EP0240527B1 - Verfahren zur herstellung von formkoks durch elektrische erhitzung in einem schachtofen und ofen zur herstellung von solchem koks - Google Patents

Verfahren zur herstellung von formkoks durch elektrische erhitzung in einem schachtofen und ofen zur herstellung von solchem koks Download PDF

Info

Publication number
EP0240527B1
EP0240527B1 EP86905848A EP86905848A EP0240527B1 EP 0240527 B1 EP0240527 B1 EP 0240527B1 EP 86905848 A EP86905848 A EP 86905848A EP 86905848 A EP86905848 A EP 86905848A EP 0240527 B1 EP0240527 B1 EP 0240527B1
Authority
EP
European Patent Office
Prior art keywords
furnace
coke
area
balls
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86905848A
Other languages
English (en)
French (fr)
Other versions
EP0240527A1 (de
Inventor
Jean Armand Ghislain Cordier
Bernard Emile André DUSSART
Pierre Henri Rollot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA filed Critical Sollac SA
Priority to AT86905848T priority Critical patent/ATE48441T1/de
Publication of EP0240527A1 publication Critical patent/EP0240527A1/de
Application granted granted Critical
Publication of EP0240527B1 publication Critical patent/EP0240527B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B1/00Retorts
    • C10B1/02Stationary retorts
    • C10B1/04Vertical retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like

Definitions

  • the invention relates to a process for the production of molded coke and a shaft furnace for the production of such coke in which the heating and coking heat is supplied by an electrical energy supply and transferred by a recycled gas stream.
  • the invention also relates to a method and an electrical heating device using a fluid-conducting granulated bed.
  • Processes are known for manufacturing coke molded in a shaft furnace, in which a mass of molded coal balls circulates from top to bottom, against the flow of a recycled gas stream originating from a fraction of the gas produced by the coking and taken from the top of the oven to be reintroduced at the base of the latter.
  • the coking of the molded balls takes place in a central zone of the furnace by gaseous contribution from the distillation.
  • the heat energy was provided by an external electric heating, of the resistance electric oven type, however this technique has a poor yield and efficiency because the coke block is not heated uniformly. In fact, the coke undergoes excessive and too rapid overheating in the walls, which is detrimental to the mechanical strength of the balls (bursting and cracking) and to their metallurgical quality (reactivity).
  • the cell furnace is in the form of a column with a straight section, substantially uniform over the entire interior height of the bed of circulating molded balls, comprising, on the one hand, electrodes arranged in a median zone of the side wall of the furnace, and on the other hand, mobile electrodes, which are introduced by the upper part of the furnace into the bed of circulating balls, and arranged in an adjustable manner at a level of the furnace higher than that of fixed electrodes.
  • the localized current flow causing local heating by the Joule effect of the mass of balls, considerably reduces the resistivity and causes a concentration of electric currents in an area which is already too hot.
  • the object of the invention is to remedy these drawbacks by providing a process for the manufacture of coke molded in a vertical tank oven, the structure of which optimizes the distribution of the supply of heat energy suitably distributed over the entire section of the oven, while by ensuring correct circulation of the coke mass and by achieving the optimum conditions for coking the molded coal balls.
  • the subject of the invention is also a process for manufacturing metallized molded coke, characterized in that a coke, by a process as defined above, is coked with a charge of molded balls prepared by compacting a paste consisting of a binder, simple or mixed, of a mixture of suitable coals, and fine particles of a material based on the metallic element to be incorporated into the coke, in metallic or oxidized form.
  • the material based on the metallic element consists of iron oxides, manganese ores and dust resulting from the production of ferro-manganese, chromite concentrates for the production of ferro-chromium, quartz fines and silica powders that must be recycled for the production of ferro-silicon.
  • the subject of the invention is also a pot furnace for the manufacture of molded coke in the form of a substantially tubular enclosure delimiting a first preheating zone corresponding to the upper part of the enclosure, a second carbonization zone and coking corresponding to the central zone of the enclosure and a third coke cooling zone corresponding to the lower part of the enclosure, the oven comprising at its top sealed means for introducing a charge consisting of raw molded balls and means for recovering the gases produced and at its base sealed means for removing the coke and means for admitting a recycled gas stream, the intake means being connected, outside the oven, to the means for recovery of gases produced by recycling means, and electric heating means arranged in the wall of the second carbonization and coking zone, characterized in that the oven comprises a qu atrieme sealed secondary cooling zone connected upstream to the evacuation means of the third zone and downstream to a sealed evacuation airlock, the fourth zone comprising at its base at least one secondary cooling gas supply line connected the recycling means, and at its apex, at least one return pipe for the secondary cooling gases
  • the watertight means for introducing the load consist of a sealed load supply airlock opening at its lower part into the first zone of the furnace by a distribution bell, the supply airlock being itself supplied by a rotating hopper.
  • the means for evacuating the coke from the third zone comprises a rotating and movable floor in vertical translation opening out, via a sealed airlock, into the fourth secondary cooling zone.
  • the electrical heating means are of the conduction type and consist of at least one pair of diametrically opposite electrodes, disposed at the base of the wall of the second zone of the enclosure of the oven, said wall forming, in this zone, a constriction of the internal section of passage of the bed of molded balls delimited by a shoulder against which the fixed electrodes are housed.
  • the electrodes consist of segments, the profile of which in vertical section is L-shaped extending along each side of the shoulder so that one of the branches of L is horizontal.
  • the electrode segments are circular and separated from the others by an intermediate wall of refractory and insulating material in the form of an inclined plane corresponding to the slope of the shoulder delimited by the L-profile. electrodes.
  • This L-shaped profile is preferably chosen because it causes an embankment accumulation of coked balls and very conductive on the electrode that they protect.
  • This protective slope is constantly renewed; it extends the electrode while protecting it from abrasion from the descending molded coke bed, and it isolates it from the hot zone of cooking and gases from the recycled gas stream, very hot at this level. This results in a reduction in heat losses and better mechanical resistance of the electrodes, especially if they are made of cooled alloy copper.
  • the oven comprises an internal enclosure in the shape of a warhead in a refractory material provided with a central electrode cooperating with a peripheral electrode circulating along the internal wall of the enclosure.
  • the two electrodes are supplied by a direct or single-phase current source.
  • the electric heating means are of the induction type and consist of an induction coil coaxial with the tank and housed in the refractory lining of the furnace.
  • the oven comprises an internal enclosure in the form of a warhead made of a refractory material, in which is housed a laminated magnetic core.
  • the correct distribution of the heating energy is further improved by winding around this magnetic core an internal induction coil, coaxial with the external induction coil, and supplied in phase with the latter, by the same current source at medium frequency.
  • the induction heating means consist of a set of pairs of induction coils arranged radially in the refractory wall of the furnace, defining an external inductor generating a rotating field passing horizontally through the tank.
  • the oven comprises an internal enclosure in the shape of a warhead of refractory material in which is housed an internal inductor consisting of a set of radial coils arranged opposite the coils of the external inductor and determining a set of pairs of coupled coils which cooperate to generate a rotating field between the external inductor and the internal inductor.
  • the electrical heating means consist of the combination of at least one pair of electrodes as described above generating conduction heating, and at least one coil generating induction heating .
  • the process of the invention consists in coking, continuously, in an electrically heated tank furnace, by conductor and / or by induction, balls of dried coal agglomerated by binders and molded in press.
  • the pyrolysis of the balls in the furnace causes the emission of distillation gases from the coals and binders, a large part of which is recycled at the base of the furnace, after brief purification. These recycled gases form an ascending gas stream which cools the balls in the lower part of the furnace and the progressive heating, in counter-current, of the balls which descend the upper part of the furnace.
  • the balls are successively preheated and dried, then smoked.
  • the carbonization then ensures the mechanical consolidation of the balls.
  • the progressive heating of the balls completely eliminates the volatile matter around 850 ° C and the balls then become electrically conductive.
  • This conductivity is used to pass electric currents through the ball bed which cause the balls to be heated by the Joule effect in their mass and at the points of contact between them. This electric heating completes the cooking and coking of the balls at the desired temperature.
  • the ball of balls then behaves like a heating grid which overheats against the current the ascending gas flow coming from the lower part of the oven in which the coked balls are cooled.
  • the ascending gas stream then essentially consists of hydrogen (and methane). By its particular thermal and electrical properties, it constitutes an excellent vector of heat exchange between the gases and the balls, which avoids the formation of arcs and discharges between the balls.
  • the raw molded balls are prepared by first making a paste by kneading with a mixed binder (pitch, tar, asphalt ...) of coals previously mixed, dried, crushed and preheated. The preheated dough is then compacted into balls in a tangential cylindrical hoop press.
  • a mixed binder pitch, tar, asphalt
  • the shaft furnace shown in FIG. 1 comprises a metal casing or shield 1 provided on its internal face with a refractory lining 2 delimiting an enclosure 3 substantially tubular, and slightly frustoconical in its upper part, in which is loaded a mass of molded balls constituting the moving bed 4.
  • the enclosure 3 is of circular section, but may also have a rectangular section as illustrated in FIG. 6.
  • the shaft furnace is loaded at its top by sealed means for introducing the raw molded balls, which comprise a rotating hopper 5 supplied with balls by a belt conveyor 6 controlled by a charge level detector 7 placed in the hopper.
  • the hopper 5 has at its lower part a rotating bell 8 whose opening, under the action of a jack 9, frees the introduction of the balls into a sealed lock airlock 10 comprising pipes 11 a, 11 b of purge with neutral gas.
  • the sealed airlock 10 is closed at its lower part opening into the oven, by a distribution bell 12, the opening of which is controlled by a jack 13 according to the indications of a charge level detector 14 placed at the head of the tank. .
  • the bells 12 and 8 are opened in sequence according to the indications of the sensor 14.
  • the furnace is also provided at its top with means for recovering the gases produced, which consist of two pipes 15a, 15b, of large diameter, opening into the enclosure of the furnace on either side of the rotating distribution bell 12.
  • the coke oven gas recovered by the lines 15a, 15b is sent to a primary purification installation shown diagrammatically at 16 to undergo a cooling, washing, drainage and summary condensation treatment of the water and the naphthalene.
  • the gas thus treated is recycled for a fraction of 60 to 80% to the oven by a recycling line 17 and sent for the remaining fraction by a line 18 to a storage gasometer not shown via a conventional secondary purification installation shown schematically in 19.
  • the oven enclosure 3 has three separate functional areas.
  • the upper part of the enclosure corresponds to a first cooking zone 20 where the balls are progressively preheated, smoked by distillation of the coals and binders and undergo a first phase of carbonization, by the current of ascending hot gases flowing in countercurrent.
  • the middle part corresponds to a second zone 21 at the end of carbonization and coking at the base of which the electrical heating means 22 are installed, housed in the internal wall of the refractory lining 2.
  • a third zone 23 for primary cooling of the coke formed occupies the lower part of the enclosure and comprises at its base means for admitting a recycled gaseous stream coming from the primary purification installation 16.
  • These means comprise a set of pipes 24 for admission of the primary recycled current coming from a supply circular 25, itself connected to the recycling pipe 17 by a pipe 26 on which is mounted a valve 27 for adjusting the flow rate controlled as a function of the indications supplied by temperature sensors 28 located at the head of the oven.
  • the circulation of the recycled gas in the pipe 17 is ensured by a fan 29 and the admission flow rate of a first part of the recycled gases, corresponding to the primary current, sent in the pipe 26 is adjusted to maintain the temperature detected by the sensors 28 at a predetermined set point, to avoid condensation of gou drons on the balls in the oven and on the internal walls of the oven.
  • the oven comprises at its base means for evacuating the coke from the third zone 23 which comprise a rotary hearth 30 driven in rotation by a geared motor group 31 and movable in vertical translation by means of a cylinder for adjusting height 32.
  • the rotary hearth 30 puts the third zone 23 of the oven in communication with an airlock 33 opening itself into a fourth zone 34 for secondary cooling of the coke.
  • the fourth secondary cooling zone 34 has at its base inlet pipes 35 for a secondary cooling current corresponding to the remaining part of the recycled gas stream.
  • These pipes 35 come from a circular 36 connected by a pipe 37, via a flow control valve 38, to the recycling pipe 17.
  • the valve 38 is controlled according to the indications provided by a temperature sensor 39 measuring the average temperature of the coke present in the fourth zone 34 for secondary cooling of the coke.
  • the flow rate of the remaining part of the recycled gases introduced in the form of a secondary cooling stream is adjusted to maintain the temperature of the coke detected by the sensor 39 at a predetermined set point, lower than the maximum normal handling temperature of the coke. .
  • This fourth secondary cooling zone 34 has, at its upper part, conduits 40 opening into a circular 41 collecting the secondary cooling current, itself connected by a conduit 42, on which a fan 43 is mounted, to a return circular 44 of the secondary cooling current surrounding the upper part of the furnace where the recovery of the gases produced and opening into it takes place via return pipes 45.
  • the fourth cooling zone 34 is connected, downstream, to a sealed lock airlock 46 provided with purge lines 47, 48 and itself connected to an evacuation hopper 49 releasing the cold coke on a strip dosing extractor 50.
  • valves 51, 52 and 53 for communication between the airlock 33, the fourth zone 34 and the sealed lock airlock 46 is controlled respectively by jacks 54, 55 and 56 according to the indications provided by a charge level detector 57 located at the head of the fourth zone.
  • the balls leaving the first zone reach a temperature of about 850 ° C, from which the electrical conductivity becomes appreciable and increases considerably to cap around 1100 C.
  • the coked balls descend into the lower part of the oven corresponding to the third primary cooling zone 23, at the base of which is injected the stream of recycled cold gas which is used as a heat transfer vector in the various zones of the oven.
  • the coke balls continuously extracted from the third zone by means of a rotating hearth are removed in two stages.
  • the balls are completely cooled by a secondary stream of recycled gas, which is then returned to the top of the furnace; then, they are discharged by the final lock airlock, purged with neutral gas, which eliminates any risk of explosion.
  • the molded coke is extracted cold and then screened before shipment.
  • the manufacture of electric molded coke combines the advantages of gas coke with those of the electric process.
  • electric molded coke has the following advantages:
  • the homogeneity of the cooking temperature ensures the regularity of the coke quality.
  • the cooking temperature control makes it possible to control the reactivity of the coke produced: reactive coke for electrometallurgy (cooked at low temperature), foundry coke with very low reactivity (cooked at high temperature: 1300 ° C), blast coke with reactivity adjusted.
  • the heating means 22 arranged in the lower part of the second zone 21 correspond to two embodiments which will be described below.
  • the internal wall of the refractory lining 2 delimiting the enclosure 3 forms a narrowing of the internal passage section of the bed of molded balls at the bottom of the second zone 21. This narrowing is delimited by a shoulder 58 formed along the wall of the enclosure 3.
  • electrodes 59 having an L-shaped vertical sectional profile extend along each side of the shoulder 58 so that one of the branches of the L is horizontal.
  • the electrode 59 is made of an electrically conductive material, for example copper and fixed by a tie rod 60 which passes through it, as well as the refractory lining 2, outside the shield 1 by conventional means such as nut and against nut.
  • the tie rod 60 is electrically isolated from the shield 1 by the interposition of an electrical insulating material in the form of discs 61.
  • the end of the tie rod 60 outside the shield forms a terminal 62 on which is fixed an electric power cable 63 of the electrode connected to the current source 64, shown in FIG. 1.
  • the area of the refractory lining 2 immediately adjacent to the electrode 59 is cooled by a tube 65 for internal circulation of cooling fluid arranged in a serpentine fashion along the two faces of the electrode 59 facing the refractory lining.
  • the electrode can also be cooled directly by internal circulation of the cooling fluid.
  • the electrodes 59 are in the form of diametrically opposite circular segments and separated from each other by an intermediate wall 66 of separation more clearly visible in FIG. 5.
  • This wall 66 is in the form of an inclined plane at an inclination corresponding to the slope of the shoulder 58 against which the electrodes 59 are housed.
  • a pair of electrodes 59 are arranged around the tank per phase.
  • the electrodes of the same phase are diametrically opposite in the tank, as shown in Figs. 2A and 3A, so as to ensure the passage of current to the center of the furnace.
  • Their supply voltage is adjustable (phase by phase) by acting on the secondary of the supply transformer.
  • a two-phase supply is produced, as illustrated in FIGS. 2A and 2B, using a SCOTT transformer, according to the connection diagram in Fig. 2A, which transforms a three-phase primary supply into a two-phase secondary (phases marked 1 and 1b on the one hand and 2 and 2b on the other hand) of adjustable voltage.
  • the electrodes 59 made up of circular segments the cross section of which is L-shaped rest inside the furnace on a cooled refractory edge 67 (FIG. 4). Is formed on each of these electrodes, a ball of repose strongly graph i silly things (by local surcokéfaction driven by the long residence time at high temperature ball) and highly conductive, which protect the electrodes 59 and divided densities current in the ascending load.
  • Each electrode is separated from its neighbor by the insulating refractory, insulating, abrasion-resistant wall 66 (for example made of silicon carbide bricks, linked to silicon nitride) whose conicity ensures a slight progressive compression of the charge at right copper electrodes in order to improve and homogenize the electrical conductivity of the ball bed during coking.
  • the insulating refractory, insulating, abrasion-resistant wall 66 for example made of silicon carbide bricks, linked to silicon nitride
  • the diameter of the furnace rapidly expands so as to loosen the l i t of balls, to increase the electrical resistances of contact between the cannonballs and avoid stray currents in the cooling zone where they would heat already coked cannonballs in pure loss.
  • the developed width of the circular segments of the electrodes 59 is chosen to be approximately equal to the width of the refractory intermediate walls 66 so as to avoid preferential passages between phases or even short circuits from one phase to another on the periphery of the furnace.
  • Fig. 6 is shown a variant in which the section of the tank is rectangular.
  • This oven is substantially similar to that described with reference to FIG. 1 with regard to the means for introducing the charge of raw molded balls and recovery of coke, as well as with regard to the recycling of coke oven gas recovered by two collecting pipes 70 and 71 located at the top of the furnace returned to the base of the primary cooling zone by two pipes 72 and 73. In this case also the cooling of the coke takes place in two stages between which the fractions of recycled gas are divided, as previously indicated.
  • These electrodes also have an L-shaped profile, on which a slope accumulates. highly graphitized balls.
  • each phase of the current supplies a pair of copper electrodes from a transformer 76.
  • the electrodes of the same phase are arranged opposite one another along each of the large faces of the furnace and are separated from the pair of adjacent electrodes by a refractory insulating wall 77.
  • the circular oven has an inner enclosure 80 in the form of a warhead made of a refractory material, while the structure of the enclosure 3 of the oven remains identical in all its peripheral parts.
  • This enclosure 80 carries a central electrode 81, frustoconical, which ensures the return of the currents passing through the solid mass of hot balls during coking and coming from a circular peripheral electrode 82 of L-shaped section current along the interior perimeter of the tank above the edge 67.
  • This provision aims to avoid parasitic currents between the electrodes supplied by different phases, and to ensure the passage of current in the center of the furnace.
  • Power is supplied between the peripheral electrode 82 connected as an anode and the central electrode 81 forming the cathode, by a direct current source, for example a rectifier 83, or a single-phase current source for a small capacity oven.
  • the ogival enclosure 80 is mounted on a rod 84 passing through its center a column 85 ensuring the support and the mobility of the annular rotary hearth 86.
  • the ogival enclosure 80 is movable vertically under the action of a jack 87 placed under the rod 84.
  • the rod 84 is surmounted by an insulator 88 which prevents the passage of parasitic currents back along the rod 84.
  • the central electrode 81 in the form of a truncated cone is made of an abrasion-resistant material such as densified silicon carbide sufficiently electrically conductive to limit the localized heating of the walls of the cathode 81.
  • the cathode 81 rests on a sleeve 89 made of a refractory insulating material.
  • the return currents through the cathode 81 flow to the base of the furnace through a cooled, insulated conductor 90 housed in the hollow axis of the rod 84.
  • the column 85 is slidably mounted, for example by a system of grooves not shown, in a conical toothed crown 91 ensuring the rotational drive of the column thanks to a conical pinion 92 with which it engages. the pinion 92 being mounted at the end of the output shaft of a geared motor group 93.
  • the vertical sliding of the column is ensured by a jack 94.
  • the coke extraction rate, homogeneous over the entire periphery is adjusted by adjusting the speed of rotation of the metering bed and the height thereof.
  • the cathode 81 is cooled by circulation from a line 95 of a stream of refrigerated gas which escapes through the annular clearance formed between the ogival enclosure and the column 85 at the place where the enclosure 80 comes to style the latter.
  • the electric heating is carried out by induction.
  • the heating means arranged at the base of the coking zone 21 comprise an induction coil 100 coaxial with the enclosure 3 and housed in the refractory wall 2 of the furnace.
  • Vertically laminated mild steel cores 101 are arranged radially around the coil 100 and channel the field return lines.
  • the coil 100 is supplied by a generator 102 at medium frequency, between approximately 50 and 1000 Hertz.
  • the electrical conductor which constitutes the coil 100 is a hollow tube, in which circulates a cooling fluid introduced at 103 and withdrawn at 104, which is itself connected by conductors 105 and 106 to the generator 102.
  • the laminated cores 101 constitute a magnetic yoke cooled by circulation of cooling fluid introduced by the pipe 107 and withdrawn by the pipe 108.
  • the expression for the power density (electrical power dissipated per unit of coke volume), established for the variant in FIG. 9 shows that the radius of the tank and the conductivity of the balls have a determining influence on the powers developed locally in the bed.
  • this first variant has the disadvantage of unevenly heating the balls passing through the wall and those passing through the center of the oven, which risk being insufficiently heated.
  • the ball beds arranged outside will have a temperature and an electrical conductivity significantly higher than the center balls, which will lead to different end-of-coking temperatures and an uneven quality of the coke balls, at the center and at the wall.
  • the oven comprises means of electric induction heating which comprise, in addition to an induction coil 110 coaxial with the enclosure 3 and housed in the refractory wall 2 of the oven, an interior enclosure 111 in the form of an ogive made of a refractory material which includes means for strengthening the magnetic field near the axis of the furnace.
  • the refractory material constituting the enclosure 111 may for example be made of silicon carbide bonded to silicon nitride, the electrical insulation properties of which are sufficient for the intended application and the resistance to abrasion and to thermal shock is excellent. .
  • These means may consist of a set of vertically laminated mild steel cores 112, arranged radially, housed in the warhead enclosure 111.
  • an internal induction coil 113 coaxial with the coil 110 supplied in phase with the latter and housed in the warhead enclosure 111.
  • the mild steel cores laminated vertically 112 and arranged radially are inserted into the coil 113 coaxial with the latter.
  • the induction coil 110 consists of a hollow electrical conductor with helical winding in which circulates a cooling fluid supplied at 114 and withdrawn at 115.
  • the internal induction coil 113 is produced in a similar manner and cooled by circulation of a cooling fluid between the points of arrival 116 and of exit 117, this cooling circuit emerging outside the oven by circulation in a column 118, of smaller diameter than the enclosure in the shape of a warhead 111 and supporting the latter.
  • Column 118 crosses the rotary hearth of the furnace as illustrated in more detail for the first embodiment of the induction heater shown in FIG. 7.
  • All of the laminated cores 113 constitute an internal induction cylinder head also cooled by circulation of a cooling fluid supplied by a central pipe 119 arranged along the axis of the column and opening at the top of the cores, the return of the fluid being provided by a line coaxial and external to line 119.
  • a medium frequency generator 123 supplies the coils 110 and 113 in series via a conductor 124 connected to the input of the coil 110, then a conductor 125 connecting the output of the coil 110 to the input of the coil 113 and a conductor 126 ensuring the return of the output of the coil 113 to the generator 123.
  • the coils 110 and 113 placed in the furnace opposite one another make it possible to associate their respective field of induction to simultaneously and homogeneously heat the balls passing along the peripheral walls of the enclosure 3, and of the walls of the inner enclosure 111.
  • the induction heating means consist of a set of pairs of induction coils arranged radially in the refractory wall of the furnace, thus defining an external inductor generating a rotating field passing horizontally across the tank.
  • FIG. 11 two coils 130, 131 having their axes merged and arranged radially and diametrically opposite are wound on horizontally laminated magnetic steel cores forming inductors 132, 133.
  • the coils 130 and 131 are supplied on the same phase of a polyphase current identified 1, so that the magnetic field passes radially through the tank, that is to say that the opposite end faces of the coils 130 and 131 are of opposite polarities.
  • Each pair of coils 130, 131 which represents a phase is regularly shifted in the inductor so that the resulting field rotates at the frequency of the supply currents and generates eddy currents in the mass of the coked balls.
  • the inductors 132, 133 are cooled by circulation of a cooling fluid supplied by a circuit entering through the line 135 and leaving through the line 136.
  • a generator 137 three-phase medium frequency, supplies the coils as shown in FIG. 11 for two coils in an axial cutting plane.
  • the horizontal section shows the feeding which takes place as shown in Fig. 13 by considering only the inductors outside the oven enclosure.
  • the oven further comprises an internal enclosure 140 in the form of a warhead, made of a refractory material, in which is housed an internal inductor constituted by a set of radial coils arranged opposite the coils of the external inductor and determining a set of pairs of coupled coils which cooperate to generate a radially rotating field between the external inductor and the internal inductor.
  • a coil 130 of the external inductor is associated with a coil 130a supplied in such a way that the opposite end faces of the coils are of opposite polarities.
  • the coil 131 is associated with a coil 131 a.
  • the coils 130a and 131a are wound on a horizontally laminated magnetic steel inductor traversed by a cooling circuit consisting of a central supply tube 141 and peripheral return tubes 142 (Fig. 13).
  • the electric heating means of the oven comprise, in the coking zone, conduction heating means with L-shaped peripheral electrode 150 and central electrode 151 as described with reference to FIG. 7, supplied from a rectifier 152 and induction heating means comprising an axial coil 153, as described with reference to FIG. 9, supplied from a medium frequency current source 154, and optionally a set of vertically laminated mild steel cores 156, arranged radially, housed in the support column 157 of the electrode 151, as described with reference in Figure 10.
  • the axial coil 153 is then housed in the coping 155 projecting from which the electrode 150 sits and below the latter.
  • Inductive heating uses variable fluxes generated by induction coils completely external to the mass of the balls during coking and makes it possible to overcome, in large part, the problems of variation of the contact resistance between balls and in contact electrodes.
  • the electromagnetic induction developed in a ball of balls allows density levels varying within wide limits.
  • the developed power can reach 5 to 10 Megawatts per m 3 of hot and coked balls, while it is considerably lower by conduction.
  • This electrical power greater than the only thermal requirement of the electrical coking developed in the mass of balls, can be used to reduce, by the carbon of the coke and by the volatile matters of the binders, fines of oxidized ores or dusts which can be incorporated into composite bullets.
  • the rate of mineral fines incorporated in the coke paste is limited by the electrical conductivity of the ball bed which cannot be less than 100 mhos (electrical conductivity of the homogeneous medium equivalent to the bed of balls at the start temperature electric coking, i.e. 850 ° C to 900 ° C).
  • the invention also relates to a method and a device making it possible to dissipate, in a uniform and homogeneous manner, significant volumetric electric powers, developed by the Joule effect of induced electric currents, in a medium. conductive granule which can thus be brought to high temperature.
  • This granulated bed having a high specific surface can be used to heat or superheat gases, liquids, melt solids, and vaporize liquids by superheating the vapors thus produced.
  • the conductive granulated bed consists of refractory and sufficiently conductive materials, in calibrated pieces, in grains, in solid or hollow and tubular cylindrical elements, in rings, in balls or pellets, in briquettes.
  • the refractory materials composing the conductive granulated bed can be constituted by calibrated pieces and grains of carbon, graphite, cokes, or by rings, pellets, and cylinders of silicon carbide, molybdenum silicide, diboride of zirconium or by balls, pellets, briquettes of coal paste and coking mixtures.
  • the granulated bed is chosen according to its electrical resistivity, its refractoriness, its specific surface and its permeability, and finally its resistance to oxidation and corrosion for the use which is made of it.
  • an oven comprising heating means as shown in FIGS. 7 to 14.
  • the conductive granulated bed is compacted in the tubular enclosure of the oven whose walls are lined with insulating refractories. This granulated bed rests on a refractory grid through which the gas to be overheated is blown. It can also be placed between two layers of non-conductive material such as sand, so as to center the lines of flight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Claims (22)

1. Verfahren zum Herstellen von Formkoks in einem vertikalen Schachtofen eines Typs, der an seinem oberen Teil abgedichtete Einrichtungen (5 - 13) zum Einführen einer Ladung von Rohkohlebriketts, die vorher durch Verdichten geformt sind, und Einrichtungen (15a, 15b) zum Rückgewinnen der Gasprodukte und an seinem unteren Teil abgedichtete Einrichtungen zum Abführen des abgekühlten Koks und Einrichtungen (24 bis 27) zum Einführen eines Gasstromes aufweist, bei dem man einen rückgeführten Gasstrom in einer ansteigenden Strömung im Gegenstrom zur absinkenden Ladung der Formkohlebriketts zirkulieren läßt, die ein bewegliches absinkendes Bett bilden, die Formkohlebriketts einer Phase der Vorerwärmung und der Entgasung in einem ersten Bereich (20), der dem oberen Teil des Ofens entspricht, anschließend einer Phase der Korbonisierung und Verkokung in einem zweiten Bereich (21), der dem mittleren Teil des Ofens entspricht, und einer Phase der Abkühlung der verkokten Briketts in einem dritten Bereich (23) unterwirft, der dem unteren Teil des Ofens entspricht, bei dem man am Kopf des Ofens die durch die Destillation und Verkokung der Kohle erzeugten Kopfgase rückgewinnt und bei dem man einen Anteil dieser Kopfgase rückführt, um den rückgeführten Gasstrom zu bilden, dadurch gekennzeichnet, daß man einen ersten Teil des rückgeführten Kopfgasanteils zum Boden des dritten Bereiches (23) rückführt, um für eine primäre Abkühlung des Kokses zu sorgen, und daß man den Rest des Anteils der rückgeführten Kopfgase in Form eines sekundären im Gegenstrom zur Masse des Kokses von dem dritten Bereich zirkulierenden Abkühlungsstrom einem vierten Bereich (34) einführt, der dicht mit dem Ausgang des dritten Bereiches verbunden ist, wobei der sekundäre Abkühlungsstrom dann vom vierten Bereich abgezogen wird (40) und am Kopf des Ofens wieder eingeführt wird, um die Gasprodukte zu verdünnen und die Einrichtungen zum rückgewinnen (15a und 15b) dieser Gase auf einer ausreichend hohen Temperatur zu hatten, um jede Kondensation zu verhindern und wobei der kalte Koks vom vierten Bereich (34) über eine dichte Schleuse (46) abgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Karbonisierung und Verkokung durch elektrische Energiezufuhr (22) zum beweglichen vorverkokten Brikettbett bewirkt werden und diese Energie über einen rückgeführten Gasstrom übertragen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die elektrische Energiezufuhr durch elektrische Leitung eines Stromes im beweglichen Brikettbett bewirkt wird, der zwischen wenigstens zwei Elektroden erzeugt wird, die in den Wänden des Schachtes auf der Höhe des zweiten Bereiches angeordnet sind.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die elektrische Energiezufuhr dadurch bewirkt wird, daß elektrische Ströme im beweglichen Brikettbett induziert werden, das den zweiten Bereich durchquert.
5. Verfahren zum Herstellen von metallisiertem Formkoks, dadurch gekennzeichnet, daß man mit einem Verfahren nach einem der vorhergehenden Ansprüche eine Ladung von Formbriketts verkokt, die dadurch gebildet werden, daß ein Brei, der aus einem einfachen oder gemischten Bindemittel und einem Gemisch geeigneter Kohlen und feinen Teilchen eines Materials auf der Grundlage des in den Koks einzuschließenden Metallelementes in metallischer Form oder in Oxidform besteht, verdichtet wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Material auf der Grundlage des Metallelementes aus Eisenoxiden, Manganerzen und Staub der Herstellung von Eisenmangan, Chromkonzentraten für die Herstellung von Eisenchrom, Silizium- und Quarzstaub besteht, der bei der Herstellung von Eisensilizium rückgewonnen wird.
7. Schachtofen für die Herstellung von Formkoks in Form einer im wesentlichen rohrförmigen Einfassung, die einen ersten Bereich (20) zum Voraufheizen, der dem oberen Teil der Einfassung entspricht, einen zweiten Bereich (21) zum Karbonisieren und Verkoken, der den mittleren Bereich der Einfassung entspricht, und einen dritten Bereich (23) der Abkühlung des Kokses begrenzt, der dem unteren Teil der Einfassung entspricht, wobei der Ofen an seinem Kopf dichte Einrichtungen zum Einführen einer Ladung von Rohformbriketts und Einrichtungen (15a, 15b) zum Rückgewinnen der Gasprodukte und an seinem unteren Teil dichte Einrichtungen zum Abführen des Kokses und Einrichtungen (24, 25, 26, 27) zum Einführen eines rückgeführten Gasstromes aufweist, wobei die Einrichtungen zum Einführen eines Gasstromes an der Außenseite des Ofens mit Rückgewinnungseinrichtungen (15a, 15g) über die Rückführungseinrichtungen (17, 29) verbunden sind und elektrische Heizeinrichtungen (22) am unteren Teil des zweiten Bereiches der Karbonisierung und Verkokung angeordnet sind, dadurch gekennzeichnet, daß der Ofen einen vierten dichten Bereich (34) der sekundären Abkühlung umfaßt, der stromaufwärts mit Einrichtungen zum Entleeren des dritten Bereiches und stromabwärts mit einer dichten Abgabeschleuse (46) versehen ist, wobei der vierte Bereich (34) an seinem unteren Teil wenigstens eine Versorgungsleitung (35) für einen sekundären Abkühlungsstrom, die mit den Rückführungseinrichtungen verbunden ist, und an seinem Kopfteil wenigstens eine Rückleitung (40) für das sekundäre Abkühlungsgas aufweist, die an den oberen Teil des Ofens in der Nähe der Einrichtungen zum Rückgewinnen der Gasprodukte durch Destillation und Verkokung der Kohle angeschlossen ist.
8. Ofen nach Anspruch 7, dadurch gekennzeichnet, daß die dichten Einrichtungen zum Einführen der Ladung aus einer dichten Schleuse (10) zum Zuführen der Ladung, die an ihrem unteren Teil im primären Bereich (20) des Ofens über eine Verteilungsglocke (12) mündet, bestehen, wobei die Zuführungsschleuse (10) ihrerseits über einen Drehtrichter (5) versorgt wird.
9. Ofen nach Anspruch 7, dadurch gekennzeichnet, daß die Einrichtungen zum Abführen des Kokses von dem dritten Bereich einen Drehteller (30) umfassen, der vertikal längsbewegbar ist und über eine dazwischen angeordnete dichte Schleuse (53) im vierten sekundären Abkühlungsbereich (34) mündet.
10. Ofen nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die elektrischen Heizeinrichtungen (22) vom Leitungstyp sind und aus wenigstens einem Paar von Elektroden (59) bestehen, die diametral gegenüber in der Wand des zweiten Bereiches (21) der Einfassung des Ofens angeordnet sind, wobei diese Wand in diesem Bereich eine Einschnürung des Innendurchmessers des Weges des Formbrikettbettes bildet, die von einer Schulter (58) begrenzt wird, an der die Elektroden angeordnet sind.
11. Ofen nach Anspruch 10, dadurch gekennzeichnet, daß die Elektroden (59) aus Segmenten mit einem L-förmigen Profil im Vertikalschnitt bestehen, die entlang jedes Randes der Schulter (58) so verlaufen, daß einer der Schenkel der L-Form horizontal liegt.
12. Ofen nach Anspruch 11, dadurch gekennzeichnet, daß der Schacht einen kreisförmigen Querschnitt hat, und die kreisförmigen Elektrodensegmente voneinander durch eine Zwischenwand (66) aus einem feuerfesten Material in Form einer schrägen Ebene getrennt sind, die der Neigung der Schulter (58) entspricht, die vom L-förmigen Profil der Elektroden begrenzt wird.
13. Ofen nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet daß er eine Inneneinfassung (80) in Form eines Spitzkegels aus einem feuerfesten Material aufweist, die mit einer mittleren Elektrode (81) versehen ist, die mit einer Umfangselektrode (82) zusammenarbeitet, die kreis förmig längs der Innenwand der Einfassung verläuft.
14. Ofen nach Anspruch 13, dadurch gekennzeichnet, daß die Inneneinfassung (80) in Form eines Spitzkegels in ihrer Höhe über Einrichtungen (84, 87) einstellbar angeordnet ist, die durch den Drehteller (86) gehen.
15. Ofen nach einem der Ansprüche 10 und 11, dadurch gekennzeichnet, daß der Schacht einen rechteckigen Querschnitt hat, und die Elektrodensegmente (74) geradlinig sind und auf Brüstungen (75) sitzen, die an den gegenüberliegenden Seiten des rechteckigen Querschnittes angeordnet sind.
16. Ofen nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die elektrischen Heizeinrichtungen vom Induktionstyp sind und aus einer äußeren Induktionsspule (100, 110) bestehen, die koaxial zum Schacht in die feuerfeste Auskleidung (2) des Ofens eingebettet ist.
17. Ofen nach Anspruch 16, dadurch gekennzeichnet, daß er eine Inneneinfassung (111) in Form eines Spitzkegels aus einem feuerfesten Material aufweist, in die ein innerer lamellierter Magnetkern (112) eingebettet ist.
18. Ofen nach Anspruch 17, dadurch gekennzeichnet, daß eine innere Induktionsspule (113), die zur äußeren Induktionsspule (110) koaxial ist, um den gesamten inneren Magnetkern gewickelt ist und phasengleich mit letzterer versorgt wird.
19. Ofen nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Heizeinrichtungen durch Induktion aus einer Anordnung von Paaren von Induktionsspulen (130,131) bestehen, die radial in der feuerfesten Wand (2) des Ofens angeordnet sind und einen äußeren Induktor bilden, der ein Drehfeld erzeugt, das quer horizontal durch den Ofen geht.
20. Ofen nach Anspruch 19, dadurch gekennzeichnet, daß er eine innere Einfassung (140) in Form eines Spitzkegels aus einem feuerfesten Material aufweist, in der ein innerer Induktor angeordnet ist, der aus einer Anordnung von radialen Spulen (130a, 131a) besteht, die den Spulen des äußeren Induktors (130, 131) zugewandt angeordnet sind und eine Gruppe von Paaren von gekoppelten Spulen (130, 130a und 131, 131a) bilden, die so zusammenarbeiten, daß sie ein Drehfeld zwischen dem äußeren und dem inneren Induktor erzeugen.
21. Ofen nach einem der Ansprüche 7 bis 8, dadurch gekennzeichnet, daß die elektrischen Heizeinrichtungen aus einer Kombination wenigstens eines Elektrodenpaares, wie es im Anspruch 13 beschrieben wurde, das für eine Aufheizung durch elektrische Leitung sorgt, und wenigstens einer Spule besteht, wie sie im Anspruch 16 beschrieben wurde, die eine Aufheizung durch Induktion erzeugt.
22. Ofen nach Anspruch 21, dadurch gekennzeichnet, daß die Heizeinrichtungen durch Induktion neben der Spule, die im Anspruch 13 beschrieben wurde, einen lamellierten inneren Magnetkern umfassen, wie er im Anspruch 17 beschrieben ist.
EP86905848A 1985-09-26 1986-09-26 Verfahren zur herstellung von formkoks durch elektrische erhitzung in einem schachtofen und ofen zur herstellung von solchem koks Expired EP0240527B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86905848T ATE48441T1 (de) 1985-09-26 1986-09-26 Verfahren zur herstellung von formkoks durch elektrische erhitzung in einem schachtofen und ofen zur herstellung von solchem koks.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8514291A FR2587713B1 (fr) 1985-09-26 1985-09-26 Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke
FR8514291 1985-09-26

Publications (2)

Publication Number Publication Date
EP0240527A1 EP0240527A1 (de) 1987-10-14
EP0240527B1 true EP0240527B1 (de) 1989-12-06

Family

ID=9323272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86905848A Expired EP0240527B1 (de) 1985-09-26 1986-09-26 Verfahren zur herstellung von formkoks durch elektrische erhitzung in einem schachtofen und ofen zur herstellung von solchem koks

Country Status (15)

Country Link
US (1) US4867848A (de)
EP (1) EP0240527B1 (de)
JP (1) JPS63501019A (de)
KR (1) KR880700048A (de)
CN (1) CN1014152B (de)
AU (1) AU590013B2 (de)
BR (1) BR8606892A (de)
CA (1) CA1297445C (de)
DE (1) DE3667297D1 (de)
ES (1) ES2001712A6 (de)
FR (1) FR2587713B1 (de)
IN (1) IN167885B (de)
SU (1) SU1825369A3 (de)
WO (1) WO1987002049A1 (de)
ZA (1) ZA867313B (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597501A (en) * 1994-11-03 1997-01-28 United States Department Of Energy Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow
US5662470A (en) * 1995-03-31 1997-09-02 Asm International N.V. Vertical furnace
US6038247A (en) * 1997-06-05 2000-03-14 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Graphitizing electric furnace
US5946342A (en) * 1998-09-04 1999-08-31 Koslow Technologies Corp. Process and apparatus for the production of activated carbon
BR9900252A (pt) 1999-02-02 2000-08-29 Companhia Brasileira Carbureto Recipiente de aço inoxidável para a formação de eletrodos de autocozimento para a utilização em baixos-fornos elétricos de redução
BR9900253A (pt) 1999-02-02 2000-08-29 Companhia Brasileira Carbureto Recipiente de alumìnio e aço inoxidável a formação de eletrodos de autocozimento para a utilização em baixos-fornos elétricos de redução
EA008111B1 (ru) * 2005-10-25 2007-04-27 Ооо "Сибтермо" Устройство для переработки твердого топлива
EA007800B1 (ru) * 2005-10-25 2007-02-27 Ооо "Сибтермо" Устройство для получения металлургического среднетемпературного кокса
WO2009047682A2 (en) * 2007-10-11 2009-04-16 Exxaro Coal (Proprietary) Limited Coke making
DE202008012597U1 (de) * 2008-09-22 2009-01-15 Extrutec Gmbh Vorrichtung zur Erwärmung stangenartiger Werkstücke
CN101531906B (zh) * 2009-04-23 2012-07-18 山西利华新科技开发有限公司 电加热连续煤热解焦化的方法及其焦化炉
DE102011014349A1 (de) * 2011-03-18 2012-09-20 Ecoloop Gmbh Wanderbettreaktor
CA2830968C (en) 2011-03-23 2016-04-26 Institut De Rechercheet De Developpement En Agroenvironnement Inc. (Irda) System and process for thermochemical treatment of matter containing organic compounds
CN102288041B (zh) * 2011-07-05 2013-01-23 山东理工大学 石油焦罐式煅烧炉排料冷却装置
US9272263B2 (en) * 2012-09-24 2016-03-01 Kappes, Cassiday & Associates Sand bed downdraft furnace and activated carbon scrubber
CN103335513B (zh) * 2012-12-10 2015-07-15 冯良荣 一种电加热回转窑
CN112029552A (zh) * 2013-05-30 2020-12-04 煤炭清理技术公司 煤处理
RU2539160C1 (ru) * 2013-07-05 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный технологический университет" (СибГТУ) Устройство для переработки твердого топлива
CN106556248A (zh) * 2015-09-25 2017-04-05 周晓航 一种矿物焙烧处理的方法及其电磁感应焙烧装置
UA113800C2 (xx) * 2015-10-08 2017-03-10 Спосіб визначення питомої витрати циркулюючих газів установки сухого гасіння коксу та пристрій для його здійснення (варіанти)
US10619845B2 (en) * 2016-08-18 2020-04-14 Clearsign Combustion Corporation Cooled ceramic electrode supports
CN109053198A (zh) * 2018-08-03 2018-12-21 中碳能源(山东)有限公司 一种石油焦罐式煅烧炉用罐壁砖及其制备方法和应用
CN108947474A (zh) * 2018-08-03 2018-12-07 中碳能源(山东)有限公司 一种导热性能好的石油焦煅烧炉用罐壁砖及其制备方法
CN109022004B (zh) * 2018-09-05 2021-01-29 张海楠 一种生物质热解炭化炉

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE550053C (de) * 1932-05-07 Aluminium Ind Akt Ges Ofen zum Verkoken von kohlenstoffhaltigem Gut
US1100709A (en) * 1912-01-08 1914-06-23 Nat Carbon Co Electric furnace.
DE409341C (de) * 1922-08-18 1925-02-03 Hermann Roechling Herstellung von Koks
US1671673A (en) * 1926-04-22 1928-05-29 Aluminum Co Of America Method of calcining coke
FR628128A (fr) * 1927-01-26 1927-10-19 Derives Du Soufre Soc Ind Des Procédé d'hydrosulfitation des jus dans la fabrication du sucre
US2127542A (en) * 1935-08-14 1938-08-23 Ralph B Stitzer Electrical carbonization of coal
US4140583A (en) * 1976-11-05 1979-02-20 Pioneer Corporation Processing of lignite for petrochemicals
CH646992A5 (de) * 1980-02-26 1984-12-28 Maurer A Ing Sa Verfahren zur kontinuierlichen thermischen behandlung von verkohlbarem ausgangsmaterial.
US4357210A (en) * 1981-02-08 1982-11-02 Societe Des Electrodes Et Refractaires Savoie/Sers Electric furnace for the calcination of carbonaceous materials
US4412841A (en) * 1981-06-29 1983-11-01 Inland Steel Company Compacted carbonaceous shapes and process for making the same
DE3214472A1 (de) * 1982-04-20 1983-10-27 Hubert Eirich Vorrichtung zum erhitzen von elektrisch leitfaehigen schuettguetern
FR2529220A1 (fr) * 1982-06-23 1983-12-30 Namy Gerald Procede de fabrication de coke moule dans un four a cuve chauffe electriquement et four a cuve correspondant
DE3223573A1 (de) * 1982-06-24 1983-12-29 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren zum brennen von vorgeformten, hochverdichteten kohleanoden

Also Published As

Publication number Publication date
US4867848A (en) 1989-09-19
IN167885B (de) 1991-01-05
ZA867313B (en) 1987-05-27
BR8606892A (pt) 1987-11-03
FR2587713A1 (fr) 1987-03-27
FR2587713B1 (fr) 1987-12-18
CA1297445C (en) 1992-03-17
DE3667297D1 (de) 1990-01-11
ES2001712A6 (es) 1988-06-01
WO1987002049A1 (fr) 1987-04-09
AU6405086A (en) 1987-04-24
CN1014152B (zh) 1991-10-02
SU1825369A3 (en) 1993-06-30
CN86106940A (zh) 1987-07-01
JPS63501019A (ja) 1988-04-14
EP0240527A1 (de) 1987-10-14
AU590013B2 (en) 1989-10-26
KR880700048A (ko) 1988-02-15

Similar Documents

Publication Publication Date Title
EP0240527B1 (de) Verfahren zur herstellung von formkoks durch elektrische erhitzung in einem schachtofen und ofen zur herstellung von solchem koks
EP0528025A1 (de) Kontinuierlicher schmelzofen für oxidgemenge, direkte hoch-frequenz-induktion verwendend, mit sehr kurzen raffinierzeiten und niedrigem energieverbrauch.
FR2561365A1 (fr) Four moufle pour traitements thermiques en continu, par defilement
JPS5954614A (ja) 炭質ブロックの製造方法
US3167420A (en) Production of metals or alloys from ores
US3918956A (en) Reduction method
EP0311538B1 (de) Verfahren und Vorrichtung zur kontinuierlichen und gleichzeitigen Graphitierung von langen Kunstkohlekörpern und von körnigem Kohlenstoffmaterial in Gegenstrombewegung
NO140167B (no) Fremgangsmaate for utfoerelse av varmekrevende kjemiske og/eller fysikalske prosesser
EP0098771B1 (de) Verfahren zur Herstellung von Formkoks in einem Schachtofen und Schachtofen zur Durchführung des Verfahrens
KR102584902B1 (ko) 내용융로와 외용융로의 이중구조를 가지는 용융죽염 제조장치
US2195453A (en) Electric furnace
WO1980002740A1 (fr) Nouveau four electrique a haut rendement pour la calcination de matieres carbonees
CA2343212A1 (en) Method for producing directly reduced metal in a multi-tiered furnace
US1678607A (en) Metallurgy of zinc
BE344079A (de)
FR2508062A1 (fr) Procede pour la fabrication de pieces coulees en utilisant, comme matiere premiere, du fer reduit, four de fusion, et briquettes utilisees comme matiere premiere pour les coulees
FR2519018A1 (fr) Dispositif d'allumage pour un four a cuve de production en discontinu de gaz combustible a partir d'une matiere organique
CA1148494A (fr) Four electrique a haut rendement pour la calcination de matieres carbonees
BE893596A (fr) Procede pour la fabrication de pieces coulees en utilisant du fer reduit, four de fusion, de briquettes
BE823415A (fr) Procede et appareil de denitrification du coke
JPH05320659A (ja) 木材を原料とする陶管乾留方法
FR2575183A1 (fr) Procede de production de poudre de fer pour frittage dans un four a cuve a haut rendement thermique
BE344081A (de)
CH297828A (fr) Four destiné au traitement d'une matière carbonée solide au moyen de chlore gazeux.
BE452952A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870925

17Q First examination report despatched

Effective date: 19881027

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE LORRAINE DE LAMINAGE CONTINU (SOLLAC)

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLLAC

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 48441

Country of ref document: AT

Date of ref document: 19891215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3667297

Country of ref document: DE

Date of ref document: 19900111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920929

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930816

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930818

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930819

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930826

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930921

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930929

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931112

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940926

Ref country code: GB

Effective date: 19940926

Ref country code: AT

Effective date: 19940926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 86905848.7

BERE Be: lapsed

Owner name: SOLLAC

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

EUG Se: european patent has lapsed

Ref document number: 86905848.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050926