EP0098771B1 - Procédé de fabrication de coke moulé dans un four à cuve et four à cuve correspondant - Google Patents

Procédé de fabrication de coke moulé dans un four à cuve et four à cuve correspondant Download PDF

Info

Publication number
EP0098771B1
EP0098771B1 EP83401306A EP83401306A EP0098771B1 EP 0098771 B1 EP0098771 B1 EP 0098771B1 EP 83401306 A EP83401306 A EP 83401306A EP 83401306 A EP83401306 A EP 83401306A EP 0098771 B1 EP0098771 B1 EP 0098771B1
Authority
EP
European Patent Office
Prior art keywords
oven
zone
electrodes
coke
burden
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83401306A
Other languages
German (de)
English (en)
Other versions
EP0098771A1 (fr
Inventor
Gérald Namy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT83401306T priority Critical patent/ATE19527T1/de
Publication of EP0098771A1 publication Critical patent/EP0098771A1/fr
Application granted granted Critical
Publication of EP0098771B1 publication Critical patent/EP0098771B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means

Definitions

  • the invention relates to a method for manufacturing coke molded in a shaft furnace and the corresponding shaft furnace.
  • a process is known for manufacturing coke molded in a tank furnace where coal balls are introduced into the tank furnace, at its upper part, to constitute a bed circulating from top to bottom through the furnace over its entire height.
  • coal balls are in contact with hot gases passing through the oven from bottom to top.
  • the upper part of the oven constitutes a balanced exchanger in which the bed of solids is dried and heated to a certain temperature and the circulating gases cooled before their exit to the upper part of the oven.
  • the middle part of the oven constitutes the coking zone in which heat is supplied to the bed of circulating solid materials, for example by means of burners.
  • This addition of heat can be carried out by combustion of part of the gases circulating in the shaft furnace, by means of oxidizing air introduced at the level of the central zone.
  • Coal balls liberate in particular at the time of their coking combustible gases coming from volatile materials of coal.
  • This process has the drawback of requiring the coke to overheat up to a temperature in the region of 1,400 ° C.
  • the coke temperature in conventional coke ovens does not exceed 1,200 ° C.
  • the FR.A. patent has also been proposed. 628 168, to use electrically heated ovens, with gas circulation against the current of solid materials, for cooking coke in order to manufacture electrodes.
  • the invention proposes, on the other hand, a process for manufacturing mold coke in which the heating of the charge is carried out by observing a heating law determined according to the nature of the coal so as to avoid the formation of clusters and to preserve the shape of the balls until the end of the treatment, in particular by avoiding their bursting and their overheating.
  • a known kiln is used, at the top of which coking charcoal balls are introduced which constitute a moving bed descending into the furnace against the gas flow passing through the furnace from bottom to top. , part of which consists of gases recovered at the top of the oven and recycled at its bottom and another part of which consists of the gases released by the coal during its heating and coking, a supply of heat being effected by passing electric currents through the bed of solids.
  • electrical heating is carried out in a controlled manner, in the central zone of the furnace over a determined height, by passing electrical currents, the intensities of which can be individually adjusted, in several horizontal planes of the load, by adjusting the heat exchanges between the solid charge and by adjusting the gas circulation and the electric power distributed over the different electrode levels according to the heat requirements and the electrical resistance of the charge, progressive heating is controlled and homogeneous thereof during its descent into the oven according to a heating law chosen according to the nature of the coal to maintain the shape of the balls, so that the temperature of the bed of solid material is between 600 ° C.
  • an adjustable flow rate of the rising current of hot gases is derived, so as to control a gradual rise in temperature of the materials at a speed chosen according to the nature of the coal for avoid melting or sticking of the balls.
  • the electrical resistance of the charge is increased after leaving the central coking zone by decompressing the charge in the cooling zone, capable of increasing the contact resistances between the balls.
  • the charcoal balls introduced into the upper part of the oven are mixed with particles of small coke or any other electrically conductive product, unalterable at temperatures reached in the oven and being in the form of grains of dimensions smaller than those of the coal balls, said grains being distributed homogeneously in the interstices between the balls.
  • the cell furnace for implementing the method according to the invention comprises at least two pairs of superposed electrodes, placed in horizontal planes spaced apart from one another and whose electrical supply voltages are individually adjustable by pair.
  • the electrodes placed in at least one of the horizontal planes are mounted movable horizontally and each connected to alternate advancing and reversing means, each electrode exerting constant pressure on the charge by progressive advancement towards the interior of the oven to a determined position from which a rapid reverse is controlled accompanied by a descent of the load and followed by a new advancement.
  • This mouthpiece is of a type similar to that of blast furnace mouths and allows, by means of a device 4, the recovery of gases at the upper part of the shaft furnace.
  • the gueulard is completely waterproof and avoids the entry of atmospheric air.
  • hoppers and rotary evacuators 5 allow a regular outlet of the coke reaching the bottom of the furnace.
  • a moving bed 6 of solid materials moves continuously in the oven.
  • the upper surface 60 of this bed of solids is maintained at a substantially constant level by introduction of coal balls thanks to the jaw 3 at a flow rate identical to the coke outlet flow rate.
  • a first set of electrodes 7 is introduced into the furnace through its upper part. These electrodes can be adjusted in height, so that the level of the plane AA in which electric currents of horizontal direction circulate between the electrodes can be adjusted by vertical displacement of all of the upper electrodes.
  • these electrodes comprise a conductive part 10 constituted by a graphite plate crimped in a piece of refractory steel 11.
  • the pieces 11 of refractory steel are connected to support tubes 12 also in refractory steel constituting conductors serving to bring the current to the end of the electrodes 7. Cooling air possibly circulates inside these tubes and comes to cool, at their lower part, the part 11 for fixing the conductive part 10.
  • Blocks of refractory material 14 make it possible to isolate the suspension and supply tubes from the current 12 from the bed of solid materials and from the high temperature gases circulating in the furnace.
  • the electrodes 7 plunge into the bed of solid materials to a depth of approximately 1.5 meters below the surface of the level 60. This depth of introduction of the electrodes can be adjustable.
  • These electrodes consist of blocks of graphite housed in the refractory located between the two walls 1 and 2 of the furnace and slightly projecting in the interior space of the furnace.
  • these electrodes are movable horizontally so as to exert a constant thrust on the load.
  • each electrode 8 can be mounted on a carriage 81 movable horizontally for example by means of a jack 82 at constant pressure.
  • the forward movement towards the inside of the furnace is limited in its course so that the electrodes 8 extend a few centimeters beyond the internal face of the wall 2 of the furnace.
  • the jack 82 then commands a rapid retreat of the electrode which is accompanied by a descent of the mstaires located above and the advance movement can resume.
  • An easy-to-design system compensates for the wear of electrode 8.
  • a gas recovery and treatment circuit 15 is connected on the one hand to the gas recuperator 4 at the upper part of the oven and on the other hand to the lower part of the oven by an injection pipe. 18.
  • the circuit can advantageously include equipment 19 limiting the vapor content water from the recycled gas and constituted for example by an exchanger lowering the dew point of the gas by cooling.
  • a valve 20 makes it possible to regulate the injection of gas at the base of the furnace and to direct a part of this gas towards a storage tank or a circuit of use.
  • the oven comprises several nivesux of electrodes 8 placed in horizontal planes staggered along the middle zone C and the power supply of which, not shown in the figure, can be adjusted individually in each plane, depending on the electrical power desirable for the realization of the heating law.
  • the required area of electrodes is determined by the intensity of the electric current to be circulated in the mass so as to avoid overheating.
  • the total surface area of the electrodes is therefore significant. But it is necessary that a ball does not stay too long under a strong intensity. There will therefore be a number of electrodes constituting horizontal planes and of small thickness.
  • the current voltage can be adjusted by group of electrodes according to the heating law.
  • the furnace 1 has a rectangular section allowing the modular production of an installation made up of adjoining cells.
  • the furnace is provided with means making it possible to divert part of the ascending current of hot gases and which can for example consist of a double side wall 21 providing a space for the circulation of gases which is effected by the difference in pressure drop between the two internal and peripheral circuits respectively thus formed.
  • a shutter system makes it possible to adjust the pressure drop and therefore the gas flow in the main circuit.
  • the oven has a greater width and is further crossed by horizontal bars 22 lined with refractory and possibly internally cooled and which extend from one wall to the other.
  • the extraction of the products at the base 5 of the furnace therefore ensures a decompression of the charge at the outlet of the coking zone C. 11 this results in an increase in the resistances of contact which reduces the flow of electric current from the start of the cooling zone. This limits downward the electric heating zone C.
  • FIG. 5 gives an example of a heating law and of the respective temperatures of the materials (indicated on the abscissa) according to the height of the oven (indicated on the ordinate).
  • the solid line curve gives the temperature of the solids and the dotted line the gas temperature.
  • a charcoal charge consisting of briquettes or balls of usual dimensions (for example: 40 x 25 x 20 mm) mixed with small coke with a particle size ranging from 5 to 15 mm .
  • This small coke is previously distributed homogeneously in the balls, in a suitable proportion, for example: 10% by weight or 19% by volume.
  • the small coke could be replaced by any equivalent product, of the same size, that is to say conductive of electricity and unalterable at the temperatures practiced in the gaseous medium considered).
  • This small coke is partially lodged between the coal balls, occupying the interstices of the charge.
  • the charcoal balls consist of a mixture of lean or flaming dry coal associated with fatty or flaming coals mixed with a binder consisting of pitch (possibly mixed with tar).
  • the homogenized mixture descends into the oven against the flow of gases and reaches the lower part of the upper exchanger of the oven at a temperature close to 850 ° C.
  • the coal balls are therefore dried and then heated so that their temperature is close to 800 ° C. at the outlet of the upper exchanger from the shaft furnace.
  • the gas flow rate and the heating of the furnace are regulated according to the flow rate of solid materials to obtain the adequate heat exchanges.
  • the temperature of the balls at the outlet of the upper exchanger P must, in practice, be higher than 700 ° C. so that the flow of the current occurs in a suitable manner and not exceed 850 ° C. for that the thermal efficiency of the operation is good.
  • the particles of small coke inserted between the coal balls favor the passage of the current in the bed of solid matter circulating in the furnace by multiplying the points of contact.
  • Raw balls as introduced into the shaft furnace are not very conductive of electricity. However, from a certain degree of devolatilization, the internal resistivity of these balls quickly decreases. For example at 800 ° C the measurements have shown that these balls have an internal resistivity which does not exceed 1500 ⁇ / 0m. Thus, by controlling the temperature rise of the balls in the preheating zone P, one limits upwards the zone C of electric heating.
  • the method according to the invention makes it possible to reduce the risk of overheating since it is easier to regulate the temperature of the electric heating by distributing it in several successive horizontal sections of the oven.
  • the small coke mixed with the balls of raw coal before being introduced into the oven is recovered at the base of the oven by screening the coke balls produced.
  • This small coke has not undergone any transformation throughout its passage through the furnace. Its role is limited to reducing the contact resistances between the carbon balls and obtaining a more homogeneous heating of the load.
  • the bed of solids On entering the central electric heating zone of the furnace lying essentially between the two planes A and B of the electrodes, the bed of solids has a very uniform temperature, on the one hand because of the movement of the charge of solids crossing the electrode area and subjected to Joule heating of the currents which cross it, resulting from the multiple contacts established by the grains of small coke distributed in the balls and which constantly change position, and on the other hand because of the circulation gases in this area.
  • electrodes arranged as shown in FIG. 4 are used. ie about 3.5 m apart.
  • Electrodes are supplied with a voltage which is preferably continuous and regulated for a power kept constant and give off a total power of 1,500 kw for example. This power is distributed between the various levels of electrodes so as to obtain the desired heating law.
  • This thermal power of electrical origin makes it possible to increase the temperature of the solid materials from 800 to 1,050 ° C. approximately in zone C of electric heating.
  • the gases injected at the base of the furnace through line 18 make it possible to cool the coke produced from the outlet temperature from the middle zone, that is to say a temperature close to 1000 ° C. to a temperature close to 150 ° vs.
  • the gas produced in the oven is recovered at the top, dusted and tared before being introduced into the oven through line 18.
  • an excess quantity of combustible gas is produced depending on the nature of the charcoals used, for example 500 m 3 per tonne of coke produced.
  • the calorific value of this gas is around 18810J / m 3 (4500 calories per m 3 ),
  • Electric power consumption is around 150 kWh per tonne of coke produced.
  • Coking therefore occurs at a relatively moderate temperature and generally a little lower than the coking temperature in conventional coke ovens.
  • the setting of the electric heating according to the flows of solids and gases may vary somewhat but to obtain a good thermal efficiency and optimal coking conditions, the maximum temperature of the bed of solids in the electric heating zone should not exceed a value between 950 and 1150 ° C.
  • the balance concerning the energy consumption in the process according to the invention is entirely favorable if it is compared to what it is for conventional coke ovens.
  • the main advantages of the process according to the invention are to allow a reduction in the energy consumption for the production of coke and the recovery of a gas with high calorific value which can be produced continuously.
  • the thermal adjustment of the process can be carried out in a simple manner, so that the exchanges between the gases and the solid materials are balanced and that the calorific contribution by electrical energy is used practically only to compensate for the heat losses of the furnace and the heat of endothermic reactions that can occur in the oven.
  • the flexibility of this type of oven makes it possible to modulate the consumption of electric current with load shedding during peak hours.
  • the thermal adjustment conditions may vary within the intervals mentioned.
  • the shape of the straight section of the oven is not necessarily square or rectangular but can also be circular.
  • the shape of the electrodes, their arrangement and their spacing can be variable depending on the shape of the oven and the desired heating conditions.
  • the gases recovered at the top of the furnace undergo treatments which depend on their end use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Iron (AREA)

Description

  • L'invention concerne un procédé de fabrication de coke moulé dans un four à cuve et le four à cuve correspondant.
  • On connaît un procédé de fabrication de coke moulé dans un four à cuve où des boulets de charbon sont introduits dans le four à cuve, à sa partie supérieure, pour constituer un lit circulant de haut en bas à travers le four sur toute sa hauteur.
  • Pendant leur circulation à l'intérieur du four, ces boulets de charbon sont en contact avec des gaz chauds traversant le four de bas en haut.
  • La partie supérieure du four constitue un échangeur équilibré dans lequel le lit de matières solides est séché et chauffé jusqu'à une certaine température et les gaz en circulation refroidis avant leur sortie à la partie supérieure du four.
  • La partie médiane du four constitue la zone de cokéfaction dans laquelle on apporte de la chaleur au lit de matières solides en circulation, par exemple grâce à des brûleurs.
  • Cet apport de chaleur peut être effectué par combustion d'une partie des gaz en circulation dans le four à cuve, grâce à de l'air comburant introduit au niveau de la zone médiane.
  • Dans ce cas, on recycle après dégoudronnage et dépoussiérage une partie au moins des gaz s'échappant au gueulard du four à cuve,en réinjectant ces gaz à l'extrémité inférieure de sortie des produits solides, à la base du four à cuve.
  • La partie inférieure du four à cuve, en dessous de la zone médiane, constitue un second échangeur thermique équilibré où les matières solides cokéfiées dans la zone médiane sont refroidies par les gaz injectés à la partie inférieure du four à cuve. Les gaz sont donc à haute températurelorsqu'ils parviennent dans la zone médiane de chauffage et de cokéfaction.
  • Les boulets de charbon libèrent en particulier au moment de leur cokéfaction des gaz combustibles provenant des matières volatiles du charbon.
  • Ces gaz ont une grande valeur industrielle, puisqu'ils peuvent être récupérés, traités et réutilisés soit dans le four à cuve lui-même, soit pour d'autres usages.
  • Cependant, l'injection d'air comburant pour provoquer la combustion d'une partie des gaz en circulation dans le four à cuve est la bause de la présence dans les gaz récupérés au gueulard du four d'une proportion importante d'azote qui diminue le pouvoir calorifique du gaz. Il faut également traiter de plus grandes quantités de gaz, ce qui entraine un coût plus important de ce gaz récupéré. C'est ainsi que, pour chaque tonne de coke produite, on se trouve en présence d'un excédent de gaz dû aux matières volatiles du charbon et à l'air injecté, d'environ 680 m3 à 800 m3 suivant la nature des charbons traités.
  • D'autre part, la maîtrise du procédé, en ce qui concerne le réglage thermique, est relativement difficile à obtenir.
  • Il faut en effet régler la température dans la zone de cokéfaction de façon relativement précise et éviter que l'air introduit pour la combustion du gaz et l'apport thermique dans la zone médiane du four n'oxyde une partie du carbone des boulets, ce qui se ferait au détriment du rendement et de l'efficacité de l'opération de cokéfaction.
  • On a donc proposé pour la production simultanée de coke et de gaz combustible d'effectuer l'apport de chaleur dans le four à cuve grâce à des électrodes traversant les parois du four et venant en contact avec le lit de matières solides en circulation. Un courant électrique de forte intensité peut ainsi traverser le lit de matières solides et produire un dégagement de chaleur par effet Joule.
  • Un tel procédé est décrit par exemple dans le brevet français 997.058 où une zone de chauffage électrique est ménagée dans le four, en dessous de la zone de cokéfaction. Le coke produit est ainsi porté à très haute température par chauffage électrique et les gaz venant de la base du four qui traversent cette zone s'échauffent fortement au contact du coke à très haute température et sont capables de provoquer la cokéfaction du charbon dans la zone du four située au-dessus de la zone de chauffage électrique.
  • Ce procédé a l'inconvénient de nécessiter une surchauffe du coke jusqu'à une température voisine de 1.400°C.
  • A titre de comparaison, la température du coke dans les fours à coke classiques ne dépasse pas 1.200° C.
  • On a également proposé dans le brevet FR.A. 628 168, d'utiliser des fours à chauffage électrique, avec circulation de gaz à contre-courant des matières solides, pour la cuisson du coke en vue de fabriquer des électrodes.
  • De tels procédés demandent cependant des températures très supérieures aux températures nécessaires pour la cokéfaction.
  • On connait également des procédés de traitement du coke, par exemple pour sa désulfuration, qui utilisent à la fois un chauffage électrique et le passage de gaz dans la masse de coke portée à haute température.
  • Cependant, de tels procédés sont conduits de façon très différente d'un procédé de cokéfaction et ne visent qu'au traitement du coke lui-même, or, il n'y a pas intéret à porter le coke à des températures pouvant dépasser 1.400 °C car la qualite métallurgique du coke s'en ressent et sa réactivite entre autre diminue.
  • Dans le brevet US-A-2.127.542, les électrodes sont placées à la hauteur de la zone de cokéfaction mais, dans ce cas également, le passage du courant s'effectue dans du coke qui est chargé en même temps que le charbon à la partie supérieure du four à cuve en formant une couche annulaire qui entoure la charge de charbon et descend avec elle. c'est donc dans cette couche de coke que se produit par effet Joule un apport de chaleur se transmettant par conduction au charbon adjacent qui se transforme en coke et laisse à son tour passer le courant. Le processus de carbonisation s'étend donc radialement vers l'intérieur au cours de la descente de la charge et le degre de carbonisation des morceaux de charbon depend, à chaque niveau, de leur distance par rapport à la paroi du four.
  • L'invention propose, en revanche, un procédé de fabrication de coke moule dans lequel l'échauffement de la charge est réalisé en observant une loi de chauffe déterminée en fonction de la nature du charbon de façon à éviter la formation de grappes et à conserver la forme des boulets jusqu'à la fin du traitement, notamment en évitant leur éclatement et leur surchauffe.
  • A cet effet, on utilise, de façon connue, un four a cuve à la partie supérieure duquel on introduit des boulets de charbon à cokéfier qui constituent un lit mobile descendant dans le four à contre- courant de gaz traversant le four de bas en haut, dont une partie est constituée par des gaz récupérés à la partie supérieure du four et recyclés à sa partie inférieure et dont une autre partie est constituée par les gaz libérés par le charbon au cours de son chauffage et de sa cokéfaction, un apport de chaleur étant effectué par passage de courants électriques dans le lit de matières solides.
  • Conformément à l'invention, on réalise le chauffage électrique de façon contrôlée, dans la zone médiane du four sur une hauteur déterminée, en faisant passer dans plusieurs plans horizontaux échelonnés de la charge, des courants électriques dont on peut régler individuellement les intensités et, par réglage des échanges thermiques entre la charge solide et par réglage de la circulation des gaz et de la puissance électrique répartie sur les différents niveaux d'électrodes en fonction des besoins calorifiques et de la résistance électrique de la charge, on contrôle le chauffage progressif et homogène de celle-ci au cours de sa descente dans le four suivant une loi de chauffe choisie en fonction de la nature du charbon pour conserver la forme des boulets, de telle sorte que la température du lit de matière solide soit comprise entre 600°C et 850°C à l'entrée de la zone médiane (C) de chauffage électrique et que la réaction de cokéfaction soit réalisée complètement dans cette zone (C) à une température restant comprise . entre 950° C et 1150°C, les boulets de coke ainsi réalisés étant ensuite refroidis dans la partie inférieure du four.
  • Selon une autre caractéristique importante, dans la zone supérieure de préchauffage du four, on dérive un débit réglable du courant ascendant de gaz chauds, de manière à contrôler une élévation de température progressive des matières à une vitesse choisie en fonction de la nature du charbon pour éviter la fusion ou le collage des boulets.
  • De préférence, on augmente la résistance électrique de la charge après la sortie de la zone médiane de cokéfaction en réalisant une décompression de la charge dans la zone de refroidissement, susceptible d'augmenter les résistances de contact entre les boulets.
  • Pour favoriser le passage du courant électrique dans la zone médiane de cokéfaction, rendre homogène le chauffage électrique et faciliter le réglage électrique de la puissance consommée, les boulets de charbon introduits à la partie supérieure du four sont mélangés avec des particules de petit coke ou de tout autre produit conducteur de l'électricité, inaltérable aux températures atteintes dans le four et se trouvant sous forme de grains de dimensions inférieures à celles des boulets de charbon, lesdits grains étant répartis de façon homogène dans les interstices entre les boulets.
  • Le four à cuve pour la mise en oeuvre du procédé selon l'invention comprend au moins deux paires d'électrodes superposées, placées dsns des plans horizontaux écartés l'un de l'sutre et dont les tensions d'alimentation électrique sont réglables individuellement par paire.
  • Dans un mode de réalisation préférentiel, les électrodes placées dans au moins l'un des plans horizontaux sont montées mobiles horizontalement et reliées chacune à des moyens d'avancement et de recul alternés, chaque électrode exerçant une pression constante sur la charge par avancement progressif vers l'intérieur du four jusqu'à une position déterminée à partir de laquelle est commandé un recul rapide accompagné d'une descente de la charge et suivi d'un nouvel avancement.
  • Afin de bien faire comprendre l'invention, on va maintenant décrire, à titre d'exemple non limitatif, en se référant aux figures jointes en annexe, un exemple de mise en oeuvre du procédé suivant l'invention dans le cas d'un four à cuve muni d'un double jeu d'électrodes.
    • La figure 1 représente schématiquement un four à cuve suivant l'invention dans une vue en coupe par un plan vertical.
    • La figure 2 représente une section du four suivant Il Il de la figure 1.
    • La figure 3 représente la partie inférieure des électrodes du premier ensemble représenté à la figure 1, dans une vue à plus grande échelle.
    • La figure 4 représente un mode de réalisation plus perfectionné d'un four à cuve selon l'invention.
    • La figure 5 est un diagramme représentant la loi de chauffe de la charge.
  • Sur la figure 1, on voit le four à cuve 1 comportant une double paroi isolante 2 et dont la partie supérieure constitue un gueulard 3 d'enfournement des boulets de charbon à cokéfier.
  • Ce gueulard est d'un type voisin de celui des gueulards de haut fourneau et permet grâce à un dispositif 4 la récupération des gaz à Is partie supérieure du four à cuve. Le gueulard est totalement étanche et permet d'éviter les rentrées d'air atmosphérique.
  • A la partie inférieure du four à cuve des dispositifs à trémies et évacuateurs rotatifs 5 permettent une sortie régulière du coke parvenant en bas du four.
  • Un lit mobile 6 de matières solides se déplace en continu dans le four. La surface supérieure 60 de ce lit de matières solides se maintient à un niveau sensiblement constant par introduction de boulets de charbon grâce au gueulard 3 à un débit identique au débit de sortie du coke.
  • Dans l'exemple représenté sur la figure 1, un premier jeu d'électrodes 7 est introduit dans le four par sa partie supérieure. Ces électrodes peuvent être réglées en hauteur, si bien que le niveau du plan AA dans lequel circulent des courants électriques de direction horizontale entre les électrodes peut être réglé par déplacement vertical de l'ensemble des électrodes supérieures.
  • Ainsi qu'il est visible sur les figures 2 et 3, ces électrodes comportent une partie conductrice 10 constituée par une plaque de graphite sertie dans une pièce en acier réfractaire 11. Les pièces 11 en acier réfractaire sont reliées à des tubes supports 12 également en acier réfractaire constituant des conducteurs servant à l'amenée du courant à l'extrémité des électrodes 7. De l'air de refroidissement circule éventuellement à l'intérieur de ces tubes et vient refroidir, à leur partie inférieure, la pièce 11 de fixation de la partie conductrice 10.
  • Des blocs de matière réfractaire 14 permettent d'isoler les tubes de suspension et d'amenée du courant 12 du lit de mstières solides et des gaz à haute température circulant dans le four.
  • Les électrodes 7 plongent dans le lit de matières solides à une profondeur d'à peu près 1 mètre 50 sous la surface du niveau 60. Cette profondeur d'introduction des électrodes peut être réglable.
  • Sur la figure 2, on voit la section rectangulaire du four dans laquelle sont disposées six électrodes 7 permettant une circulation du courant entre les électrodes dans des directions horizontales. Le courant électrique passe d'une électrode à une autre suivant un trajet horizontal en traversant le lit de matières solides présentant au niveau de la zone de chauffage électrique une certaine conductibilité.
  • Un second jeu d'électrodes 8 disposés à un niveau B inférieur au niveau du plan A, traversent horizontalement la double paroi 1, 2 du four. Ces électrodes sont constituées par des blocs de graphite logés dans le réfractaire situé entre les deux parois 1 et 2 du four et légèrement saillants dans l'espace intérieur du four.
  • De préférence, ces électrodes sont mobiles horizontalement de façon à exercer une poussée constante sur la charge.
  • A cet effet, comme on l'a représenté schématiquement sur la figure 1, chaque électrode 8 peut être montée sur un chariot 81 déplaçable horizontalement par exemple au moyen d'un vérin 82 à pression constante. Le mouvement d'avancée vers l'intérieur du four est limité dans sa course de telle sorte que les électrodes 8 dépassent de quelques centimètres la face interne de la paroi 2 du four. Le vérin 82 commande alors un recul rapide de l'électrode qui s'accompagne d'une descente des mstières se trouvant au-dessus et le mouvement d'avancée peut reprendre. Un système facile à concevoir permet de compenser l'usure de l'électrode 8.
  • A l'extérieur du four un circuit 15 de récupération et de traitement du gaz est raccordé d'une part au récupérateur de gaz 4 à la partie supérieure du four et d'autre part à la partie inférieure du four par une conduite d'injection 18.
  • Sur ce circuit de gaz sont disposées une unité de lavage du gaz 16 où le gaz est dépoussiéré et dégoudronné ainsi qu'une pompe de circulation et d'injection 17. En outre, le circuit peut comprendre avantageusement un équipement 19 limitant la teneur en vapeur d'eau du gaz recyclé et constitué par exemple par un échangeur abaissant le point de rosée du gaz par refroidissement.
  • Une vanne 20 permet de régler l'injection de gaz à la base du four et de diriger une partie de ce gaz vers un réservoir de stockage ou un circuit d'utilisation.
  • Dans un mode de réalisation plus perfectionné représenté sur la figure 4 le four comprend plusieurs nivesux d'électrodes 8 placées dans des plans horizontaux échelonnés le long de la zone médiane C et dont l'alimentation électrique, non représentée sur la figure, peut être réglée individuellement dans chaque plan, en fonction de la puissance électrique souhaitable pour la réalisation de la loi de chauffe.
  • La surface nécessaire d'électrodes est déterminée par l'intensité du courant électrique à faire circuler dans la masse de manière à éviter une surchauffe.
  • La surface totale d'électrodes est donc importante. Mais il est nécessaire qu'un boulet ne reste pas trop longtemps sous une intensité forte. On aura donc un nombre d'électrodes constituant des plans horizontaux et de faible épaisseur. La tension du courant peut être réglée par groupe d'électrodes en fonction de la loi de chauffe.
  • Par ailleurs, le four 1 a une section rectangulaire permettant la réalisation modulaire d'une installation constituée de cellules accolées.
  • Dans la zone supérieure de préchauffage P le four est muni de moyens permettant de dériver une partie du courant ascendant de gaz chauds et qui peuvent par exemple être constitués par une double paroi latérale 21 ménageant un espace pour la circulation des gaz qui s'effectue par la différence de perte de charge entre les deux circuits respectivement interne et périphérique ainsi constitués.
  • Un système de volet permet de régler la perte de charge et par conséquent le débit du gaz dans le circuit principal.
  • Dans la partie inférieure R de refroidissement, le four a une largeur plus grande et est en outre traverse par des barres horizontales 22 garnies de réfractaire et éventuellement refroidis intérieurement et qui s'étendent d'une paroi à l'autre. L'extraction des produits à la base 5 du four assure donc une décompression de la charge à la sortie de la zone de cokéfaction C. 11 en résulte une augmentation des résistances de contact qui diminue le passage de courant électrique dès le début de la zone de refroidissement. On limite ainsi vers le bas la zone C de chauffage électrique.
  • Nous allons maintenant décrire le fonctionnement du four pour la production de coke moulé et de gaz à pouvoir calorifique élevé.
  • La figure 5 donne un exemple d'une loi de chauffe et des températures respectives des matières (indiquées en abscisse) suivant la hauteur du four (indiquée en ordonnées). La courbe en trait plein donne la température des matières solides et la courbe en pointillé, la température des gaz.
  • On introduit dans le four, par l'intermédiaire du gueulard 3 une charge de charbon constituée par des briquettes ou boulets de dimensions habituelles (par exemple: 40 x 25 x 20 mm) mélangés à du petit coke de granulométrie allant de 5 à 15 mm. Ce petit coke est préalablement réparti de façon homogène dans les boulets, dans une proportion convenable, par exemple: 10 % en poids ou 19 % en volume. (Le petit coke pourrait être remplacé par tout produit équivalent, de même dimension, c'est à dire conducteur de l'électricité et inaltérable aux températures pratiquées dans le milieu gazeux considéré).
  • Ce petit coke se loge partiellement entre les boulets de charbon en occupant les interstices de la charge.
  • Les boulets de charbon sont constitués par un mélange de charbon maigre ou flambant sec associé à des charbons gras ou flambant gras mélangé à un liant constitué par du brai (mélangé éventuellement à du goudron).
  • Le mélange homogénéisé descend dans le four à contre-courant de la circulation des gaz et parvient à la partie inférieure de l'échangeur supérieur du four à une température voisine de 850°C. Les boulets de charbon sont donc séchés puis chauffés de façon que leur température soit voisine de 800°C à la sortie de l'échangeur supérieur du four à cuve.
  • Le débit de gaz et le chauffage du four sont réglés en fonction du débit de matières solides pour obtenir les échanges de chaleur adéquats.
  • Comme on le voit sur la figure 5, en dérivant une partie réglable des gaz chauds entre les niveaux E et F de la zone supérieure de préchauffage, on peut contrôler la loi de chauffe de la charge notamment entre 400 et 700°C de façon à éviter la fusion des boulets.
  • Dans les conditions d'exploiration, la température des boulets à la sortie de l'échangeur supérieur P doit, en pratique, être supérieure à 700°C pour que le passage du courant se produise de façon convenable et ne pas dépasser 850°C pour que le rendement thermique de l'opération soit bon.
  • Lorsque le lit de matières solides comportant les boulets de charbon agglomérés et le coke parvient dans le plan A du premier ensemble d'électrodes, un courant traverse ce lit de matières et produit une élévation de température à l'intérieur des boulets par effet Joule.
  • Les particules de petit coke insérées entre les boulets de charbon favorisent le passage du courant dans le lit de matières solides circulant dans le four en multipliant les points de contact.
  • Les boulets crus tels qu'introduits dans le four à cuve sont peu conducteurs de l'électricité. Cependant, à partir d'un certain degré de dévolatilisation, la résistivité interne de ces boulets diminue rapidement. Par exemple à 800°C les mesures ont montré que ces boulets ont une résistivité interne qui ne dépasse pas 1500 σ/0m. Ainsi, en contrôlant l'élévation de température des boulets dans la zone de préchauffage P, on limite vers le haut la zone C de chauffage électrique.
  • Il faut éviter également des élévations de température locsle trop importantes qui provoqueraient un cracking exagéré des hydrocarbures gazeux circulant dans le four et un dépôt de carbone-black entre les électrodes, ce qui créerait des courts-circuits, ce carbone-blsck étant conducteur.
  • Mais le procédé selon l'invention permet de diminuer le risque de surchauffe car il est plus facile de régler la température du chauffage électrique en répartissant celui-ci dans plusieurs sections horizontales successives du four.
  • Le petit coke mélangé aux boulets de charbon cru avant son introduction dans le four est récupéré à la base du four par criblage des boulets de coke produits. Ce petit coke n'a subi aucune transformation dans toute sa traversée du four. Son rôle se limite à diminuer les résistances de contact entre les boulets de charbon et à obtenir un chauffage plus homogène de la charge.
  • A l'entrée dans la zone médiane de chauffage électrique du four comprise essentiellement entre les deux plans A et B des électrodes, le lit de matières solides a une température très homogène, d'une part à cause du mouvement de la charge de matières solides traversant la zone des électrodes et soumise au chauffage par effet Joule des courants qui la traversent, résultant des multiples contacts établis par les grains de petit coke répartis dans les boulets et qui changent constamment de position, et d'autre part à cause de la circulation des gaz dans cette zone.
  • Dans le cas d'un four à cuve ayant une section carrée dont le côté mesure 3 mètres 50, et dont la production de coke est d'environ 350 tonnes par jour, on utilise des électrodes disposées comme représenté sur la figure 4 c'est à dire distantes d'à peu près 3,5 m.
  • Ces électrodes sont alimentées sous une tension de préférence continue et régulée pour une puissance maintenue constante et dégagent une puissance totale de 1 500 kw par exemple. Cette puissance est répartie entre les divers niveaux d'électrodes de manière à obtenir la loi de chauffe désirée.
  • Cette puissance thermique d'origine électrique permet de faire passer la température des matières solides de 800 à 1 050°C environ dans la zone C de chauffage électrique.
  • La cokéfaction complète du charbon se produit dans cette zone, le coke à 1000°C pénétrant dans l'échangeur inférieur par la partie supérieure de celui-ci. Les gaz en circulation dans le four s'échauffent au contact du coke et du charbon en cours de cokéfaction dans la zone de chauffage électrique et leur débit s'accroît par volatilisation d'une partie des produits contenus dans les boulets de charbon.
  • Les gaz injectés à la base du four par la conduite 18 permettent de refroidir le coke produit depuis la température de sortie de la zone médiane, c'est à dire une température voisine de 1 000°C jusqu'à une température voisine de 150°C.
  • Pour le four mentionné ci-desssus, on injecte à la base du four environ 1000 m3 de gaz par tonne de matières solides circulant dans le four, ce qui assure des échanges équilibrés à la partie inférieure et à la partie supérieure du four.
  • Le gaz produit dans le four est récupéré à la partie supérieure, dépoussiéré et dégoudronné avant d'être introduit dans le four par la conduite 18.
  • On produit de plus une quantité excédentaire de gaz combustible dépendant de la nature des charbones utilisés par exemple 500 m3 par tonne de coke produite. Le pouvoir calorifique de ce gaz est d'environ 18810J/m3 (4500 calories par m3),
  • La consommation d'énergie électrique est voisine de 150 kWh par tonne de coke produite.
  • La cokéfaction se produit donc à une température relativement modérée et généralement un peu inférieure à la température de cokéfaction dans les fours à coke classiques.
  • Le réglage du chauffage électrique en fonction des débits de matières solides et des gaz pourra varier quelque peu mais pour obtenir un bon rendement thermique et des conditions de cokéfaction optimales, la température maximum du lit de matières solides dans la zone de chauffage électrique ne devra pas dépasser une valeur comprise entre 950 et 1150°C.
  • En répartissant la puissance électrique sur plusieurs niveaux, on obtient un chauffage progressif et adapté à toutes les natures de charbon, ce qui ne serait pas le cas si l'on utilisait un seul ensemble d'électrodes permettant un passage du courant dans un seul plan horizontal.
  • Le bilan concernant la consommation d'énergie dans le procédé suivant l'invention est tout à fait favorable si on le compare à ce qu'il en est pour les fours à coke classiques.
  • En effet, de tels fours à coke consomment approximativement 800 thermies par tonne de coke produite alors que la consommation d'énergie électrique dans le four à cuve suivant l'invention correspondrait approximativement à une consommation de 150 kWh par tonne de coke produite.
  • On voit donc que les principaux avantages du procédé suivant l'invention sont de permettre une diminution de la consommation d'énergie pour la production de coke et une récupération d'un gaz à haut pouvoir calorifique qui peut être produit en continu.
  • De plus, le réglage thermique du procédé peut être effectué de façon simple, de façon que les échanges entre les gaz et les matières solides soient équilibrées et que l'apport calorifique par énergie électrique soit utilisé pratiquement uniquement pour compenser les déperditions thermiques du four et la chaleur des réactions endothermiques pouvant se produire dans le four. La souplesse de ce type de four permet de moduler la consommation de courant électrique avec un délestage aux heures de pointe.
  • Enfin, l'étanchéité complète du four permet d'éviter toutes fuites de gaz, ce qui évite toute pollution de l'environnement.
  • Il est bien évident que l'invention ne se limite pas au procédé et au dispositif décrits de façon non limitative mais qu'ils en comportent toutes les variantes.
  • C'est ainsi que suivant les conditions d'exploitation et la qualité des charbons utilisés, les conditions de réglage thermique pourront varier à l'intérieur des intervalles mentionnés.
  • La forme de la section droite du four n'est pas obligatoirement carrée ou rectangulaire mais peut aussi être circulaire.
  • La forme des électrodes, leur disposition et leur écartement peuvent être variable en fonction de la forme du four et des conditions de chauffage recherchées.
  • Les gaz récupérés à la partie supérieure du four subissent des traitements qui sont fonctions de leur utilisation finale.

Claims (12)

1. Procédé de fabrication de coke moulé dans un four à cuve à axe vertical (1) alimenté à sa partie supérieure (3) par une charge de charbon à cokéfier sous forme de boulets, formant un lit mobile descendant dans la cuve (1), à contrecourant de gaz circulant de bas en haut, en passant successivement de haut en bas, par une zone de préchauffage, une zone de cokéfaction et une zone de refroidissement, le courant ascendant de gaz étant constitué par les gaz libérés par le charbon au cours de son chauffage et de sa cokéfaction et par une partie des gaz récupérés à la partie supérieure du four et recyclés à la partie inférieure après lavage et dépoussiérage, un apport de chaleur étant effectué par passage de courant électrique dans le lit de matières solides entre des électrodes (8) placées sur deux côtés opposés de la paroi (2) du four (1),
caractérisé par le fait que l'on réalise le chauffage électrique de façon contrôlée sur une hauteur déterminée dans la partie médiane (C) du four (1) en faisant passer dans plusieurs plans horizontaux écielonnés de la charge des courants électriques dont on peut régler les intensités et que, par réglage de la circulation des gaz et de la puissance électrique répartie sur les différents niveaux d'électrodes en fonction des besoins calorifiques et de la résistance électrique de la charge, on contrôle le chauffage progressif et homogène de celle-ci au cours de sa descente dans le four suivant une loi de chauffe choisie en fonction de la nature du charbon pour conserver la forme des boulets de telle sorte que la température du lit de matière solide soit comprise entre 600°C et 850°C à l'entrée de la zone médiane (C) de chauffage électrique et que la cokéfaction soit réalisée complètement dans cette zone (C) à une température restant comprise entre 950°C et 1150°C, les boulets de coke étant ensuite refroidis dans la partie inférieure du four (1).
2. Procédé de fabrication de coke moulé selon la revendication 1, caractérisé par le fait que, dans la zone de préchauffage (P), on dérive un débit réglable du courant ascendant de gaz chauds de manière à contrôler une élévation de température progressive des matières à une vitesse choisie en fonction de la nature du charbon pour éviter la fusion ou le collage des boulets.
3. Procédé de fabrication de coke moulé selon l'une des revendications 1 et 2, caractérisé par le fait que l'on augmente la résistance électrique de la charge après la sortie de la zone (C) de cokéfaction en réalisant une décompression de la charge dans la zone de refroidissement (R) susceptible d'augmenter les résistances de contact entre les boulets.
4. Procédé de fabrication de coke moulé selon la revendication 1, caractérisé par le fait que les boulets de charbon introduits à la partie supérieure (3) du four (1) sont mélangés avec des particules de petit coke ou de tout autre produit en forme de grains conducteurs de l'électricité, inaltérables aux températures atteintes dans le four et de dimensions inférieures à celles des boulets, lesdits grains étant répartis de façon homogène dans les interstices entre les boulets de charbon et favorisant le passage du courant électrique dans la zone médiane (2) de cokéfaction, rendant homogène le chauffage et facilitant le réglage électrique de la puissance consommée.
5. Procédé de fabrication de coke moulé selon la revendication 4, caractérisé par le fait que la dimension des particules de petit coke est comprise entre 5 et 15 mm.
6. Four à cuve pour la fabrication de coke par le procédé selon l'une des revendications 1 à 5, constitué par une cuve (1) à axe vertical comprenant, à sa partie supérieure, un gueulard (3) d'introduction d'une charge de charbon sous forme de boulets et des moyens de récupération des gaz et, à sa partie inférieure un organe d'évacuation des matières solides et des moyens d'injection de gaz et muni, dans sa partie médiane, d'électrodes (8) permettant le passage dans la charge d'un courant électrique, caractérisé par le le fait qu'il comprend au moins deux paires d'électrodes (8) placées l'une au-dessous de l'autre dans deux plans horizontaux (A, B) écartés l'un de l'autre et des moyens de réglage individuel de l'alimentation électrique de chaque paire d'électrodes.
7. Four à cuve selon la revendication 6, caractérisé par le fait qu'il est associé à des éléments favorisant le passage du courant électrique, constitués par des particules d'un produit conducteur et inaltérable tel que du petit coke, de dimensions inférieures à celles des boulets et réparties de façon homogène entre ces derniers.
8. Four à cuve selon la revendication 6, caractérisé par le fait qu'il comprend au moins une paire d'électrodes (8) montées mobiles horizontalement et reliées chacune à des moyens (81, 82) d'avancement et de recul alternés, chaque électrode (8) exerçant une poussée constante sur la charge par avancement progressif vers l'intérieur du four (1) jusqu'à une position déterminée à partir de laquelle est commandé un recul rapide accompagné d'une descente de la charge et ainsi de suite.
9. Four à cuve selon la revendication 6, caractérisé par le fait qu'il comprend un premier ensemble d'électrodes (10) placées au niveau supérieur (A) et suspendues à des conducteurs verticaux (12) dont la position suivant la hauteur du four est réglable, et au moins un second ensemble d'électrodes (8) s'étendant horizontalement à un noveau inférieur (B) à travers la paroi latérale du four (1).
10. Four à cuve suivant la revendication 9,
caractérisé par le fait que les conducteurs verticaux permettant la suspension et le déplacement des électrodes mobiles (10) sont constitués de tubes (12) entourés de matière réfractaire et reliées à leur partie supérieure à un dispositif d'insufflation d'air de refroidissement des électrodes.
11. Four à cuve selon l'une des revendications 6 à 10, caractérisé par le fait qu'il comprend un moyen de décompression de la charge, à la sortie de la zone de cokéfaction (C) constitué par un élargissement de la section du four dans la zone de refroidissement (R) au-dessous de la zone médiane (C) de cokéfaction.
12. Four à cuve selon la revendication 11, caractérisé par le fait qu'il est muni de barres horizontales traversant la charge dans la zone de refroidissement (R).
EP83401306A 1982-06-23 1983-06-23 Procédé de fabrication de coke moulé dans un four à cuve et four à cuve correspondant Expired EP0098771B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83401306T ATE19527T1 (de) 1982-06-23 1983-06-23 Verfahren zur herstellung von formkoks in einem schachtofen und schachtofen zur durchfuehrung des verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8211540 1982-06-23
FR8211540A FR2529220A1 (fr) 1982-06-23 1982-06-23 Procede de fabrication de coke moule dans un four a cuve chauffe electriquement et four a cuve correspondant

Publications (2)

Publication Number Publication Date
EP0098771A1 EP0098771A1 (fr) 1984-01-18
EP0098771B1 true EP0098771B1 (fr) 1986-04-30

Family

ID=9275574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83401306A Expired EP0098771B1 (fr) 1982-06-23 1983-06-23 Procédé de fabrication de coke moulé dans un four à cuve et four à cuve correspondant

Country Status (4)

Country Link
EP (1) EP0098771B1 (fr)
AT (1) ATE19527T1 (fr)
DE (1) DE3363268D1 (fr)
FR (1) FR2529220A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2587713B1 (fr) * 1985-09-26 1987-12-18 Usinor Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke
CN117143620B (zh) * 2023-10-19 2024-06-18 重庆富燃科技股份有限公司 可调式一体炉

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE409341C (de) * 1922-08-18 1925-02-03 Hermann Roechling Herstellung von Koks
FR628168A (fr) * 1926-04-22 1927-10-19 Aluminum Co Of America Perfectionnements à la cuisson du coke
FR658014A (fr) * 1927-07-26 1929-05-30 Perfectionnements dans les procédés de calcination des ovoïdes agglomérés combustibles
US2127542A (en) * 1935-08-14 1938-08-23 Ralph B Stitzer Electrical carbonization of coal
FR1022465A (fr) * 1949-07-25 1953-03-05 Procédé et four de chauffage des matériaux en vrac
FR1163853A (fr) * 1956-08-18 1958-10-02 Procédé de carbonisation du charbon

Also Published As

Publication number Publication date
ATE19527T1 (de) 1986-05-15
FR2529220B1 (fr) 1984-12-28
FR2529220A1 (fr) 1983-12-30
EP0098771A1 (fr) 1984-01-18
DE3363268D1 (en) 1986-06-05

Similar Documents

Publication Publication Date Title
EP0240527B1 (fr) Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke et procede de chauffage electrique a l'aide d'un lit granule conducteur d'un fluide
EP0098771B1 (fr) Procédé de fabrication de coke moulé dans un four à cuve et four à cuve correspondant
CA2609383A1 (fr) Procede et installation de traitement de materiaux solides organiques
EP0121530B1 (fr) Procede et four de graphitisation
FR2621311A1 (fr) Procede et dispositif de graphitisation continue simultanee de produits carbones longs et de grains carbones circulant a contre-courant
FR2762015A1 (fr) Procede et appareil pour le frittage d'une matiere manganifere finement divisee
EP2435771B1 (fr) Procede de traitement thermique de biomasse avec un solide caloporteur
EP0190787A1 (fr) Installation pour faire réagir des particules solides et un fluide
WO2009098418A2 (fr) Procede et systeme de production d'hydrogene integre a partir de matiere organique.
WO1996028573A1 (fr) Procede d'elaboration de l'acier dans un four electrique a arc, et four electrique a arc pour sa mise en ×uvre
FR2519017A1 (fr) Four a cuve de production en continu de gaz combustible a partir d'une matiere organique
WO1980002740A1 (fr) Nouveau four electrique a haut rendement pour la calcination de matieres carbonees
CA1148494A (fr) Four electrique a haut rendement pour la calcination de matieres carbonees
FR2519018A1 (fr) Dispositif d'allumage pour un four a cuve de production en discontinu de gaz combustible a partir d'une matiere organique
BE670305A (fr)
BE638675A (fr)
FR2476134A1 (fr) Installation de production de vent chaud et procede mis en oeuvre
EP2584262A1 (fr) Procédé de traitement pyrolytique de résidus organiques et inorganiques en four à étages pour la récuperation de sous-produits valorisables
FR2675499A1 (fr) Procede et dispositif de vapocraquage d'une charge hydrocarbonee comportant un generateur a gaz et un reacteur echangeur de chaleur.
CH297828A (fr) Four destiné au traitement d'une matière carbonée solide au moyen de chlore gazeux.
BE344078A (fr)
BE366561A (fr)
BE823415A (fr) Procede et appareil de denitrification du coke
BE368659A (fr)
BE479136A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860430

REF Corresponds to:

Ref document number: 19527

Country of ref document: AT

Date of ref document: 19860515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3363268

Country of ref document: DE

Date of ref document: 19860605

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900629

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900731

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910623

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910630

Ref country code: CH

Effective date: 19910630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910723

Year of fee payment: 9

Ref country code: GB

Payment date: 19910723

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910724

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910731

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910809

Year of fee payment: 9

EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920623

Ref country code: GB

Effective date: 19920623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: NAMY GERALD

Effective date: 19920630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930429

Year of fee payment: 11

EUG Se: european patent has lapsed

Ref document number: 83401306.2

Effective date: 19930109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST