EP0239818A2 - Lageunabhängige Mehrkomponenten-Tieftemperaturkühlvorrichtung für Betrieb bei Schwerelosigkeit - Google Patents
Lageunabhängige Mehrkomponenten-Tieftemperaturkühlvorrichtung für Betrieb bei Schwerelosigkeit Download PDFInfo
- Publication number
- EP0239818A2 EP0239818A2 EP87103038A EP87103038A EP0239818A2 EP 0239818 A2 EP0239818 A2 EP 0239818A2 EP 87103038 A EP87103038 A EP 87103038A EP 87103038 A EP87103038 A EP 87103038A EP 0239818 A2 EP0239818 A2 EP 0239818A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- set forth
- capillary tube
- constriction
- suction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005484 gravity Effects 0.000 title description 10
- 239000003507 refrigerant Substances 0.000 claims abstract description 41
- 238000005057 refrigeration Methods 0.000 claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 11
- 239000007791 liquid phase Substances 0.000 claims description 3
- 239000007792 gaseous phase Substances 0.000 claims 1
- 210000001736 capillary Anatomy 0.000 description 16
- 239000012071 phase Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 7
- 238000009835 boiling Methods 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 5
- 239000012808 vapor phase Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000010725 compressor oil Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000010689 synthetic lubricating oil Substances 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
Definitions
- This invention relates to multi-component self-refrigerating-cascade refrigerators and, more specifically, to such refrigerators capable of operation in any or all orientations of the heat exchanger/phase separator section thereof.
- Prior art refrigeration systems have utilized multiple component refrigerants.
- the heavier liquid refrigerant phases were separated from the lighter vapor refrigerant phases by use of gravitational forces.
- Systems of this type operate properly only under a single orientation of the phase separator. This provides a serious disadvantage for those refrigeration systems wherein the final position of the heat exchanger/phase separator section is not known prior to the time of installation.
- Such prior art systems are incapable of operation in a zero gravity environment and liquid and vapor phase refrigerants can therefore not be properly separated under such conditions to achieve their designed operation goals.
- Prior art refrigeration systems and procedures also require a significant volume of liquid refrigerant at the entrance to the throttling devices.
- gravity is not employed for separation of the liquid and vapor refrigerant phases after the step of partial condensation.
- the fluid phases are continuously and simply separated by velocity, although not all of the operating principles are fully understood.
- the invention does not require a liquid-vapor fluid phase separator utilizing gravity and there is no refrigerant vapor expansion tank.
- the free volume in the hermetically sealed system is sufficient to store the vaporized lower boiling refrigerants when the system is turned off and warmed to non-operating storage or shipping temperatures.
- This invention provides apparatus which is much simpler than the apparatus or methods required to produce the same low temperatures in the prior art, especially in fractional horsepower sizes.
- the refrigeration system in accordance with the present invention is designed to be used with a mixture of refrigerants. These refrigerants are separated as vapor and condensates at the trailing end of each heat exchanger through which they pass. These condensates are then throttled and evaporated in the suction return circuit of the following heat exchanger in the system.
- the throttling devices are capillary tubes which are well suited for the zero gravity and compact size concepts. It is the combination of the evaporating higher boiling refrigerants and high pressure that yields condensates of the lower boiling components of the refrigerant mixture. Each separation point aids in the removal of compressor oil from the colder portion of the heat exchanger circuit, keeping the oil within acceptable levels so as not to freeze and clog the system.
- the oil which has been removed from the discharge refrigerant stream is returned to the compressor via the capillary tube throttling devices, along with the evaporating condensates, in the return suction line. It can be seen that by carefully picking refrigerants and using multiple heat exchangers, a refrigeration system capable of extremely cold temperatures can be achieved.
- the unique feature of the subject system is that it utilizes only one stage of compression and that the entire heat exchanger package can be of any orientation relative to gravity. It is due to the novel way in which the condensates are separated from the two phase flow that enables this invention to not only function, but also be reliable. Many other designs require the use of hydrocarbons and/or multiple compressors to achieve similar results. The invention as such does not require hydrocarbon refrigerants and works extremely well with safe halocarbon mixtures which have relatively low oil miscibility.
- the important feature of the invention is the manner in which the phase separation occurs. Following each heat exchanger is an area wherein the discharge circuit incurs a drastic reduction in volume. At the tail end of this restricted volume (area) point, just prior to the discharge circuit increasing back to its original volume, resides a capillary tube centered in the path of the oncoming two phase refrigerant flow with the pinch-down or reduced cross-section area point just therebehind. When the liquid portion of the two phase mixture contacts this reduced area region, it bounces thereoff in a backward direction for a short distance before travelling on in a forward direction. The churning action developed creates a build-up of liquid at the entrance of the capillary tube, thereby maintaining a fairly constant liquid seal.
- the invention herein offers a refrigerator which is capable of producing low temperatures in the range of -80° C. and lower, operating in any plane or orientation, using only one compressor and non-explosive refrigerants with high reliability.
- the system includes a compressor 1 which drives multi-component, multi-boiling point refrigerent through the central tube of heat exchangers 3, 5 and 7 to an evaporator 9 from when a portion of the total refrigerant enters the suction portion of heat exchanger 7 and travels to heat exchanger 5 and then heat exchanger 3 and back to compressor 1 to complete the cycle.
- the tube portions 11 and 19 between heat exchanger 3-5 and 5-7 respectively have a restricted portion in the form of a venturi 21 ( Figure 2) with a capillary tube 23 therein.
- the entrance to the capillary tube 23 is slightly upstream of the most restricted portion of the constriction or Venturi throat 21. Refrigerant entering the capillary tube 23 at portion 11 passes to the suction portion of heat exchanger 5 and refrigerant entering the capillary tube 23 at portion 19 passes to the suction portion of heat exchanger 7.
- multi-component, multi-boiling point refrigerant passes from compressor 1 through air- or water-cooled condenser 2 to heat exchanger 3 herein liquid refrigerant impinges against constriction 21 at tube portion 11.
- the liquid refrigerant will enter the capillary tube 23 at that point and travel to the suction portion of heat exchanger 5.
- Gaseous refrigerant will continue along tube 15 wherein some or all of said refrigerant will be cooled and condensed to liquid phase and strike the constriction 21 at tube portion 19.
- the liquid refrigerant will enter the capillary tube 23 at that point and travel to the suction portion of heat exchanger 7.
- Gaseous refrigerant will continue along the central tube 17 located within heat exchanger 7 wherein said refrigerant will be cooled and condensed, enter capillary tube 25 where liquid refrigerant is throttled to suction pressure and pass to the evaporator 9 where it boils to produce useful cooling and from where it will be recirculated to the compressor via the suction portions of heat exchangers 7, 5 and 3.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US847232 | 1986-04-02 | ||
US06/847,232 US4689964A (en) | 1986-04-02 | 1986-04-02 | Zero gravity (position-insensitive) low-temperature multi-component refrigerator |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0239818A2 true EP0239818A2 (de) | 1987-10-07 |
EP0239818A3 EP0239818A3 (en) | 1989-07-19 |
EP0239818B1 EP0239818B1 (de) | 1991-12-18 |
Family
ID=25300132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87103038A Expired EP0239818B1 (de) | 1986-04-02 | 1987-03-04 | Lageunabhängige Mehrkomponenten-Tieftemperaturkühlvorrichtung für Betrieb bei Schwerelosigkeit |
Country Status (4)
Country | Link |
---|---|
US (1) | US4689964A (de) |
EP (1) | EP0239818B1 (de) |
JP (1) | JPS62233647A (de) |
DE (1) | DE3775250D1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4037826A1 (de) * | 1990-11-28 | 1992-06-04 | Licentia Gmbh | Regenerative gaskaeltemaschine |
DE10194530B4 (de) * | 2000-10-05 | 2007-10-04 | Operon Co., Ltd., Kimpo | Kryogenisches Kühlsystem |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4809521A (en) * | 1987-08-06 | 1989-03-07 | Sundstrand Corporation | Low pressure ratio high efficiency cooling system |
US5027606A (en) * | 1988-05-27 | 1991-07-02 | Cpi Engineering Services, Inc. | Rotary displacement compression heat transfer systems incorporating highly fluorinated refrigerant-synthetic oil lubricant compositions |
US4916914A (en) * | 1988-05-27 | 1990-04-17 | Cpi Engineering Services, Inc. | Rotary displacement compression heat transfer systems incorporating highly fluorinated refrigerant-synthetic oil lubricant compositions |
US5050392A (en) * | 1990-06-08 | 1991-09-24 | Mcdonnell Douglas Corporation | Refrigeration system |
US5606870A (en) * | 1995-02-10 | 1997-03-04 | Redstone Engineering | Low-temperature refrigeration system with precise temperature control |
WO2002001122A1 (en) * | 2000-06-28 | 2002-01-03 | Igc Polycold Systems, Inc. | High efficiency very-low temperature mixed refrigerant system with rapid cool down |
WO2002061349A1 (en) | 2000-11-10 | 2002-08-08 | Tfi Telemark | Discontinuous cryogenic mixed gas refrigeration system |
JP4387974B2 (ja) * | 2005-04-25 | 2009-12-24 | パナソニック株式会社 | 冷凍サイクル装置 |
CN101839579A (zh) * | 2010-05-31 | 2010-09-22 | 西安交通大学 | 带中间节流元件的自复叠热泵及其调节方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2041725A (en) * | 1934-07-14 | 1936-05-26 | Walter J Podbielniak | Art of refrigeration |
US2990698A (en) * | 1959-07-06 | 1961-07-04 | Revco Inc | Refrigeration apparatus |
DE1451005A1 (de) * | 1963-05-16 | 1969-01-23 | Siemens Elektrogeraete Gmbh | Abtauvorrichtung fuer Kompressions-Kaeltemaschinen |
US3768273A (en) * | 1972-10-19 | 1973-10-30 | Gulf & Western Industries | Self-balancing low temperature refrigeration system |
WO1986001881A1 (en) * | 1984-09-17 | 1986-03-27 | Sundstrand Corporation | High efficiency refrigeration or cooling system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1241468B (de) * | 1962-12-01 | 1967-06-01 | Andrija Fuderer Dr Ing | Kompressionsverfahren zur Kaelterzeugung |
-
1986
- 1986-04-02 US US06/847,232 patent/US4689964A/en not_active Expired - Fee Related
-
1987
- 1987-03-04 EP EP87103038A patent/EP0239818B1/de not_active Expired
- 1987-03-04 DE DE8787103038T patent/DE3775250D1/de not_active Expired - Fee Related
- 1987-03-18 JP JP62063661A patent/JPS62233647A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2041725A (en) * | 1934-07-14 | 1936-05-26 | Walter J Podbielniak | Art of refrigeration |
US2990698A (en) * | 1959-07-06 | 1961-07-04 | Revco Inc | Refrigeration apparatus |
DE1451005A1 (de) * | 1963-05-16 | 1969-01-23 | Siemens Elektrogeraete Gmbh | Abtauvorrichtung fuer Kompressions-Kaeltemaschinen |
US3768273A (en) * | 1972-10-19 | 1973-10-30 | Gulf & Western Industries | Self-balancing low temperature refrigeration system |
WO1986001881A1 (en) * | 1984-09-17 | 1986-03-27 | Sundstrand Corporation | High efficiency refrigeration or cooling system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4037826A1 (de) * | 1990-11-28 | 1992-06-04 | Licentia Gmbh | Regenerative gaskaeltemaschine |
DE10194530B4 (de) * | 2000-10-05 | 2007-10-04 | Operon Co., Ltd., Kimpo | Kryogenisches Kühlsystem |
Also Published As
Publication number | Publication date |
---|---|
JPS62233647A (ja) | 1987-10-14 |
EP0239818A3 (en) | 1989-07-19 |
US4689964A (en) | 1987-09-01 |
DE3775250D1 (de) | 1992-01-30 |
EP0239818B1 (de) | 1991-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3733845A (en) | Cascaded multicircuit,multirefrigerant refrigeration system | |
US5704215A (en) | Internal oil separator for a refrigeration system condenser | |
US3768273A (en) | Self-balancing low temperature refrigeration system | |
US4689964A (en) | Zero gravity (position-insensitive) low-temperature multi-component refrigerator | |
US5735139A (en) | Dual inlet oil separator for a chiller | |
US5724832A (en) | Self-cleaning cryogenic refrigeration system | |
CN1128963C (zh) | 低温制冷系统 | |
JPS58159458U (ja) | 低温冷凍のための装置 | |
KR20020033515A (ko) | 상 분리를 갖는 냉장 시스템 | |
RU97118784A (ru) | Охлаждение потока текучей среды | |
EP0529293B1 (de) | Kälteanlage | |
JPH0331981B2 (de) | ||
US3199310A (en) | Ejector type refrigeration system | |
JPH04320762A (ja) | 冷凍サイクル | |
JPH04187957A (ja) | 冷凍サイクル装置 | |
US7582223B2 (en) | Refrigerant composition for refrigeration systems | |
EP0524197B1 (de) | Kompressionskältekreislauf mit Vorrichtung zur Vergrösserung des Temperaturschifts bei Verwendung einer nichtazeotroper Kältemittelmischung | |
JPS5822064Y2 (ja) | タ−ボ冷凍機 | |
KR930016741A (ko) | 냉장고의 냉동장치 | |
JPH0719673A (ja) | 簡易型冷媒回収装置 | |
KR100306370B1 (ko) | 유분리기 | |
JPS6277551A (ja) | 冷凍装置 | |
JPS5833068A (ja) | 二段圧縮冷凍サイクル | |
JPH025312Y2 (de) | ||
KR0124664Y1 (ko) | 냉장고의 냉동장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RHK1 | Main classification (correction) |
Ipc: F25B 9/00 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19891121 |
|
17Q | First examination report despatched |
Effective date: 19900625 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3775250 Country of ref document: DE Date of ref document: 19920130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19920318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920916 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19921201 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19931130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050304 |