquement isolé du blindage 1 par l'interposition d'un matériau isolant électrique sous forme de disques 61. L'extrémité du tirant 60 extérieure au blindage forme une borne 62 sur laquelle est fixée un câble d'alimentation électrique 63 de l'électrode relié à la source de courant 64, représentée sur la Fig. 1.
  • La zone du revêtement réfractaire 2 immédiatement adjacente à l'électrode 59 est refroidie par un tube 65 de circulation interne de fluide de refroidissement disposé en serpentin le long des deux faces de l'électrode 59 en regard du revêtement réfractaire. L'électrode peut aussi être refroidie directement par circulation interne du fluide de refroidissement. Dans le cas d'une cuve à section circulaire représentée aux Fig. 2A et 3A, les électrodes 59 sont en forme de segments circulaires diamétralement opposés et séparés les uns des autres par une paroi intercalaire 66 de séparation plus nettement visible à la Fig. 5. Cette paroi 66 est en forme de plan incliné suivant une inclinaison correspondant à la pente de l'épaulement 58 contre lequel sont logées les électrodes 59.
  • Selon une première variante du premier mode de réalisation utilisant une alimentation à la fréquence du réseau, on dispose autour de la cuve une paire d'électrodes 59 par phase. Les électrodes d'une même phase sont diamétralement opposées dans la cuve, comme indiqué aux Fig. 2A et 3A, de façon à assurer le passage du courant au centre du four. Leur tension d'alimentation est réglable (phase par phase) par action sur le secondaire du transformateur d'alimentation.
  • Selon la dimension du four, il y a place et nécessité de disposer, sur la périphérie du four, deux ou trois paires d'électrodes.
  • Pour les fours de petit diamètre, par exemple inférieur, ou égal à 2 m, on réalise une alimentation diphasée, telle qu'illustrée aux Fig. 2A et 2B, à l'aide d'un transformateur SCOTT, selon le schéma de branchement de la Fig. 2A, qui transforme une alimentation primaire triphasée en un secondaire diphasé (phases repérées 1 et 1 b d'une part et 2 et 2b d'autre part) de tension réglable.
  • Dans le cas de fours de plus grand diamètre, par exemple 3 à 4 m, illustrés aux Fig. 3A et 3B, on alimente les trois paires d'électrodes repérées 1, 1 b; 2, 2b; 3, 3b; selon le schéma triphasé de la Fig. 3B.
  • Les électrodes 59 constituées de segments circulaires dont la section est en forme de L reposent à l'intérieur du four sur une margelle réfractaire refroidie 67 (Fig. 4). Il se forme, sur chacune de ces électrodes, un talus naturel de boulets fortement graphitisés (par surcokéfaction locale entraînée par le temps de séjour prolongé des boulets à haute température) et très conducteurs, qui protègent les électrodes 59 et répartissent les densités de courant dans la charge ascendante.
  • Chaque électrode est séparée de sa voisine par la paroi intercalaire 66 réfractaire, isolante, résistant à l'abrasion (par exemple en briques en carbure de silicium, liées au nitrure de silicium) dont la conicité assure une légère compression progressive de la charge au droit des électrodes en cuivre afin d'améliorer et d'homogénéiser la conductibilité électrique du lit de boulets en cours de cokéfaction.
  • Au contraire, sous la zone de cokéfaction comprimée, à l'entrée de la zone de refroidissement primaire 23, le diamètre du four s'agrandit rapidement de manière à détasser le lit de boulets, à augmenter les résistances électriques de contact entre les boulets et éviter les courants parasites dans la zone de refroidissement où ils chaufferaient les boulets déjà cokéfiés en pure perte.
  • La largeur développée des segments circulaires des électrodes 59 est choisie approximativement égale à la largeur des parois intercalaires 66 réfractaires de façon à éviter des passages préférentiels entre phases ou même des courts- circuits d'une phase à l'autre sur la périphérie du four.
  • La présente invention a été d écrite ci-dessus en référence à un four dont la cuve présente une section circulaire. Sur la Fig. 6 est représentée une variante dans laquelle la section de la cuve est rectangulaire.
  • La structure de ce four est sensiblement analogue à celle décrite en référence à la Fig. 1 en ce qui concerne les moyens d'introduction de la charge de boulets moulés crus et de récupération du coke, de même qu'en ce qui concerne le recyclage du gaz de cokerie récupéré par deux conduites collectrices 70 et 71 situées en tête du four renvoyé à la base de la zone de refroidissement primaire par deux conduites 72 et 73. Dans ce cas également le refroidissement du coke a lieu en deux stades entre lesquels sont partagées les fractions de gaz recyclées, comme précédemment indiqué.
  • Une différence essentielle réside dans la forme linéaire des électrodes 74 de conduction du courant électrique disposées sur des côtés opposés de la section rectangulaire qui reposent sur des margelles 75. Ces électrodes ont également un profil en forme de L, sur lequel s'accumule un talus de boulets fortement graphitisés.
  • Pour une application industriellement intéressante en alimentation triphasée, les fours sont groupés par trois unités comme représenté à la Fig. 6. Chaque phase du courant alimente à partir d'un transformateur 76 une paire d'électrodes en cuivre. Les électrodes d'une même phase sont disposées en regard l'une de l'autre le long de chacune des grandes faces du four et sont séparées de la paire d'électrodes adjacentes par une paroi réfractaire d'isolation 77.
  • Selon une variante du premier mode de réalisation de l'invention illustré aux Fig. 7 et 8, le four circulaire comporte une enceinte intérieure 80 en forme d'ogive en un matériau réfractaire, alors que la structure de l'enceinte 3 du four reste identique en toutes ses parties périphériques. Cette enceinte 80 porte une électrode centrale 81, tronconique, qui assure le retour des courants traversant le massif de boulets chauds en cours de cokéfaction et provenant d'une électrode périphérique 82 circulaire de section en forme de L courant le long du périmètre intérieur de la cuve au-dessus de la margelle 67.
  • Cette disposition vise à éviter les courants parasites entre les électrodes alimentées par des phases différentes, et à assurer le passage du courant au centre du four. L'alimentation est assurée, entre l'électrode périphérique 82 branchée en anode et l'électrode centrale 81 formant cathode, par une source de courant continu, par exemple un redresseur 83, ou une source de courant monophasé pour un four de petite capacité.
  • L'enceinte ogivale 80 est montée sur une tige 84 traversant en son centre une colonne 85 assurant le support et la mobilité de la sole tournante annulaire 86.
  • Pour régler la hauteur de la zone de cokéfaction électrique, l'enceinte ogivale 80 est dépla- cable verticalement sous l'action d'un vérin 87 placé sous la tige 84. A sa partie supérieure la tige 84 est surmontée d'un isolateur 88 qui empêche le passage de courants parasites de retour le long de la tige 84.
  • L'électrode centrale 81 en forme de tronc de cône est réalisée en un matériau résistant à l'abrasion tel que le carbure de silicium densifié suffisamment conducteur de l'électricité pour limiter les échauffements localisés des parois de la cathode 81. La cathode 81 repose sur un manchon 89 en un matériau isolant réfractaire. Les courants de retour par la cathode 81 cheminent jusqu'au pied du four par un conducteur refroidi, isolé 90 logé dans l'axe creux de la tige 84.
  • La colonne 85 est montée coulissante, par exemple par un système de cannelures non représentées, dans une couronne dentée conique 91 assurant l'entraînement en rotation de la colonne grâce à un pignon conique 92 avec lequel elle engraine. le pignon 92 étant monté en bout d'arbre de sortie d'un groupe motoréducteur 93. Le coulissement vertical de la colonne est assuré par un vérin 94. Le débit d'extraction du coke, homogène sur toute la périphérie est réglé en ajustant la vitesse de rotation de la sole doseuse et la hauteur de celle-ci.
  • Un refroidissement de la cathode 81 est assuré par circulation à partir d'une conduite 95 d'un courant de gaz réfrigéré qui s'échappe par le jeu annulaire ménagé entre l'enceinte ogivale et la colonne 85 à l'endroit où l'enceinte 80 vient coiffer cette dernière.
  • Selon un second mode de réalisation, illustré en détail aux Fig. 9 à 13, le chauffage électrique est réalisé par induction.
  • Comme représenté à la Fig. 9, les moyens de chauffage disposés à la base de la zone 21 de cokéfaction comprennent une bobine d'induction 100 coaxiale à l'enceinte 3 et logée dans la paroi réfractaire 2 du four. Des noyaux d'acier doux 101 feuilletés verticalement sont disposés radialement autour de la bobine 100 et canalisent les lignes de retour du champ. La bobine 100 est alimentée par un générateur 102 à moyenne fréquence, comprise entre environ 50 et 1000 Hertz.
  • Le conducteur électrique qui constitue la bobine 100 est un tube creux, dans lequel circule un fluide de refroidissement introduit en 103 et soutiré en 104, qui est lui-même relié par des conducteurs 105 et 106 au générateur 102.
  • Les noyaux feuilletés 101 constituent une culasse magnétique refroidie par circulation de fluide de refroidissement introduit par la conduite 107 et soutiré par la conduite 108.
  • L'expression de la puissance volumique (puissance électrique dissipée par unité de volume de coke), établie pour la variante à la Fig. 9 montre que le rayon de la cuve et la conductibilité des boulets ont une influence déterminante sur les puissances développées localement dans le lit.
  • En particulier, les champs d'induction étant faibles au centre du four, cette première variante présente l'inconvénient de chauffer de façon inégale les boulets passant à la paroi et ceux passant au centre du four, qui risquent d'être insuffisamment chauffés.
  • Dans le cas de fours de grosse capacité (diamètre de 3 mètres et plus) pour lesquels le courant gazeux ascendant aura une efficacité limitée à réduire les hétérogénéités de chauffage transversales, les lits de boulets disposés à l'extérieur auront une température et une conductibilité électrique sensiblement supérieures aux boulets du centre, ce qui entraînera des températures de fin de cokéfaction différentes et une qualité des boulets cokéfiés inégale, au centre et à la paroi.
  • Cette solution simple de la Fig. 9 est donc limitée aux petites unités de cokéfaction, dont le dispositif d'extraction favorisera un écoulement périphérique des boulets (sole tournante par exemple).
  • Selon une variante du second mode de réalisation illustré à la Fig. 10, le four comporte des moyens de chauffage électrique par induction qui comprennent outre une bobine d'induction 110 coaxiale à l'enceinte 3 et logée dans la paroi réfractaire 2 du four, une enceinte intérieure 111 en forme d'ogive en un matériau réfractaire qui comporte des moyens permettant de renforcer le champ magnétique au voisinage de l'axe du four. Le matériau réfractaire constituant l'enceinte 111 peut être par exemple, en carbure de silicium lié au nitrure de silicium dont les propriétés d'isolement électrique sont suffisantes pour l'application envisagée et dont la résistance à l'abrasion et aux chocs thermiques est excellente.
  • Ces moyens peuvent être constitués par un ensemble de noyaux d'acier doux, feuilletés verticalement 112, disposés radialement, logés dans l'enceinte en ogive 111.
  • Ces moyens peuvent être complétés, comme illustré Fig. 10, par une bobine d'induction interne 113 coaxiale à la bobine 110, alimentée en phase avec cette dernière et logée dans l'enceinte en ogive 111. Les noyaux d'acier doux feuilletés verticalement 112 et disposés radialement sont insérés dans la bobine 113 coaxiale ment à cette dernière.
  • Comme dans le cas de la Fig. 10, la bobine d'induction 110 est constituée d'un conducteur électrique creux à enroulement hélicoïdal dans lequel circule un fluide de refroidissement alimenté en 114 et soutiré en 115. La bobine d'induction interne 113 est réalisée de façon analogue et refroidie par circulation d'un fluide de refroidissement entre les points d'arrivée 116 et de sortie 117, ce circuit de refroidissement débouchant à l'extérieur du four par circulation dans une colonne 118, de plus faible diamètre que l'enceinte en forme d'ogive 111 et supportant cette dernière. La colonne 118 traverse la sole tournante du four comme illustré plus en détail pour le premier mode de réalisation de chauffate par induction représenté à la Fig. 7.
  • L'ensemble des noyaux feuilletés 113 constitue une culasse d'induction interne également refroidie par circulation d'un fluide de refroidissement alimenté par une conduite centrale 119 disposée selon l'axe de la colonne et débouchant au sommet des noyaux, le retour du fluide étant assuré par une conduite coaxiale et extérieure à la conduite 119.
  • Des noyaux 120 feuilletés verticalement et disposés radialement à l'extérieur de la bobine 110 formant une culasse d'induction extérieure refroidie par une circulation d'un fluide de refroidissement alimenté par une conduite 121 et soutiré par une conduite 122.
  • Un générateur moyenne fréquence 123 alimente en série les bobines 110 et 113 par un conducteur 124 relié à l'entrée de la bobine 110, puis un conducteur 125 reliant la sortie de la bobine 110 à l'entrée de la bobine 113 et un conducteur 126 assurant le retour de la sortie de la bobine 113 au générateur 123.
  • Les bobines 110 et 113 disposées dans le four en regard l'une de l'autre permettent d'associer leur champ d'induction respectif pour chauffer simultanément et de façon homogène les boulets passant le long des parois périphériques de l'enceinte 3, et des parois de l'enceinte intérieure 111.
  • Selon encore une autre variante du second mode de réalisation, les moyens de chauffage par induction sont constitués par un ensemble de paires de bobines d'induction disposées radialement dans la paroi réfractaire du four, définissant ainsi un inducteur externe générant un champ tournant traversant horizontalement la cuve.
  • Sur la Fig. 11 deux bobines 130, 131 ayant leurs axes confondus et disposées radialement et diamétralement opposées sont enroulées sur des noyaux en acier magnétique feuilletés horizontalement formant des inducteurs 132, 133. Les bobines 130 et 131 sont alimentées sur une même phase d'un courant polyphasé repérée 1, de telle sorte que le champ magnétique traverse radialement la cuve, c'est-à-dire que les faces d'extrémité en regard des bobines 130 et 131 soient de polarités opposées.
  • Dans le cas normal d'un courant triphasé, on dispose trois paires de bobines diamétralement opposées.
  • Chaque paire de bobines 130, 131 qui représente une phase est régulièrement décalée dans l'inducteur de sorte que le champ résultant tourne à la fréquence des courants d'alimentation et génère des courants de Foucault dans la masse des boulets cokéfiés.
  • Les inducteurs 132, 133 sont refroidis par circulation d'un fluide de refroidissement alimenté par un circuit entrant par la conduite 135 et sortant par la conduite 136.
  • Un générateur 137, triphasé de moyenne fréquence, alimente les bobines comme représenté sur la Fig. 11 pour deux bobines dans un plan axial de coupe.
  • La coupe horizontale représente l'alimentation qui s'effectue comme indiqué sur la Fig. 13 en ne considérant que les inducteurs extérieurs à l'enceinte du four.
  • Selon encore une autre variante découlant de celle illustrée précédemment, et représentée aux Fig. 12 et 13, le four comporte en outre une enceinte intérieure 140 en forme d'ogive, en un matériau réfractaire, dans laquelle est logé un inducteur interne constitué d'un ensemble de bobines radiales disposées en regard des bobines de l'inducteur externe et déterminant un ensemble de paires de bobines couplées qui coopèrent pour générer un champ tournant radialement entre l'inducteur externe et l'inducteur interne.
  • A une bobine 130 de l'inducteur externe est associée une bobine 130a alimentée de façon telle que les faces d'extrémité en regard des bobines soient de polarités opposées. De même, à la bobine 131 est associée une bobine 131 a.
  • Les bobines 130a et 131 a sont enroulées sur un inducteur en acier magnétique feuilleté horizontalement parcouru par un circuit de refroidissement constitué d'un tube central d'alimentation 141 et de tubes périphériques de retour 142 (Fig. 13).
  • Dans une variante mixte illustrée à la Fig. 14, les moyens de chauffage électrique du four comportent, dans la zone de cokéfaction, des moyens de chauffage par conduction avec électrode périphérique en L 150 et électrode centrale 151 tels que décrits en référence à la Fig. 7, alimentés à partir d'un redresseur 152 et des moyens de chauffage par induction comportant une bobine axiale 153, tels que décrits en référence à la Fig. 9, alimentés a partir d'une source de courant moyenne fréquence 154, et éventuellement un ensemble de noyaux d'acier doux, feuilletés verticalement 156, disposés radialement, logés dans la colonne support 157 de l'électrode 151, tels que décrits en référence à la figure 10.
  • La bobine axiale 153 est alors logée dans la margelle 155 faisant saillie sur laquelle est assise l'électrode 150 et en dessous de cette dernière.
  • Ce montage mixte combinant un chauffage inductif en périphérie de la cuve couplé à un chauffage conductif du centre, est destiné aux fours de moyenne et grosse capacité. Il associe:
    • - un chauffage inductif par une simple bobine coaxiale à la cuve logée dans le revêtement réfractaire du four. Cette bobine, identique à la solution de base proposée pour le chauffage inductif de la Fig. 9, assure le chauffage des couches externes.
    • - un chauffage conductif (par source monophasée ou source de courant continu) du lit de boulets entre une électrode centrale et une électrode circulaire, tel qu'il a été décrit en référence à la Fig. 7. Cette disposition concerne les flux de courant de conduction vers l'électrode autour de laquelle les boulets sont chauffés car il s'y développe, par diminution de section, une densité de courant et une puissance volumique plus grandes.
  • Cette association d'une bobine d'induction avec un chauffage par conduction entre une électrode centrale et une électrode périphérique, permet également de provoquer la rotation rapide des courants de conduction par faction sur ces courants des lignes de champ créés par la bobine extérieure.
  • De cette manière, on renouvelle sans cesse les lignes de courants entre les deux électrodes et on élimine les passages préférentiels du courant le long des lignes de boulets les plus conductrices qui conduisent à des surchauffes locales.
  • Le chauffage inductif utilise des flux variables générés par des bobines d'induction totalement externes à la masse des boulets en cours de cokéfaction et permet de s'affranchir, en grande partie, des problèmes de variation de la résistance de contact entre boulets et au contact des électrodes.
  • On peut associer les effets de plusieurs bobines de manière à maîtriser les lignes de flux d'induction dans la zone de cokéfaction électrique. Ces possibilités permettent de répartir uniformément les courants de chauffage dans la section transversale, d'éviter les surchauffes locales des boulets près des bobines et les courants de chauffe parasites à l'extérieur de la zone de cuisson.
  • Grâce à ces avantages spécifiques, l'induction électromagnétique développée dans un lit de boulets, autorise des niveaux de puissance volumiques variant dans de larges limites. Pour un gradient électrique de 75 à 100 volts par mètre, la puissance développée peut atteindre 5 à 10 Mé- gawatts par m3 de boulets chauds et cokéfiés, alors qu'elle est considérablement plus faible par conduction.
  • Cette puissance électrique, supérieure à la seule exigence thermique de la cokéfaction électrique développée dans le massif de boulets, peut être utilisée pour réduire, par le carbone du coke et par les matières volatiles des liants, des fines de minerais ou de poussières oxydées qui peuvent être incorporées dans des boulets composites.
  • Ces réactions de réduction qui se développent simultanément à la cokéfaction électrique régulent la température de cokéfaction électrique des boulets et produisent un coke métallisé très résistant.
  • La présente invention englobe enfin un procédé de fabrication de coke moulé permettant d'ajouter au mélange de charbons à compacter en boulets:
    • - Des fines et des poussières d'oxydes de fer (concentrés, poussières d'aciéries et de gaz de haut fourneau, poussières d'installations, de dépoussiérage, d'agglomérations de minerais, etc ...)
    • - Des fines de minerais de manganuse et des poussières de production de ferro-manganèse.
    • - Des concentrés de chromites pour la production de ferro-chrome.
    • - Des fines de silice et de quartz recyclés dans la production de ferro-silicium.
  • Pour ces différentes applications, le taux de fines minérales incorporées dans la pâte à coke est limité par la conductibilité électrique du lit de boulets qui ne peut être inférieure à 100 mhos (conductibilité électrique du milieu homogène équivalent au lit de boulets à la température de début de cokéfaction électrique, soit 850°C à 900°C).
  • L'invention, telle que décrite ci-dessus, se rapporte également à un procédé et un dispositif permettant de dissiper, de façon uniforme et homogène, des puissances électriques volumiques importantes, développées par l'effet Joule des courants électriques induits, dans un milieu granulé conducteur qui peut ainsi être porté à haute température.
  • Ce lit granulé ayant une surface spécifique élevée peut être utilisé pour chauffer ou surchauffer des gaz, des liquides, fondre des solides, et vaporiser des liquides en surchauffant les vapeurs ainsi produites.
  • Le lit granulé conducteur est constitué de matériaux réfractaires et suffisamment conducteurs, en morceaux calibrés, en grains, en éléments cylindriques pleins ou creux et tubulaires, en anneaux, en boulets ou pastilles, briquettes.
  • A titre d'exemples, les matériaux réfractaires composant le lit granulé conducteur peuvent être constitués par des morceaux calibrés et grains de carbone, graphite, cokes, ou par des anneaux, pastilles, et cylindres de carbure de silicium, siliciure de molybdène, diborure de zirconium ou encore par des boulets, pastilles, briquettes de pâtes de charbons et de mélanges cokéfiables.
  • En vue de son utilisation, le lit granulé est choisi en fonction de sa résistivité électrique, sa réfractairité, sa surface spécifique et sa perméabilité, et enfin sa résistance à l'oxydation et à la corrosion pour l'utilisation qui en est faite.
  • Comme exemples d'utilisation on peut citer:
    • a) - chauffage de gaz.
      • - chauffage et surchauffage de gaz réducteurs sur un lit de morceaux de coke calibré;
      • - régénération et génération de gaz réducteurs par conversion en H2 et CO de l'H2O et C02 contenus dans le gaz, sur un lit de coke à 800 - 1000°C;
      • - cracking et oxydation des hydrocarbures lourds contenus dans le gaz de cokerie brut et humide sur un lit de coke à 900 - 1100°C, pour réaliser en une seule étape "l'épuration" thermique du gaz de cokerie brut et chaud, et éliminer tous les produ- its condensables;
      • - surchauffe à 1200°C de gaz réducteurs, destinés à la réduction "directe" d'oxydes de fer, sur un lit de coke;
      • - surchauffe à haute température de 1200 - 1350°C d'air préchauffé, éventuellement sous pression et suroxygéné comme le vent d'un haut-fourneau sur un lit d'éléments tubulaires conducteurs en carbure de silicium ou siliciure de molybdène sous forme d'anneaux.
    • b) - chauffage des liquides, conducteurs ou isolants, ruisselant sur des lits granulés conducteurs inertes vis-à-vis du liquide tels que:
      • - fabrication de vapeur surchauffée sèche, sur un lit de copeaux ou tournures, d'acier inoxydable et réfractaire;
      • - surchauffe de métal liquide ruisselant sur un lit de coke;
      • - pasteurisation du lait.
    • c) - Fusion de solides non conducteurs, par exemple de laitiers, ou de "composition" verrière sur une "grille' de coke rouge. Le liquide visqueux ruisselant sur le coke est chauffé et fluidisé.
  • Pour réaliser le procédé de réchauffage de gaz, on utilise un four comportant des moyens de chauffage tels que représentés aux figures 7 à 14.
  • Le lit granulé conducteur est compacté dans l'enceinte tubulaire du four dont les parois sont garnies de réfractaires isolants. Ce lit granulé repose sur une grille en réfractaire à travers laquelle est soufflé le gaz à surchauffer. Il peut également être placé entre deux couches de matériau non conducteur tel que du sable, de façon à centrer les lignes de fuite.

Claims (22)

1. Procédé de fabrication de coke moulé dans un four à cuve verticale du type comprenant à sa partie supérieure des moyens étanches d'introduction d'une charge de boulets crus de charbons préalablement moulés par compactage (5 à 13) et des moyens de récupération des gaz produits (15a, 15b); et à sa partie inférieure, des moyens étanches d'évacuation du coke refroidi, et des moyens d'introduction (24 à 27) d'un courant gazeux; dans lequel on fait circuler un courant de gaz recyclé en écoulement ascendant, à contre-courant de la charge descendante de boulets de charbon moulés constituant un lit mobile descendant; on soumet les boulets de charbon moulés à une étape de préchauffage et de dévolatilisation dans une première zone (20) correspondant à la partie supérieure du four, puis à une étape de carbonisation et de cokéfaction dans une deuxième zone (21) correspondant à la partie médiane du four et à une étape de refroidissement des boulets cokéfiés dans une troisième zone (23) correspondant à la partie inférieure du four; on récupère au sommet du four les gaz de tête produits par la distillation et la cokéfaction des charbons; et on recycle une fraction de ces gaz de tête pour constituer le courant gazeux recyclé, caractérisé en ce que l'on introduit une première partie de la fraction des gaz de tête recyclés à la base de la troisième zone (23) pour assurer un refroidissement primaire du coke; et on introduit le reste de la fraction des gaz de tête recyclés, sous forme d'un courant de refroidissement secondaire circulant à contre courant de la masse de coke issue de la troisième zone, dans une quatrième zone (34) reliée de façon étanche à la sortie de la troisième zone; le courant de refroidissement secondaire étant ensuite soutiré (40) de la quatrième zone et réintroduit en tête de four pour diluer les gaz produits et maintenir les moyens de récupération (15a et 15b) de ces gaz, à une température suffisamment élevée pour empêcher toute condensation; et le coke froid étant évacué de la quatrième zone (34) par un sas étanche (46).
2. Procédé selon la revendication 1, caractérisé en ce que la carbonisation et la cokéfaction sont réalisées par apport d'énergie électrique (22) au lit mobile de boulets précokéfiés, et transfert de cette énergie par un courant gazeux recyclé.
3. Procédé selon la revendication 2, caractérisé en ce que l'apport d'énergie électrique est réalisé par conduction électrique dans le lit mobile de boulets d'un courant généré entre au moins deux électrodes placées dans les parois de la cuve au niveau de la seconde zone.
4. Procédé selon la revendication 2, caractérisé en ce que l'apport d'énergie électrique est réalisé par induction de courants électriques dans le lit mobile de boulets traversant la seconde zone.
5. Procédé de fabrication de coke moulé métallisé, caractérisé en ce qu'on cokéfie, par un procédé selon l'une quelconque des revendications précédentes, une charge de boulets moulés préparés en compactant une pâte constituée d'un liant simple, ou mixte, et d'un mélange de charbons appropriés et de fines particules d'un matériau à base de l'élément métallique à incorporer au coke, sous forme métallique ou oxydé.
6. Procédé selon la revendication 5, caractérisé en ce que le matériau à base de l'élément métallique est constitué d'oxydes de fer, de minerai de manganèse et de poussières de production de ferro-manganèse, de concentrés de chromites pour la production de ferro-chrome, de fines de silices et de quartz recyclées dans la production de ferro-silicium.
7. Four à cuve pour la fabrication de coke moulé se présentant sous forme d'une enceinte (3) sensiblement tubulaire délimitant une première zone (20) de préchauffage correspondant à la partie supérieure de l'enceinte, une seconde zone (21) de carbonisation et cokéfaction correspondant à la zone médiane de l'enceinte et une troisième zone (23) de refroidissement du coke correspondant à la partie inférieure de l'enceinte, le four comportant à son sommet des moyens étanches d'introduction d'une charge constituée de boulets moulés crus et des moyens de récupération (15a, 15b) des gaz produits et à sa base des moyens étanches d'évacuation du coke et des moyens d'admission (24, 25, 26, 27) d'un courant gazeux recycle, les moyens d'admission étant reliés, à l'extérieur du four, aux moyens de récupération (15a, 15b) des gaz produits par des moyens de recyclage (17, 29), et des moyens de chauffage électrique (22) disposés à la base de la seconde zone de carbonisation et cokéfaction, caractérisé en ce que le four comprend une quatrième zone (34) étanche de refroidissement secondaire reliée en amont aux moyens d'évacuation de la troisième zone et en aval à un sas étanche d'évacuation (46), la quatrième zone (34) comportant à sa base au moins une conduite d'alimentation (35) en courant secondaire de refroidissement reliée aux moyens de recyclage, et à son sommet, au moins une conduite de retour (40) des gaz de refroidissement secondaire connectée à la partie supérieure du four au voisinage des moyens de récupération des gaz produits par la distillation et de cokéfaction du charbon.
8. Four selon la revendication 7, caractérisé en ce que les moyens étanches d'introduction de la charge sont constitués par un sas étanche (10) d'alimentation de la charge débouchant à sa partie inférieure dans la première zone (20) du four par une cloche de distribution (12), le sas d'alimentation (10) étant lui-même alimenté par une trémie tournante (5).
9. Four selon la revendication 7, caractérisé en ce que les moyens d'évacuation du coke issu de la troisième zone comprennent une sole (30) tournante et mobile en translation verticale débouchant par l'intermédiaire d'un sas étanche (33) dans la quatrième zone de refroidissement secondaire (34).
10. Four selon l'une quelconque des revendications 7 à 9, caractérisé en ce que les moyens de chauffage électrique (22) sont du type par conduction et constitués par au moins une paire d'électrode (59) diamétralement opposées, disposées dans la paroi de la seconde zone (21) de l'enceinte du four, ladite paroi formant dans cette zone un étranglement de la section intérieure de passage du lit de boulets moulés délimité par un épaulement (58) contre lequel sont logées les électrodes.
11. Four selon la revendication 10, caractérisé en ce que les électrodes (59) sont constituées de segments dont le profil en coupe verticale est en forme de L s'étendant le long de chaque côté de l'épaulement (58) de sorte qu'une des branches du L soit horizontale.
12. Four selon la revendication 11, caractérisé en ce que la cuve est à section circulaire et les segments d'électrodes circularies sont séparés les uns des autres par une paroi intercalaire (66) en matériau réfractaire en forme de plan incliné correspondant à la pente de l'épaulement (58) délimité par le profil en L des électrodes.
13. Four selon l'une quelconque des revendications 10 à 12, caractérisé en ce qu'il comporte une enceinte intérieure (80) en forme d'ogive en un matériau réfractaire munie d'une électrode centrale (81) coopérant avec une électrode périphérique (82) circulant le long de la paroi interne de l'enceinte.
14. Four selon la revendication 13, caractérisé en ce que l'enceinte intérieure (80) en forme d'ogive est montée réglable en hauteur par des moyens (84, 87) traversant la sole tournante (86).
15. Four selon l'une quelconque des revendications 10 et 11, caractérisé en ce que la cuve est à section rectangulaire et les segments d'électrodes (74) sont linéaires et reposent sur des margelles (75) disposées sur des côtés opposés de la section rectangulaire.
16. Four selon l'une quelconque des revendications 7 à 9, caractérisé en ce que les moyens de chauffage électrique sont du type par induction et constitués par une bobine d'induction externe (100, 110) coaxiale à la cuve et logée dans le revêtement réfractaire (2) du four.
17. Four selon la revendication 16, caractérisé en ce qu'il comporte une enceinte intérieure (111 ) en forme d'ogive en un matériau réfractaire dans laquelle est logé un noyau magnétique feuilleté interne (112).
18. Four selon la revendication 17, caractérisé en ce qu'une bobine d'induction interne (113) coaxiale à la bobine d'induction externe (110) est enroulée autour du noyau magnétique interne et alimentée en phase avec cette dernière.
19. Four selon l'une quelconque des revendications 7 à 9, caractérisé en ce que les moyens de chauffage par induction sont constitués d'un ensemble de paires de bobines d'induction (130, 131) disposées radialement dans la paroi réfractaire (2) du four, définissant un inducteur externe générant un champ tournant traversant horizontalement la cuve.
20. Four selon la revendication 19, caractérisé en ce qu'il comporte une enceinte intérieure (140) en forme d'ogive en matériau réfractaire dans laquelle est logé un inducteur interne constitué d'un ensemble de bobines radiales (130a, 131a) disposées en regard des bobines de l'inducteur externe (130, 131) et déterminant un ensemble de paires de bobines couplées (130, 130a, et 131, 131 a) qui coopèrent pour générer un champ tournant entre l'inducteur externe et l'inducteur interne.
21. Four selon l'une quelconque des revendications 7 à 9, caractérisé en ce que les moyens de chauffage électrique sont constitués de la combinaison d'au moins une paire d'électrodes telles que décrites à la revendication 13 générant un chauffage par conduction, et d'au moins une bobine telle que décrite à la revendication 16 générant un chauffage par induction.
22. Four selon la revendication 21, caractérisé en ce que les moyens de chauffage par induction comprennent outre la bobine décrite à la revendication 13, un noyau magnétique feuilleté interne tel que décrit à la revendication 17.
EP86905848A 1985-09-26 1986-09-26 Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke et procede de chauffage electrique a l'aide d'un lit granule conducteur d'un fluide Expired EP0240527B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86905848T ATE48441T1 (de) 1985-09-26 1986-09-26 Verfahren zur herstellung von formkoks durch elektrische erhitzung in einem schachtofen und ofen zur herstellung von solchem koks.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8514291A FR2587713B1 (fr) 1985-09-26 1985-09-26 Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke
FR8514291 1985-09-26

Publications (2)

Publication Number Publication Date
EP0240527A1 EP0240527A1 (fr) 1987-10-14
EP0240527B1 true EP0240527B1 (fr) 1989-12-06

Family

ID=9323272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86905848A Expired EP0240527B1 (fr) 1985-09-26 1986-09-26 Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke et procede de chauffage electrique a l'aide d'un lit granule conducteur d'un fluide

Country Status (15)

Country Link
US (1) US4867848A (fr)
EP (1) EP0240527B1 (fr)
JP (1) JPS63501019A (fr)
KR (1) KR880700048A (fr)
CN (1) CN1014152B (fr)
AU (1) AU590013B2 (fr)
BR (1) BR8606892A (fr)
CA (1) CA1297445C (fr)
DE (1) DE3667297D1 (fr)
ES (1) ES2001712A6 (fr)
FR (1) FR2587713B1 (fr)
IN (1) IN167885B (fr)
SU (1) SU1825369A3 (fr)
WO (1) WO1987002049A1 (fr)
ZA (1) ZA867313B (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597501A (en) * 1994-11-03 1997-01-28 United States Department Of Energy Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow
US5662470A (en) * 1995-03-31 1997-09-02 Asm International N.V. Vertical furnace
US6038247A (en) * 1997-06-05 2000-03-14 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Graphitizing electric furnace
US5946342A (en) * 1998-09-04 1999-08-31 Koslow Technologies Corp. Process and apparatus for the production of activated carbon
BR9900252A (pt) 1999-02-02 2000-08-29 Companhia Brasileira Carbureto Recipiente de aço inoxidável para a formação de eletrodos de autocozimento para a utilização em baixos-fornos elétricos de redução
BR9900253A (pt) 1999-02-02 2000-08-29 Companhia Brasileira Carbureto Recipiente de alumìnio e aço inoxidável a formação de eletrodos de autocozimento para a utilização em baixos-fornos elétricos de redução
EA008111B1 (ru) * 2005-10-25 2007-04-27 Ооо "Сибтермо" Устройство для переработки твердого топлива
EA007800B1 (ru) * 2005-10-25 2007-02-27 Ооо "Сибтермо" Устройство для получения металлургического среднетемпературного кокса
WO2009047682A2 (fr) * 2007-10-11 2009-04-16 Exxaro Coal (Proprietary) Limited Fabrication de coke
DE202008012597U1 (de) * 2008-09-22 2009-01-15 Extrutec Gmbh Vorrichtung zur Erwärmung stangenartiger Werkstücke
CN101531906B (zh) * 2009-04-23 2012-07-18 山西利华新科技开发有限公司 电加热连续煤热解焦化的方法及其焦化炉
DE102011014349A1 (de) * 2011-03-18 2012-09-20 Ecoloop Gmbh Wanderbettreaktor
CA2830968C (fr) 2011-03-23 2016-04-26 Institut De Rechercheet De Developpement En Agroenvironnement Inc. (Irda) Systeme et procede pour un traitement thermochimique de matiere contenant des composes organiques
CN102288041B (zh) * 2011-07-05 2013-01-23 山东理工大学 石油焦罐式煅烧炉排料冷却装置
US9272263B2 (en) * 2012-09-24 2016-03-01 Kappes, Cassiday & Associates Sand bed downdraft furnace and activated carbon scrubber
CN103335513B (zh) * 2012-12-10 2015-07-15 冯良荣 一种电加热回转窑
CN112029552A (zh) * 2013-05-30 2020-12-04 煤炭清理技术公司 煤处理
RU2539160C1 (ru) * 2013-07-05 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный технологический университет" (СибГТУ) Устройство для переработки твердого топлива
CN106556248A (zh) * 2015-09-25 2017-04-05 周晓航 一种矿物焙烧处理的方法及其电磁感应焙烧装置
UA113800C2 (xx) * 2015-10-08 2017-03-10 Спосіб визначення питомої витрати циркулюючих газів установки сухого гасіння коксу та пристрій для його здійснення (варіанти)
US10619845B2 (en) * 2016-08-18 2020-04-14 Clearsign Combustion Corporation Cooled ceramic electrode supports
CN109053198A (zh) * 2018-08-03 2018-12-21 中碳能源(山东)有限公司 一种石油焦罐式煅烧炉用罐壁砖及其制备方法和应用
CN108947474A (zh) * 2018-08-03 2018-12-07 中碳能源(山东)有限公司 一种导热性能好的石油焦煅烧炉用罐壁砖及其制备方法
CN109022004B (zh) * 2018-09-05 2021-01-29 张海楠 一种生物质热解炭化炉

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE550053C (de) * 1932-05-07 Aluminium Ind Akt Ges Ofen zum Verkoken von kohlenstoffhaltigem Gut
US1100709A (en) * 1912-01-08 1914-06-23 Nat Carbon Co Electric furnace.
DE409341C (de) * 1922-08-18 1925-02-03 Hermann Roechling Herstellung von Koks
US1671673A (en) * 1926-04-22 1928-05-29 Aluminum Co Of America Method of calcining coke
FR628128A (fr) * 1927-01-26 1927-10-19 Derives Du Soufre Soc Ind Des Procédé d'hydrosulfitation des jus dans la fabrication du sucre
US2127542A (en) * 1935-08-14 1938-08-23 Ralph B Stitzer Electrical carbonization of coal
US4140583A (en) * 1976-11-05 1979-02-20 Pioneer Corporation Processing of lignite for petrochemicals
CH646992A5 (de) * 1980-02-26 1984-12-28 Maurer A Ing Sa Verfahren zur kontinuierlichen thermischen behandlung von verkohlbarem ausgangsmaterial.
US4357210A (en) * 1981-02-08 1982-11-02 Societe Des Electrodes Et Refractaires Savoie/Sers Electric furnace for the calcination of carbonaceous materials
US4412841A (en) * 1981-06-29 1983-11-01 Inland Steel Company Compacted carbonaceous shapes and process for making the same
DE3214472A1 (de) * 1982-04-20 1983-10-27 Hubert Eirich Vorrichtung zum erhitzen von elektrisch leitfaehigen schuettguetern
FR2529220A1 (fr) * 1982-06-23 1983-12-30 Namy Gerald Procede de fabrication de coke moule dans un four a cuve chauffe electriquement et four a cuve correspondant
DE3223573A1 (de) * 1982-06-24 1983-12-29 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren zum brennen von vorgeformten, hochverdichteten kohleanoden

Also Published As

Publication number Publication date
US4867848A (en) 1989-09-19
IN167885B (fr) 1991-01-05
ZA867313B (en) 1987-05-27
BR8606892A (pt) 1987-11-03
FR2587713A1 (fr) 1987-03-27
FR2587713B1 (fr) 1987-12-18
CA1297445C (fr) 1992-03-17
DE3667297D1 (de) 1990-01-11
ES2001712A6 (es) 1988-06-01
WO1987002049A1 (fr) 1987-04-09
AU6405086A (en) 1987-04-24
CN1014152B (zh) 1991-10-02
SU1825369A3 (en) 1993-06-30
CN86106940A (zh) 1987-07-01
JPS63501019A (ja) 1988-04-14
EP0240527A1 (fr) 1987-10-14
AU590013B2 (en) 1989-10-26
KR880700048A (ko) 1988-02-15

Similar Documents

Publication Publication Date Title
EP0240527B1 (fr) Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke et procede de chauffage electrique a l'aide d'un lit granule conducteur d'un fluide
EP0528025A1 (fr) Four de fusion en continu de melanges d'oxydes par induction directe a haute frequence a temps d'affinage tres court et a faible consommation en energie.
FR2561365A1 (fr) Four moufle pour traitements thermiques en continu, par defilement
JPS5954614A (ja) 炭質ブロックの製造方法
US3167420A (en) Production of metals or alloys from ores
US3918956A (en) Reduction method
EP0311538B1 (fr) Procédé et dispositif de graphitisation continue simultanée de produits carbonés longs et de grains carbonés circulant à contre-courant
NO140167B (no) Fremgangsmaate for utfoerelse av varmekrevende kjemiske og/eller fysikalske prosesser
EP0098771B1 (fr) Procédé de fabrication de coke moulé dans un four à cuve et four à cuve correspondant
KR102584902B1 (ko) 내용융로와 외용융로의 이중구조를 가지는 용융죽염 제조장치
US2195453A (en) Electric furnace
WO1980002740A1 (fr) Nouveau four electrique a haut rendement pour la calcination de matieres carbonees
CA2343212A1 (fr) Procede de production de metal directement desoxyde dans un four a etages
US1678607A (en) Metallurgy of zinc
BE344079A (fr)
FR2508062A1 (fr) Procede pour la fabrication de pieces coulees en utilisant, comme matiere premiere, du fer reduit, four de fusion, et briquettes utilisees comme matiere premiere pour les coulees
FR2519018A1 (fr) Dispositif d'allumage pour un four a cuve de production en discontinu de gaz combustible a partir d'une matiere organique
CA1148494A (fr) Four electrique a haut rendement pour la calcination de matieres carbonees
BE893596A (fr) Procede pour la fabrication de pieces coulees en utilisant du fer reduit, four de fusion, de briquettes
BE823415A (fr) Procede et appareil de denitrification du coke
JPH05320659A (ja) 木材を原料とする陶管乾留方法
FR2575183A1 (fr) Procede de production de poudre de fer pour frittage dans un four a cuve a haut rendement thermique
BE344081A (fr)
CH297828A (fr) Four destiné au traitement d'une matière carbonée solide au moyen de chlore gazeux.
BE452952A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870925

17Q First examination report despatched

Effective date: 19881027

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE LORRAINE DE LAMINAGE CONTINU (SOLLAC)

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLLAC

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 48441

Country of ref document: AT

Date of ref document: 19891215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3667297

Country of ref document: DE

Date of ref document: 19900111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920929

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930816

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930818

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930819

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930826

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930921

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930929

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931112

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940926

Ref country code: GB

Effective date: 19940926

Ref country code: AT

Effective date: 19940926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 86905848.7

BERE Be: lapsed

Owner name: SOLLAC

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

EUG Se: european patent has lapsed

Ref document number: 86905848.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050926