EP0237008B1 - Dispositif pour la coulée continue d'un matériau se solidifiant rapidement - Google Patents

Dispositif pour la coulée continue d'un matériau se solidifiant rapidement Download PDF

Info

Publication number
EP0237008B1
EP0237008B1 EP87103349A EP87103349A EP0237008B1 EP 0237008 B1 EP0237008 B1 EP 0237008B1 EP 87103349 A EP87103349 A EP 87103349A EP 87103349 A EP87103349 A EP 87103349A EP 0237008 B1 EP0237008 B1 EP 0237008B1
Authority
EP
European Patent Office
Prior art keywords
cooling
wall
nozzle
supporting elements
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87103349A
Other languages
German (de)
English (en)
Other versions
EP0237008A1 (fr
Inventor
Alfred Christ
Rolf Lehmann
Hans-Walter Schlaepfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Escher Wyss AG
Original Assignee
Sulzer Escher Wyss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Escher Wyss AG filed Critical Sulzer Escher Wyss AG
Publication of EP0237008A1 publication Critical patent/EP0237008A1/fr
Application granted granted Critical
Publication of EP0237008B1 publication Critical patent/EP0237008B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0677Accessories therefor for guiding, supporting or tensioning the casting belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel

Definitions

  • the invention relates to a device for the continuous casting of rapidly solidifying material, the liquid, hot material flowing through a slot-like nozzle onto a cooled wall of good heat-conducting material that is moving close to the nozzle, solidifying on this wall, and after a certain distance from it Wall is detached, the wall being designed to a certain degree elastically compliant.
  • the first known melt spinning devices were only suitable for discontinuous operation, in which the heat capacity of the wall is sufficient to absorb the amount of heat of a batch produced. So that the heat generated can be easily absorbed by the wall, it was made of a good heat-conducting material, preferably copper or an alloy, e.g. Beryllium / copper made.
  • US Pat. No. 3,712,366 describes a metal casting method in which the melt solidifies from the outer surface of a cylinder, which is cooled by water which is evenly thrown onto the entire inside by means of centrifugal force.
  • the cooling rate that can be achieved in this way is also insufficient for the formation of amorphous metal structures.
  • No thickness control is disclosed here either.
  • the invention sets itself the task of eliminating the above-mentioned disadvantages of the prior art and, in particular, to further develop a device for the continuous casting of rapidly solidifying material on a moving wall during continuous operation in such a way that the cooling is intensive and sufficiently large for casting amorphous metal foils and the film speed can be increased so that the cooling can be adjusted across the width of the material web and at the same time film thickness deviations can be compensated for from a target value.
  • this object is achieved in that the wall directly opposite the nozzle on the side facing away from the nozzle is cooled by means of at least one cooling support element which is movable in a support direction perpendicular to the wall and which is provided with at least one bearing surface supplied with a pressure medium which cools the wall a fixed crossbeam is supported.
  • the cooling support element arrangement directly on the opposite side of the wall at the same place where the melt is applied results in particularly intensive cooling and an extremely high cooling rate.
  • the cooling support elements are advantageously supported on the crossmember by means of a pressure chamber supplied with cooling pressure medium and have pressure pockets on their bearing surface which are connected to the pressure chamber via bores, as a result of which coolant is concentrated directly at the point where the melt is applied.
  • cooling support elements are individually movable in the support direction perpendicular to the wall.
  • These side-by-side cooling support elements can be supplied separately from one another with a pressure which can be controlled by a cooling pressure medium, or via a common pressure line and a controllable throttle valve associated with each element.
  • a pressure which can be controlled by a cooling pressure medium, or via a common pressure line and a controllable throttle valve associated with each element.
  • an elastically resilient wall not only is the cooling effect on the individual cooling support elements variable, but because of the slight deformation of the wall also the distance to the nozzle and thus also the outflowing mass and the local film thickness, or the thickness profile of the film.
  • a preferred embodiment is particularly advantageous in terms of construction, in which the elastically flexible wall is designed as a relatively thin-walled cylinder shell which is held on both sides by end disks and is rotatably mounted on the fixed crossmember.
  • seals are also provided which seal the inside of the cylinder shell from the bearing and the bearing from the outside world, as well as a suitable drive for the cylinder shell. Since the end disks cause a certain local stiffening of the cylinder shell, the usable working width, i.e. the film width is slightly less than the total roll width.
  • the arrangement of several cooling support elements transversely to the material web movement next to one another with separate control allows the cooling and the distance from the nozzle to be regulated by controlling the coolant pressure in the individual elements by means of suitable thickness sensors which continuously record the film thickness profile at the film outlet and via a suitable control device or a computer Deliver control signals for the coolant pressure.
  • suitable thickness sensors which continuously record the film thickness profile at the film outlet and via a suitable control device or a computer Deliver control signals for the coolant pressure.
  • temperature sensors can be provided transversely to the web, which control another row of cooling support elements, so that a desired temperature profile is created.
  • molten metal is fed to a container 1, in which it is heated by means of a high-frequency induction coil 2 approximately 100 ° above the melting temperature of the metal.
  • the hot, liquid metal flows, possibly under a certain pressure, through a slit-shaped nozzle 3 onto a cooled wall 4 which is rapidly moved transversely to the slit direction a certain cooling distance is removed from the wall 4.
  • the nozzle 3 is to be designed in a known manner, for example with a slot width of a few tenths of a millimeter and at a distance of a few tenths of a millimeter from the wall 4.
  • foils with a thickness in the range of about 20 - 50 micrometers can be produced in a width from the decimeter to the meter range.
  • the wall 4 as an endless, guided over two rollers 61 and 6 2 band is carried out.
  • This band 4 is made of a material and with such a wall thickness that it is deformed in the elastic region during circulation. In addition, it is selected so that it has the best possible thermal conductivity.
  • aluminum or alloys with a melting point in the range of 1100 ° C. for example, copper or a copper-beryllium alloy in particular has proven to be a suitable material for the strip 4.
  • a suitable, different material must be selected for the material of the band 4.
  • the quenching or cooling rate of the melt is decisive for the production of an amorphous structure in the metal phase or even an extremely fine crystalline structure.
  • An amorphous structure can usually only be achieved if this cooling rate is at least 10 6 ° C / sec.
  • a hydrostatic cooling support element 7 1 is provided directly opposite the nozzle on the side of the belt 4 facing away from the nozzle 3, and a further cooling support element 72 behind this to improve the cooling effect in the running direction of the belt 4.
  • cooling support elements 7 1 and 7 2 are supported on pressure chambers 8 1 and 8 2 , which are supplied via lines 91 and 9 2 with a coolant under pressure, for example water, optionally with suitable additives, in a cross-piece 10 projecting transversely through the band 4.
  • a coolant under pressure for example water
  • suitable additives for example water
  • the cooling support elements 7 1 and 7 2 are provided with hydrostatic bearing surfaces which are connected to the pressure chambers 8 1 and 8 2 by bores and pass cooling pressure medium to the underside of the band 4 via these. It is expedient to keep the escaping coolant away from the top of the belt by taking suitable precautions.
  • the device described is a con continuous melt spinning process with significantly increased cooling speed with a value above 106 ° C / sec has become possible.
  • a series of alloys of the elements iron, nickel, cobalt, aluminum, molybdenum, chromium, vanadium, boron, phosphorus, silicon and other foils up to approx. 20 - 50 micrometers thick with a completely amorphous structure and unusual properties could be produced, in a continuous process.
  • the film thickness can be controlled by the coolant pressure and the variable distance of the band 4 from the nozzle 3.
  • FIGS. 2 and 3 show a particularly advantageous, preferred embodiment of a melt spinning device in which the wall rapidly moving past the slot-like nozzle 13 of the container containing the molten metal is designed as a rapidly rotating cylinder tube 14.
  • the diameter of the cylinder tube 14 can be selected in the order of a few decimeters and its rotational speed in the order of up to approximately 50 revolutions per second, so that a movement speed of up to approximately 30 m / sec results.
  • a particularly good heat-conducting metal is again selected as the material of the cylinder shell 14, for example copper or a copper alloy, and its thickness is for example in the range of a few millimeters, so that a certain elastic deformability is given.
  • a fixed crossmember 20 Provided in the interior of the cylinder shell 14 is a fixed crossmember 20, on which a plurality of rows of cooling support elements 171-178 are supported on corresponding pressure chambers 18 in the direction of rotation.
  • the cooling support elements as shown in the example of the first element 17 1 , are provided with hydrostatic bearing pockets 16, which are connected to the pressure chamber 18 by means of throttle bores 12, which in turn are connected to a cooling pressure fluid via coolant lines 19 are supplied from the traverse 20.
  • the coolant reaches the inside of the cylinder shell 14 and ensures constant cooling and heat dissipation, so that an extraordinarily high quenching and cooling rate also occurs here in a continuous process of the metal layer 15 applied to the surface of the cylinder shell 14. Since the entire inner circumference of the cylinder shell 4 can be provided with cooling support elements, the cooling effect is even more intensive here, so that the desired amorphous structure of the metal foil formed can be achieved with even greater certainty.
  • controllable valves 211-218 are provided for the individual cooling support elements 17 1 - 178, with which the quantity of the coolant supplied to the individual cooling support elements or its pressure can be regulated.
  • the individual rows of cooling support elements 17 1 - 17 8 can be formed from a plurality of individually controllable support elements lying closely next to one another in the axial direction, as is the case for example with the aid of the upper support element row 1711, 1712, 1713 ... and the opposite one Row 1751, 1752, 1753 ... is shown.
  • the ends of the cylinder shell are provided with end disks 22 which seal the inside of the cylinder from the outside world and are rotatably supported on the ends of the cross member 20 by means of suitable roller bearings 23 and are provided with a drive (not shown).
  • the end disks 22 prevent coolant from escaping from the interior of the cylinder shell, so that the coolant cannot get to the outside and the metal foil formed, where it could give rise to undesirable reactions. Instead, the excess coolant is drained off safely through suitable holes in the crossmember. Otherwise, the solidification process can take place on the outside of the cylinder shell in an inert gas atmosphere.
  • thickness sensors 25 are provided distributed over the width of the film produced. These thickness sensors 25 are connected to a control device 26 which, for example with the aid of a suitably programmed microprocessor, controls the valves 211, 213, 215 and 21 7 with corresponding control signals.
  • the control device 26 or its program is set up so that when the film thickness measured by the thickness sensors 25 increases, the valves 21 1 and 215 of the corresponding cooling support elements 17 1 and 17 5 are opened somewhat at the corresponding point on the axis, so that a larger one Amount of pressure medium is supplied to the two cooling support elements 171 and 175.
  • the valves 213 and 217 of the cooling support elements 17 3 and 17 7 arranged perpendicular thereto are throttled somewhat, so that the pressure of the coolant in these support elements decreases somewhat.
  • the cylinder shell 14 is deformed a little bit elliptically, so that the gap between the cylinder shell 14 and the slit-like nozzle 13 is reduced somewhat at the point in question and less metal melt escapes at this point, so that the film thickness is automatically regulated to the predetermined desired value .
  • the fact that two opposing cooling support elements are influenced in the same way eliminates the integral bending stresses of the cylinder shell, so that no forces are released that would have to be directed through the side bearings.
  • the design effort can be reduced by always supplying two opposing cooling support elements via a common valve.
  • a temperature sensor system 27 detects the temperature profile across the film width, it feeds it to a second control device 28, which in turn can be equipped with a suitable microprocessor, which in turn directs control impulses to the throttle valves 212, 214, 216 and 21 of the corresponding cooling support elements, in the sense that e.g. more cooling liquid is supplied to the cooling support elements at the point of an elevated temperature and correspondingly less at points with a low temperature.
  • the structurally simplified circuit can be selected to control these cooling support elements in each longitudinal plane via a common valve.
  • further elements can be provided in the circumferential direction, in the gaps between said cooling support elements 171 - 178, which are controlled with a suitable coolant pressure.
  • a further temperature profile sensor system 29 can be provided, which also supplies corresponding signals to the second control device 28.
  • the program of the control device 28 is expediently selected such that a signal which is suitably weighted from the two measurement information items, depending on the product, serves as an actuating signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Claims (12)

1. Dispositif pour la coulée continue d'un matériau à solidification rapide sous la forme de films ayant une structure à grain extrêmement fin ou amorphe, dans lequel le matériau liquide à haute température s'écoule par une busette (3, 13) en forme de fente sur une paroi refroidie (4, 14) en matière bonne conductrice de la chaleur, mise en mouvement près de la busette, se solidifie sur cette paroi (4, 14) et est séparé de celle-ci après un trajet déterminé, la paroi (4, 14) étant conformée avec un certain degré de flexibilité élastique, caractérisé en ce que la paroi (4, 14) est refroidie directement à l'opposé de la busette (3, 13) sur sa face opposée à la busette (3, 13) au moyen d'au moins un élément de refroidissement et d'appui (71, 72; 171-178) mobile dans un sens d'appui perpendiculaire à la paroi (4, 14), lequel est muni d'au moins une portée (16) alimentée en un fluide sous pression refroidissant la paroi, et est, soutenu sur une traverse fixe (10, 20).
2. Dispositif selon la revendication 1, caractérisé en ce que, en dehors des éléments de refroidissement et d'appui (71, 171), disposés sur le côté de la paroi (4, 14) opposé à la busette (3, 13), est disposé auprès de ces éléments, dans le sens du mouvement de la paroi (4, 14), au moins un autre élément de refroidissement et d'appui (72, 172 - 178).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que plusieurs éléments de refroidissement et d'appui (1711, 1712 ... 1751, 1752 ...) sont chaque fois disposés transversalement au sens du mouvement de la paroi (4, 14), et alimentés en agent de refroidissement sous pression, indépendamment l'un de l'autre.
4. Dispositif selon une des revendications 1 à 3, caractérisé en ce que les éléments de refroidissement et d'appui (71, 72; 171 - 178) sont chaque fois appuyés sur une chambre de pression (81, 82; 18) alimentée en agent de refroidissement sous pression sur la traverse fixe (10, 20) et présentent chaque fois sur leur surface d'appui au moins une poche à pression (16) communiquant par une forure (12) avec la chambre à pression (18).
5. Dispositif selon la revendication 4, caractérisé en ce qu'une vanne réglable (211 - 218) est prévue chaque fois sur les conduites (19) de fluide sous pression pour les chambres à pression (18).
6. Dispositif selon une des revendications 1 à 5, caractérisé en ce que des capteurs d'épaisseur (25), pour mesurer la valeur locale de l'épaisseur du film (5, 15) produit, sont prévus sur la largeur de ce film, ainsi qu'un système de régulation (26) commandé à partir des capteurs d'épaisseur (25), et agencé de manière à régler la pression du fluide de refroidissement des éléments de refroidissement et d'appui (71, 171) qui sont disposés sur le côté de la paroi (4, 14) opposé à la fente (3, 13), et à provoquer ainsi une déformation élastique de la paroi (4, 14) flexible, et, de ce fait, une variation du débit de métal liquide s'écoulant hors de la busette (3, 13) .
7. Dispositif selon la revendication 6, caractérisé en ce que des capteurs de température (27) sont prévus pour mesurer le profil de température selon la largeur du film produit, ainsi qu'un autre système de régulation (28) réglant l'apport de fluide refroidisseur sous pression aux autres éléments de refroidissement et d'appui (172, 174, 176, 178).
8. Dispositif selon la revendication 7, caractérisé en ce qu'il est prévu un autre système (29) de capteurs de profil de température, mesurant le profil de température de la paroi (4, 14) en mouvement selon sa largeur en avant de la zone de la busette (3, 13) et fournissant des signaux à l'autre système de régulation (28), lequel forme, à partir des signaux des deux systèmes de capteurs de température, un signal pondéré pour l'apport de fluide refroidisseur sous pression.
9. Dispositif selon une des revendications 1 à 8, caractérisé en ce que la paroi (14) est réalisée sous la forme d'une coque cylindrique à paroi mince présentant intérieurement plusieurs rangées, réparties sur la périphérie, d'éléments de refroidissement et d'appui (171 - 178) prenant appui contre une traverse centrale (20).
10. Dispositif selon la revendication 9, caractérisé en ce que la coque cylindrique (14) est isolée de l'atmosphère externe, de manière étanche sur ses deux côtés, par des disques d'extrémité (22) montés rotatifs sur la traverse (20) au moyen de paliers (23).
11. Dispositif selon les revendications 8 et 9, caractérisé en ce que les capteurs d'épaisseur (25) commandent la pression du fluide sous pression de refroidissement dans des rangées opposées d'éléments de refroidissement et d'appui (171, 175; 173, 177) de la même manière, mais commandent par contre en sens opposé la pression dans des éléments de refroidissement et d'appui décalés à angle droit, de telle sorte que la coque cylindrique (14) subisse une déformation elliptique.
12. Dispositif selon les revendications 7 et 11, caractérisé en ce que les éléments de refroidissement et d'appui (172,174,176,178) commandés par les capteurs (27) de profil de température sont disposés dans la zone des bissectrices du croisement d'axes formé par les éléments de refroidissement et d'appui (171, 173, 175, 177) commandés par les capteurs d'épaisseur (25).
EP87103349A 1986-03-14 1987-03-09 Dispositif pour la coulée continue d'un matériau se solidifiant rapidement Expired EP0237008B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1052/86 1986-03-14
CH1052/86A CH671534A5 (fr) 1986-03-14 1986-03-14

Publications (2)

Publication Number Publication Date
EP0237008A1 EP0237008A1 (fr) 1987-09-16
EP0237008B1 true EP0237008B1 (fr) 1989-12-27

Family

ID=4201328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87103349A Expired EP0237008B1 (fr) 1986-03-14 1987-03-09 Dispositif pour la coulée continue d'un matériau se solidifiant rapidement

Country Status (6)

Country Link
US (1) US4721154A (fr)
EP (1) EP0237008B1 (fr)
JP (1) JPS62220251A (fr)
CH (1) CH671534A5 (fr)
DE (2) DE3617608A1 (fr)
ES (1) ES2012464B3 (fr)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113142B2 (ja) * 1987-02-10 1995-12-06 三菱電機株式会社 りん青銅薄板の製造方法
DE3706636A1 (de) * 1987-03-02 1988-09-15 Vacuumschmelze Gmbh Verfahren zur ueberwachung der dicke eines gussproduktes, das auf einer sich bewegenden kuehlflaeche erstarrt
US4917170A (en) * 1988-09-20 1990-04-17 Olin Corporation Non-preheated low thermal conductivity substrate for use in spray-deposited strip production
US4945973A (en) * 1988-11-14 1990-08-07 Olin Corporation Thermal conductivity of substrate material correlated with atomizing gas-produced steady state temperature
US4926927A (en) * 1988-09-20 1990-05-22 Olin Corporation Vertical substrate orientation for gas-atomizing spray-deposition apparatus
US4938278A (en) * 1988-09-20 1990-07-03 Olin Corporation Substrate for use in spray-deposited strip
US4966224A (en) * 1988-09-20 1990-10-30 Olin Corporation Substrate orientation in a gas-atomizing spray-depositing apparatus
US4907639A (en) * 1989-03-13 1990-03-13 Olin Corporation Asymmetrical gas-atomizing device and method for reducing deposite bottom surface porosity
US4925103A (en) * 1989-03-13 1990-05-15 Olin Corporation Magnetic field-generating nozzle for atomizing a molten metal stream into a particle spray
US4977950A (en) * 1989-03-13 1990-12-18 Olin Corporation Ejection nozzle for imposing high angular momentum on molten metal stream for producing particle spray
US4901784A (en) * 1989-03-29 1990-02-20 Olin Corporation Gas atomizer for spray casting
US5626183A (en) * 1989-07-14 1997-05-06 Fata Hunter, Inc. System for a crown control roll casting machine
DE69024271T2 (de) * 1989-07-14 1996-05-15 Hunter Eng Co Durchbiegungsregelung in einer Vorrichtung zum Giessen zwischen Giesswalzen
US5201360A (en) * 1990-08-17 1993-04-13 Sundwiger Eisenhutte Maschinenfabrik Casting wheel for a single-roll casting machine
DE4126079C2 (de) * 1991-08-07 1995-10-12 Wieland Werke Ag Bandgießverfahren für ausscheidungsbildende und/oder spannungsempfindliche und/oder seigerungsanfällige Kupferlegierungen
FR2696166B1 (fr) * 1992-09-28 1994-11-18 Escher Wyss Ag Cylindre de guidage d'une bande.
US5288344A (en) * 1993-04-07 1994-02-22 California Institute Of Technology Berylllium bearing amorphous metallic alloys formed by low cooling rates
US5368659A (en) * 1993-04-07 1994-11-29 California Institute Of Technology Method of forming berryllium bearing metallic glass
US5411075A (en) * 1993-08-31 1995-05-02 Aluminum Company Of America Roll for use in casting metal products and an associated method
FR2742683B1 (fr) * 1995-12-21 1998-03-06 Usinor Sacilor Dispositif tournant de coulee continue
US6789602B2 (en) 2002-02-11 2004-09-14 Commonwealth Industries, Inc. Process for producing aluminum sheet product having controlled recrystallization
EP1513637B1 (fr) * 2002-05-20 2008-03-12 Liquidmetal Technologies Structures expansees d'alliages amorphes se solidifiant en vrac
WO2004012620A2 (fr) * 2002-08-05 2004-02-12 Liquidmetal Technologies Protheses dentaires metalliques en alliages amorphes obtenus par solidification en masse, et procede de fabrication de tels articles
US9795712B2 (en) * 2002-08-19 2017-10-24 Crucible Intellectual Property, Llc Medical implants
CN1327990C (zh) * 2002-09-27 2007-07-25 学校法人浦项工科大学校 用于生产非晶质合金板的方法以及使用该方法生产的非晶质合金板
EP1545814B1 (fr) * 2002-09-27 2012-09-12 Postech Foundation Procede et appareil pour produire un film d'alliage amorphe et film d'alliage amorphe ainsi produit
AU2003287682A1 (en) * 2002-11-18 2004-06-15 Liquidmetal Technologies Amorphous alloy stents
AU2003295809A1 (en) * 2002-11-22 2004-06-18 Liquidmetal Technologies, Inc. Jewelry made of precious amorphous metal and method of making such articles
US20070003782A1 (en) * 2003-02-21 2007-01-04 Collier Kenneth S Composite emp shielding of bulk-solidifying amorphous alloys and method of making same
WO2004083472A2 (fr) 2003-03-18 2004-09-30 Liquidmetal Technologies, Inc. Plaques de collecteur de courant a base d'alliages amorphes a solidification en masse
USRE45414E1 (en) 2003-04-14 2015-03-17 Crucible Intellectual Property, Llc Continuous casting of bulk solidifying amorphous alloys
USRE44426E1 (en) * 2003-04-14 2013-08-13 Crucible Intellectual Property, Llc Continuous casting of foamed bulk amorphous alloys
CN101081429B (zh) * 2004-01-13 2012-09-05 明柱文 L、r、c法及设备铸造非晶、超微晶、微晶等金属型材
DE602005021136D1 (de) 2004-10-15 2010-06-17 Liquidmetal Technologies Inc Glasbildende amorphe legierungen auf au-basis
WO2006060081A2 (fr) * 2004-10-19 2006-06-08 Liquidmetal Technologies, Inc. Miroirs metalliques formes a partir d'alliages amorphes
DE102004061080A1 (de) * 2004-12-18 2006-06-22 Sms Demag Ag Verfahren und Vorrichtung zum Bandgießen von Metallen
WO2006089213A2 (fr) * 2005-02-17 2006-08-24 Liquidmetal Technologies, Inc. Structures d'antenne faites d'alliages amorphes se solidifiant en masse
US8418746B2 (en) * 2005-07-25 2013-04-16 Zhuwen Ming L, R, C method and equipment for continuous casting amorphous, ultracrystallite and crystallite metallic slab or strip
DE102006021772B4 (de) * 2006-05-10 2009-02-05 Siemens Ag Verfahren zur Herstellung von Kupfer-Chrom-Kontakten für Vakuumschalter und zugehörige Schaltkontakte
CN103909239B (zh) * 2014-03-13 2016-01-20 郭瑞 一种非晶态合金的制备装置及方法
US11371108B2 (en) 2019-02-14 2022-06-28 Glassimetal Technology, Inc. Tough iron-based glasses with high glass forming ability and high thermal stability
CN110076308A (zh) * 2019-05-30 2019-08-02 燕山大学 一种非晶合金连铸机及其连续铸造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712366A (en) * 1971-10-12 1973-01-23 Jones & Laughlin Steel Corp Method of cooling drum type strip casting apparatus
NZ180524A (en) * 1975-04-15 1978-12-18 Alcan Res & Dev Liquid support for and cooling of reuerse surfaces of belts used in continuous casting of metal strip
CH613884A5 (fr) * 1976-04-13 1979-10-31 Escher Wyss Ag
US4142571A (en) * 1976-10-22 1979-03-06 Allied Chemical Corporation Continuous casting method for metallic strips
US4268564A (en) * 1977-12-22 1981-05-19 Allied Chemical Corporation Strips of metallic glasses containing embedded particulate matter
US4193440A (en) * 1978-09-01 1980-03-18 Alcan Research And Development Limited Belt-cooling and guiding means for the continuous belt casting of metal strip
JPS571547A (en) * 1980-06-04 1982-01-06 Hitachi Ltd Rotary ring-one side belt type continuous casting device
FR2486838A1 (fr) * 1980-07-18 1982-01-22 Saint Gobain Rech Procede et dispositif de fabrication de rubans minces trempes par coulee sur un substrat defilant en continu et produits obtenus
JPS57190753A (en) * 1981-05-19 1982-11-24 Nippon Kokan Kk <Nkk> Cooling drum for production of amorphous or fine crystalline metal
DE3423834A1 (de) * 1984-06-28 1986-01-09 Mannesmann AG, 4000 Düsseldorf Verfahren und vorrichtung zum kontinuierlichen giessen von metallschmelze, insbesondere von stahlschmelze

Also Published As

Publication number Publication date
DE3761244D1 (de) 1990-02-01
JPS62220251A (ja) 1987-09-28
CH671534A5 (fr) 1989-09-15
EP0237008A1 (fr) 1987-09-16
DE3617608A1 (de) 1987-09-17
ES2012464B3 (es) 1990-04-01
US4721154A (en) 1988-01-26
DE3617608C2 (fr) 1990-07-19

Similar Documents

Publication Publication Date Title
EP0237008B1 (fr) Dispositif pour la coulée continue d&#39;un matériau se solidifiant rapidement
DE2759736C2 (de) Verwendung einer Schlitzdüse und eines Kühlkörpers
DE3873541T2 (de) Vorrichtung und verfahren zum direktgiessen von metallband.
DE2550140A1 (de) Vorrichtung zum giessen von oxidischen schleifmittelplaettchen
CH625438A5 (en) Method and apparatus for the production of a metal strip
CH657382A5 (de) Verfahren zur regelung des abstandes von magnetsystem und targetplatte bei einer katodenanordnung fuer katodenzerstaeubungsanlagen.
DE2703169C2 (de) Verfahren zur Herstellung von Metallpulver und Vorrichtung zum Durchführen des Verfahrens
DE4138655C2 (de) Ausflußregler für Zwischengefäß
EP0028686B1 (fr) Dispositif pour le refroidissement, notamment de barres de lingot et de billette
DE3440236C2 (fr)
DE3207010A1 (de) Metallblech-durchlaufgiesseinrichtung
DE3801085C2 (fr)
DE4039959C1 (fr)
DE4334405C2 (de) Transportvorrichtung
DE19814988C2 (de) Gießverfahren für ein dünnes Metallband
DE19815010C1 (de) Gießverfahren für ein Metallband und zugehörige Gießvorrichtung
EP1827735B1 (fr) Procede et dispositif de coulee en bande de metaux
EP0045365A1 (fr) Dispositif pour introduire le métal fondu dans un moule de coulée continu dont les parois sont mobiles
EP0707508B1 (fr) Procede et dispositif pour la separation de substances par cristallisation de matieres en fusion
EP1064113B1 (fr) Procede et dispositif pour homogeneiser un film metallique en fusion
DE2553069B2 (de) Schlitzdüse zum Herstellen einer Polymerfolie gleichmäßiger Dicke
CH666840A5 (de) Verfahren, vorrichtung und anwendungen des verfahrens zur herstellung eines bandes, einer folie oder einer beschichtung aus metallischem oder metalloxydischem material.
DE3424413A1 (de) Verfahren und vorrichtung zur herstellung eines glasbandes nach dem floatprozess
DE3921129C1 (en) Rapid quenching of metal melt - involves running molten metal out of nozzle onto cold rotating disc
DE69007433T2 (de) Vakuum-Aufdampfungsgerät und Verfahren zum Herstellen von Folie mittels Vakuum-Aufdampfung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19881115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 3761244

Country of ref document: DE

Date of ref document: 19900201

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 87103349.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030226

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030304

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030310

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030311

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030314

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030320

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040310

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: *SULZER-ESCHER WYSS A.G.

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050309

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040310