EP0232677B1 - Burner, particularly burner for burning liquid fuel in gaseous state - Google Patents

Burner, particularly burner for burning liquid fuel in gaseous state Download PDF

Info

Publication number
EP0232677B1
EP0232677B1 EP86810577A EP86810577A EP0232677B1 EP 0232677 B1 EP0232677 B1 EP 0232677B1 EP 86810577 A EP86810577 A EP 86810577A EP 86810577 A EP86810577 A EP 86810577A EP 0232677 B1 EP0232677 B1 EP 0232677B1
Authority
EP
European Patent Office
Prior art keywords
burner according
fuel
burner
gasification chamber
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86810577A
Other languages
German (de)
French (fr)
Other versions
EP0232677A1 (en
Inventor
Jörg Füllemann
Heinrich Boner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VTH AG Verfahrenstechnik fur Heizung
Original Assignee
VTH AG Verfahrenstechnik fur Heizung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VTH AG Verfahrenstechnik fur Heizung filed Critical VTH AG Verfahrenstechnik fur Heizung
Priority to AT86810577T priority Critical patent/ATE45417T1/en
Publication of EP0232677A1 publication Critical patent/EP0232677A1/en
Application granted granted Critical
Publication of EP0232677B1 publication Critical patent/EP0232677B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/04Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying action being obtained by centrifugal action
    • F23D11/06Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying action being obtained by centrifugal action using a horizontal shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/005Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space with combinations of different spraying or vaporising means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • F23D11/26Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed

Definitions

  • the invention relates to a burner, in particular a burner for burning liquid fuels in the gaseous state, with a motor for driving a fan and / or a fuel pump, with a carburetor chamber formed by a housing and having at least one heatable wall, with one in the carburetor chamber arranged rotatable device, the drive shaft is coupled to the motor, and with a jacket surrounding the drive shaft, which serves as a fuel supply member in the carburetor chamber.
  • a burner is described in EP-A-O 136 522.
  • atomizer burners are sprayed with a nozzle and burned in a combustion chamber with the supply of air. Since the atomizing performance of the nozzle can only be varied within narrow limits, atomizing burners have the disadvantage that their performance cannot be regulated continuously. Nor can they be built for very low power. The smallest nozzles are designed for an oil consumption of around 1.4 kg per hour. Since the output of the atomizer burner cannot be regulated continuously, atomizer burners are operated intermittently with low heat requirements. Since the operating intervals cannot be chosen as short as required, relatively large boilers are required as energy stores.
  • the intermittent operation has the disadvantage that the repeated starting and switching off of the burner brings heavy temperature changes to the materials as well as a high soot and pollutant load for the boiler, chimney and environment. Incomplete combustion and soot formation, which occur particularly during the start-up phase, have a significant impact on the overall efficiency of a heating system. Furthermore, the radiation losses from the large boilers further reduce the overall efficiency.
  • gasification burners In contrast to the atomizer burners described, gasification burners generally have the advantage that they can be regulated continuously down to very low outputs in accordance with the heating requirement. Furthermore, a significant reduction in the emission of pollutants, for example unburned hydrocarbons and soot, is achieved in the combustion of gasified fuel.
  • gasification burners Despite the many advantages that gasification burners have, they are only used to a small extent. A major reason for this is that most gasification burners need a lot of maintenance. Gasification burners usually tend to form undesirable deposits in the gasification chamber, which will soon significantly affect the effectiveness of the gasification and thus the operation of the burner.
  • EP-A-0 036 128 describes a gasification burner with an electrically heatable gasification chamber.
  • the temperature of this gasification chamber is measured by a temperature sensor and kept at an optimal value by means of a control device in order to avoid coking of fuel.
  • Another measure to avoid coking is that the gasification chamber has no air inlet openings.
  • a rotatable device in the form of a wiper is accommodated in the gasification chamber. This wiper is used to finely distribute the fuel on the heated carburetor walls and to prevent the formation of deposits, so that there is no harmful influence of deposits on the evaporation of the fuel.
  • the gas formed in the gasification chamber leaves the chamber through a nozzle at a relatively high speed.
  • the combustion air is conveyed by a fan.
  • a modified form of this gasification burner is described in the aforementioned EP-A-O 136 522.
  • the burners described in these documents have the disadvantage that they require a relatively large amount of electrical energy to evaporate the fuel. Burners of this type are also relatively expensive because they require a temperature sensor and a temperature controller.
  • the combustion of the gas emerging from a nozzle at a relatively high speed has the disadvantage that it causes relatively high noise.
  • cold start problems can arise because the air is not heated or is only slightly heated before combustion.
  • after-burning of gasified fuel with a sooting flame can take place, unless particularly expensive measures are taken to prevent the further escape of gasified fuel from the pressurized gasification chamber.
  • EP-AO 067 271 shows a continuously adjustable oil burner with an electrically heated evaporation device which has air inlet openings and which is monitored by a thermostat.
  • This evaporation device is cup-shaped, air inlet openings being provided on the bottom of the cup.
  • This cup there is a rotating cylinder for oil distribution.
  • This cylinder fills the evaporator space in the cup to a small gap.
  • oil is fed to the rotating cylinder via a hollow drive shaft, which is then thrown by centrifugal force from the radial bores in the rotating cylinder onto the inner walls of the evaporator chamber.
  • oil burners of this type have not found commercial use.
  • the gasification chamber tends to become contaminated, whereby the air inlet or the air / gas mixture outlet is disturbed. Since the pressure difference between the air inlet and the air / gas mixture outlet is very small, even slight contamination leads to a sooty flame.
  • Another disadvantage is that the rotating cylinder absorbs a great deal of heat via the cylinder jacket surface and via the drive shaft leads to the drive motor, which can be damaged if costly devices are not taken to protect it.
  • the need for thermostat monitoring of the carburetor also contributes to increasing the purchase costs for the burner.
  • US Pat. No. 3,640,673 describes a burner for a petroleum oven in which a fan is arranged in the gasification chamber which can be heated electrically and by the flame of the burner. There is a relatively large space between the periphery of the fan and the heated wall surface of the gasification chamber. There is a spray disc for the fuel on the drive shaft for the fan. When fuel is sprayed onto the spray disc during operation, it distributes the fuel into fine droplets that are thrown outwards by centrifugal force. They are mixed by the fan with the preheated air flowing into the gasifier chamber. Since the distance between the periphery of the fan and the heated wall surface of the gasification chamber is relatively large, most fuel droplets evaporate without ever coming into contact with a wall surface.
  • a gasification burner in which a rotor provided with blades, the blades of which extend into the vicinity of the heatable wall of the gasification chamber, is arranged.
  • the carburetor chamber has an air inlet.
  • the fuel supplied via the rotor shaft is finely distributed by the rotor and mixed with compressed air, whereby it evaporates in the hot gasification chamber.
  • the mixture can then escape through openings in a burner plate at relatively high pressure and burn with a low-noise blue flame.
  • a mixing tube and a flame tube are provided coaxially with the nozzle.
  • the oil is injected through the nozzle into the mixing tube, into which the air necessary for combustion is also blown.
  • a flame then forms at the end of the mixing tube.
  • Part of the hot combustion gases is then recirculated to the beginning of the mixing tube and mixed there with the oil mist / air mixture for the purpose of heat exchange. Thanks to the recirculation of some of the combustion gases, this burner enables the oil droplets in the mixing tube to be largely gasified and thus better combustion with less soot formation.
  • it cannot be regulated over a wide performance range and requires a relatively high oil throughput in the lowest performance range.
  • the burner described offers additional problems when starting and stopping. This is all the more serious because the burner has to be operated intermittently.
  • the mixing tube is cold and therefore has no vaporizing effect. The flame is therefore sooty until the mixing tube has reached a high temperature and is able to evaporate the oil that hits it.
  • the oil dripping from the nozzle is re-burned with a strongly sooting flame.
  • the mixing tube near the nozzle is still glowing bright red when it is switched off, it radiates a lot of heat towards the nozzle, which can lead to coking of fuel in the nozzle. This can clog the nozzle, especially if it is a small nozzle.
  • this is achieved in a burner of the type mentioned at the outset in that the carburetor-side end of the casing has a first axial bearing surface, that the rotatable device has a second axial bearing surface, and in that adjusting means are provided in order to move the two axial bearing surfaces apart or towards one another to let fuel into the carburettor chamber or shut off the fuel supply according to the heat demand.
  • the burner therefore does not require a nozzle and avoids the disadvantages associated with it, such as the risk of clogging, lack of controllability, impossibility of operation in a low power range, incomplete combustion and soot formation, etc.
  • the rotating axial bearing surface ensures a good distribution of the fuel in the carburettor chamber, which causes the ensures complete gasification of the fuel.
  • the amount of fuel delivered per unit of time can easily be regulated by the delivery pressure. Since there is a relative movement between the axial bearing surfaces during operation, there is no risk of clogging. After-burning is avoided when the burner is switched off because the thrust bearing surfaces are close together and no longer allow fuel to flow out. An extremely simple construction is possible, which does not require high-precision parts such as atomizer nozzles. Since the axial bearing surfaces at Ab rub against each other, self-cleaning takes place.
  • the adjusting means are expediently formed by a hydraulic device and a spring.
  • the hydraulic device advantageously consists of a recess in an axial bearing surface. Fuel can thus flow into this recess during operation and generate a pressure which drives the two axial bearing surfaces apart and enables the fuel to exit. This construction is extremely simple and cheap.
  • the spring is advantageously a helical spring arranged in a space between the drive shaft and the casing, one end of which rests on a flange or adjusting ring of the drive shaft and the other end on a slide ring, which in turn rests on a shoulder of the casing.
  • the carburetor end of the jacket is advantageously formed by a ceramic tube.
  • This can also be designed as a bearing for the drive shaft of the rotatable device.
  • Such training proves to be expedient because relatively high temperatures occur in this area.
  • a spray edge is advantageously formed on the periphery of the second axial bearing surface. This allows the oil droplets to be torn off easily during rotation and thus promotes a fine distribution of the fuel.
  • the carburetor chamber is provided with an air inlet in the region of the jacket surrounding the drive shaft.
  • the mixing of fuel and air before combustion enables the burner to operate quietly.
  • the air supply in the vicinity of the drive shaft cools it and thus protects the bearings and the motor.
  • a recirculation inlet is expediently additionally arranged at the air inlet, a coaxial arrangement being particularly simple and expedient.
  • This enables recirculation of hot exhaust gases, which heats up the carburettor housing and the carburetor chamber.
  • This has the advantage that no electrical heating is necessary after the start-up phase.
  • the heat of vaporization is therefore supplied by the flame.
  • the build-up of deposits is prevented by strongly heating the carburetor housing.
  • the suffering frost effect prevents the microscopic oil droplets from touching the hot wall. Instead, the oil droplets dance on a kind of air cushion until they have completely evaporated.
  • the desired strong heating of the carburetor chamber wall can be achieved in particular by arranging the recirculation inlet on the periphery of the air inlet.
  • An electrical heater for the starting phase is expediently arranged on the wall of the carburetor housing at the recirculation inlet. Since hot gases recirculate immediately after the flame has formed, the electrical heating
  • the carburetor housing is advantageously formed by a cylindrical or conical tube. This results in a particularly simple and cheap construction of the carburetor housing.
  • the inside of the tube is advantageous with a larger surface insert, e.g. a metal mesh. This facilitates the evaporation of the fuel.
  • the rotatable device in the evaporator chamber it proves to be advantageous to further design the rotatable device as a rotor provided with blades, the blades of which extend up to the proximity of the inner wall of the tube is sufficient. An even better distribution of the fuel is then achieved by means of this rotor.
  • a device that can be controlled by a heating controller, e.g. a pressure reducing valve provided to regulate the pressure in the fuel supply line.
  • the pressure can be regulated between approximately 0.5 and 5 bar, which corresponds to regulating the output in a ratio of 1 to 10. This regulation can thus be carried out in a simple and reliable manner using very simple means. Since operation with a throughput of approximately 0.1 kg of fuel per hour is also possible, the burner can also be used where so-called cup burners were previously used. Cup burners burn with a strongly sooting flame, produce exhaust gases that are heavily contaminated, are not very reliable and require a lot of maintenance work. Replacing cup burners with environmentally friendly and reliable burners is therefore an old but not yet achieved goal.
  • a particularly simple embodiment of the invention is characterized in that the casing has two bearings arranged at a distance from one another for mounting the drive shaft, between which a space is arranged, that a connection for the pressure side of the fuel pump is provided between the bearings and that a passage from the space mentioned is arranged to the recess in the axial bearing surface.
  • This simple construction is particularly suitable in the event that work is carried out with low pressures. At low pressures, there are hardly any sealing problems, so that a construction in which a connection is provided for the suction side of the fuel pump can be dispensed with.
  • the device that can be controlled by the heating control is a so-called Volustat with particular advantage.
  • This is understood to mean a device which, according to an input signal, delivers a corresponding delivery volume which is practically not influenced by resistances in the delivery line.
  • the delivery volume is hardly influenced by the viscosity of the fuel.
  • a Volustat it is possible to keep the force required to move the two axial bearing surfaces apart or towards one another to a minimum. In other words, this means that a relatively soft spring with a flat spring characteristic can be used.
  • pressures of about 0.3 to 0.8 bar are generated with a fuel throughput of 0.4 to 2.5 kg per hour.
  • the burner shown in the drawing has a motor II which serves to drive the fuel pump 13, the fan 15 and the rotatable device 17.
  • the rotating device 17 is part of an easily replaceable unit 12.
  • the rotating device 17 is connected via the drive shaft 19 and the coupling 21 to the motor shaft, which is not visible in the drawing.
  • a jacket 23 enclosing the drive shaft 19 serves as a fuel supply element in a carburetor chamber 25.
  • the jacket 23 is formed by the adapter sleeve 27 and a ceramic tube 29 inserted at the end of the adapter tube on the carburetor side.
  • the ceramic tube is firmly connected to the adapter sleeve by the screw 31 and also serves as a bearing for the drive shaft 19.
  • the jacket 23 could also consist of a piece of metal.
  • a ceramic bearing 29 has the advantage that it is very heat-resistant and can therefore withstand the high temperatures in the carburetor chamber 25.
  • Another bearing 33 for the drive shaft 19 is arranged in the vicinity of the motor-side end of the adapter sleeve 27.
  • a mechanical seal 35 is located in front of this bearing.
  • a lip seal 37 is arranged at a distance behind the bearing 33.
  • connection 41 leads to the space 43 between the two bearings 29 and 33.
  • Another connection 45 is used to extract any leakage oil from the space 47 between the bearing 33 and the seal 37.
  • the line 49 leads from the connection 45 to the suction side of the fuel pump 13.
  • axial bearing surfaces 51 and 53 are provided both on the ceramic tube 29 and on the rotatable device 17, and that adjusting means are provided in order to move these axial bearing surfaces 51, 53 apart or towards one another in order to produce fuel in accordance with the heat requirement let the jacket 23 in the carburetor chamber 25.
  • a recess 55 on an axial bearing surface 53 and a helical spring 57 in the space 43 between the drive shaft 19 and the adapter sleeve 27 serve as adjusting means.
  • One end of the helical spring 57 rests on the adjusting ring 59, which is fastened to the drive shaft 19 with a screw 61.
  • the other end of the coil spring 57 bears against a slide ring 63 which bears against an end face of the bearing 29.
  • the coil spring 65 serves to press the mechanical seal 35 against the bearing 33.
  • the coil spring 57 acts on the adjusting ring 59 and is therefore endeavored to press the axial bearing surface 53 against the axial bearing surface 51. As long as this pressure is high enough, no fuel can flow into the carburetor chamber 25. However, if the oil pressure in the chamber formed by the recess 55 is large enough, it moves the device 17 against the force of the spring 57 in the axial direction to the right, so that the two axial bearing surfaces 51 and 53 move apart and release a gap through the fuel can flow into the carburetor chamber 25. The higher the pressure in the line 39, the more the gap opens and the more fuel flows into the carburetor chamber 25. To enable this flow, a groove 67 extends in the axial direction from the chamber 43 to the recess 55 in the device 17.
  • the fuel droplets are thrown in the radial direction in the gasifier chamber 25 at high speed by the centrifugal force.
  • the spraying of the fuel is further facilitated by the fact that a spraying edge 69 is provided on the periphery of the axial bearing surface 51.
  • the carburetor chamber 25 has an annular air inlet 71 in the area of the bearing 29. Coaxial with this air inlet 71 is an annular recirculation inlet 73 through which hot fuel gases came into the gasifier from the flame can flow back. At the recirculation inlet 73, an electrical heater 77 is arranged on the wall of the carburetor housing 75.
  • the carburetor housing 75 is formed by an approximately cylindrical or conical tube. The inside of this tube 75 is provided with a surface-increasing insert 79, for example a metal mesh. This facilitates the evaporation of the fuel.
  • a flame tube 81 is provided coaxially and at a distance from the carburetor chamber. The flame tube 81 is divided by a ring 83 into a front part 85 and a rear part 87. In the front part 85, which forms the actual flame tube, there is a tubular insert 89 made of heat-insulating ceramic fibers.
  • a support 93 is fastened on the adapter sleeve 27 with the screws 91 and carries the ignition electrode 95 and the air screen 96.
  • the air inlet 71 is located in the air panel 96.
  • the rotatable device 17 is designed as a rotor provided with blades 98.
  • the blades 98 extend into the vicinity of the inner wall of the carburetor housing 75. They bring about a good mixing of fuel, air and recirculated gas, the mixture compressed by the blades 98 being able to flow out through an annular opening 99 between the carburetor housing 75 and the rotor 17.
  • the rotor 17 is fastened with a screw 18 at the end of the drive shaft 19.
  • the end of the rotor 17 is covered by a plate 20.
  • the flame tube 81 can be easily removed from the fan housing 14 by loosening screws 16.
  • the unit 12 can also be removed after loosening the fuel line connections 41, 45 and the screw 24.
  • This unit 12 essentially comprises the casing 23 with all the mechanics, the carburetor 25 and the ignition electrode 95.
  • a device 22 that can be controlled by the heating controller 26 is provided in order to regulate the fuel supply.
  • the commercially available fuel pumps usually have means, e.g. a pressure reducing valve, with which the desired pump pressure can be set manually.
  • an actuator is provided in the burner according to the present exemplary embodiment.
  • the controllable device 22 consists of an actuator and the means mentioned for setting the pump pressure.
  • the device 22 can be actuated by the heating control 26.
  • the actuator is a solenoid, with which the pump pressure is changed, for example, from 2 bar to 4 bar according to the heat requirement.
  • the burner then works as a two-stage burner. When using two solenoids, four different levels are also possible. However, if a servomotor is used, it is possible to continuously regulate the pump pressure from, for example, 0.5 to 5 bar.
  • the heater control 26 first turns on the electric heater 77 for about two minutes. During this time, the heater 77 and the adjacent insert 79 are heated to approximately 550 ° . After this preheating time has elapsed, the actual starting phase takes place in the usual way as with an atomizer burner.
  • the pressure of the fuel in the recess 55 causes a force which tends to move the rotor 17 to the right in the axial direction against the force of the coil spring 57, so that a gap is opened between the axial bearing surfaces 51 and 53 by the fuel in the carburetor chamber 25 is thrown.
  • the oil droplets strike the hot surface of the insert 79, an oil vapor is formed which is mixed with the combustion air by the rotor 17.
  • the oil throughput can be changed in individual stages or continuously depending on the heating requirement.
  • the helical spring 57 causes the rotor 17 to move axially to the left, so that the axial bearing surface 51 rests on the axial bearing surface 53 and no more fuel can escape. This reliably prevents afterburning.
  • FIG. 2 It has already been mentioned in the description of FIG. 2 that the flame tube 81 can be easily removed from the fan housing 14 by loosening screws 16.
  • the unit 12 can also be easily removed.
  • Figure 3 now shows a preferred embodiment of the unit 12. It is structurally much simpler than the unit 12 shown in Figure 2 and therefore also significantly cheaper to manufacture.
  • the rotatable device 17 is in turn driven by the motor II (FIG. I) of the burner via the drive shaft 19 and the clutch 21.
  • a the drive shaft 19th enclosing jacket 23 serves as a fuel supply member in the carburetor chamber 25.
  • the jacket 23 is formed by the adapter sleeve 27 and the bearings 29 and 33.
  • the bearings 29 and 33 advantageously consist of a suitable bearing material, for example a sintered material. It would also be possible to form the jacket 23 from a single piece of metal.
  • a lip seal 37 is fastened by means of a spring ring 36.
  • connection 41 is provided, to which the line 39 can be connected, which is used to supply fuel.
  • axial bearing surfaces 51 and 53 are provided, and that adjusting means are provided in order to move these axial bearing surfaces 51, 53 apart or towards one another in order to admit fuel from the jacket 23 into the carburetor chamber 25.
  • a recess 55 in an axial bearing surface 51 and, on the other hand, a helical spring 57 serve as adjusting means.
  • One end of the helical spring 57 rests on the adjusting ring 59, which is fastened with a screw 61 on the drive shaft 19.
  • the other end of the coil spring 57 bears against a slide ring 63 which bears against an end face of the bearing 33.
  • the helical spring 57 acts on the adjusting ring 59 connected to the drive shaft 19 and therefore endeavors to press the axial bearing surface 51 against the axial bearing surface 53. As long as this pressure is high enough, no fuel can flow into the carburetor chamber 25. However, if the oil pressure in the chamber formed by the recess 55 is large enough, it moves the device 17 against the force of the spring 57 in the axial direction to the right, so that the two axial bearing surfaces 51 and 53 move apart and release a gap through the fuel can flow into the carburetor chamber 25. The higher the pressure of the line 39, the more the gap opens and the more fuel flows into the carburetor chamber 25.
  • a groove 67 extends in the axial direction from the chamber 43 to the recess 55. Since the device 17 rotates during operation, the fuel droplets are thrown at high speed in the radial direction into the carburetor chamber 25 by the centrifugal force. The spraying of the fuel is further facilitated in that a spraying edge 69 is provided on the rotating part 70.
  • the rotating part 70 is firmly connected to the drive shaft 19 with the screw 18 together with the device 17.
  • the carburetor chamber 25 has an annular air inlet 71 in the area of the bearing 29. This air inlet is formed by the conical part 72 of the air screen 96.
  • This conical configuration results in an advantageous air flow into the gasification chamber, which favors the recirculation of the hot fuel gases.
  • Coaxial with the air inlet 71 is namely an annular recirculation inlet 73 through which the hot fuel gases can flow back into the gasification chamber 25 from the flame.
  • an electrical heater 77 is arranged on the wall of the carburetor housing 75.
  • the carburetor housing 75 is formed by an approximately cylindrical tube.
  • the inside of this tube 75 is provided with a surface-increasing insert 79, e.g. a metal mesh.
  • the flame tube 81 surrounding the unit 12 is indicated by dash-dotted lines in FIG. With regard to the flame tube 81, reference is made to the description of FIG. 2.
  • a support 93 is fastened with screws 91, which supports the ignition electrode 95 (FIG. 2) (not shown in FIG. 3) and the air panel 96.
  • the rotatable device 17 is also designed as a rotor provided with blades 98.
  • a Volustat is advantageously used as the controllable device 22. It is a device that delivers a delivery volume corresponding to an applied control signal.
  • the spring 57 When using a Volustat, the spring 57 only has to perform a closing function when the burner is switched off. The spring 57 can thus have a flat spring characteristic and be relatively soft. As a result, there are only slight pressures in the jacket 23. With a small burner, they range from about 0.2 to about 0.6 bar, corresponding to a fuel throughput of 0.4 to 2.5 kg per hour. At these pressures, the seal 37 is generally sufficient, so that further sealing measures, such as are provided in the exemplary embodiment in FIG. 2, can generally be dispensed with.
  • a Volustat 22 could also be used in combination with a unit 12 according to FIG. 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Evaporation-Type Combustion Burners (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

The burner has a motor (11), a fuel pump (13) and a fan (15). In the flame tube (81) is a gasification chamber having a gasification chamber housing (75) coaxially located to the flame tube (81), and a housing (75) located at a distance therefrom. The rotor (17) located in the housing (75) can be axially moved with respect to the bearing (29), thereby causing a slot between the axial bearing surfaces (51, 53). Through this slot fuel is ejected into the gasification chamber by the rotation of the rotor (17). The opening of the slot between the axial bearing surfaces (51, 53) depends on the oil pressure which is determined by signals of the heating control 24. The fuel throughput may be controlled in steps or continuously according to the heat requirements. The electric heating (77) is only used during the start phase. In operation of the burner the heat requirements for the gasifying chamber (25) are covered by the recirculation of hot combustion gases through the recirculation gas inlet (73).

Description

Die Erfindung betrifft einen Brenner, insbesondere einen Brenner zur Verbrennung von flüssigen Brennstoffen in gasförmigem Zustand, mit einem Motor zum Antrieb eines Lüfters und/oder einer Brennstoffpumpe, mit einem durch ein Gehäuse gebildeten Vergaserraum, welcher mindestens eine beheizbare Wand aufweist, mit einer im Vergaserraum angeordneten rotierbaren Vorrichtung, deren Antriebswelle mit dem Motor gekuppelt ist, und mit einem die Antriebswelle umschliessenden Mantel, welcher als Brennstoffzufuhrorgan in den Vergaserraum dient. Ein solcher Brenner wird in der EP-A-O 136 522 beschrieben.The invention relates to a burner, in particular a burner for burning liquid fuels in the gaseous state, with a motor for driving a fan and / or a fuel pump, with a carburetor chamber formed by a housing and having at least one heatable wall, with one in the carburetor chamber arranged rotatable device, the drive shaft is coupled to the motor, and with a jacket surrounding the drive shaft, which serves as a fuel supply member in the carburetor chamber. Such a burner is described in EP-A-O 136 522.

Man unterscheidet zwischen Zerstäuberbrennern und Vergaserbrennern. Bei Zerstäuberbrennern wird der Brennstoff mit einer Düse versprüht und unter Luftzufuhr in einem Brennraum verbrannt. Da die Zerstäuberleistung der Düse nur innerhalb enger Grenzen variiert werden kann, haben Zerstäuberbrenner den Nachteil, dass ihre Leistung nicht kontinuierlich regelbar ist. Sie können auch nicht für sehr kleine Leistungen gebaut werden. Die kleinsten Düsen sind für einen Oelverbrauch von etwa 1,4 kg pro Stunde dimensioniert. Da die Leistung der Zerstäuberbrenner nicht kontinuierlich regelbar ist, werden Zerstäuberbrenner bei geringem Wärmebedarf intermittierend betrieben. Da die Betriebsintervalle nicht beliebig kurz gewählt werden können, sind relativ grosse Heizkessel als Energiespeicher notwendig. Der intermittierende Betrieb hat den Nachteil, dass das wiederholte Anspringen und Abschalten des Brenners starke Temperaturwechselbelastungen der Materialien sowie eine hohe Russ- und Schadstoffbelastung für Heizkessel, Kamin und Umwelt bringt. Unvollständige Verbrennung und Russbildung, die insbesondere in der Anlaufphase auftreten, beeinträchtigen den Gesamtwirkungsgrad einer Heizungsanlage erheblich. Ferner tragen die Abstrahlungsverluste der grossen Heizkessel weiter zur Verminderung des Gesamtwirkungsgrades bei.A distinction is made between atomizer burners and carburetor burners. In atomizer burners, the fuel is sprayed with a nozzle and burned in a combustion chamber with the supply of air. Since the atomizing performance of the nozzle can only be varied within narrow limits, atomizing burners have the disadvantage that their performance cannot be regulated continuously. Nor can they be built for very low power. The smallest nozzles are designed for an oil consumption of around 1.4 kg per hour. Since the output of the atomizer burner cannot be regulated continuously, atomizer burners are operated intermittently with low heat requirements. Since the operating intervals cannot be chosen as short as required, relatively large boilers are required as energy stores. The intermittent operation has the disadvantage that the repeated starting and switching off of the burner brings heavy temperature changes to the materials as well as a high soot and pollutant load for the boiler, chimney and environment. Incomplete combustion and soot formation, which occur particularly during the start-up phase, have a significant impact on the overall efficiency of a heating system. Furthermore, the radiation losses from the large boilers further reduce the overall efficiency.

Im Gegensatz zu den beschriebenen Zerstäuberbrennem haben Vergasungsbrenner in der Regel den Vorteil, dass sie entsprechend dem Heizbedarf kontinuierlich bis auf sehr kleine Leistungen hinunter geregelt werden können. Ferner wird bei der Verbrennung von vergastem Brennstoff eine wesentliche Verminderung der Emission von Schadstoffen, beispielsweise von unverbrannten Kohlenwasserstoffen und Russ, erreicht.In contrast to the atomizer burners described, gasification burners generally have the advantage that they can be regulated continuously down to very low outputs in accordance with the heating requirement. Furthermore, a significant reduction in the emission of pollutants, for example unburned hydrocarbons and soot, is achieved in the combustion of gasified fuel.

Trotz der vielen Vorteile, welche Vergasungsbrenner aufweisen, werden sie nur in geringem Ausmass eingesetzt. Ein wesentlicher Grund dafür besteht darin, dass die meisten Vergasungsbrenner viel Unterhalt benötigen. Vergasungsbrenner neigen in der Regel dazu, in der Vergaserkammer unerwünschte Ablagerungen zu bilden, die bald die Wirksamkeit der Vergasung und somit den Betrieb des Brenners erheblich beeinträchtigen.Despite the many advantages that gasification burners have, they are only used to a small extent. A major reason for this is that most gasification burners need a lot of maintenance. Gasification burners usually tend to form undesirable deposits in the gasification chamber, which will soon significantly affect the effectiveness of the gasification and thus the operation of the burner.

In der EP-A-O 036 128 wird ein Vergasungsbrenner mit einer elektrisch beheizbaren Vergaserkammer beschrieben. Die Temperatur dieser Vergaserkammer wird von einem Temperaturfühler gemessen und mittels einer Regeleinrichtung auf einem optimalen Wert gehalten, um eine Verkokung von Brennstoff zu vermeiden. Eine weitere Massnahme zur Vermeidung der Verkokung besteht darin, dass die Vergaserkammer keine Lufteinlassöffnungen aufweist. Zudem ist in der Vergaserkammer eine rotierbare Einrichtung in Form eines Wischers untergebracht. Dieser Wischer dient dazu, den Brennstoff auf den beheizten Vergaserwänden fein zu verteilen und eine Bildung von Ablagerungen zu verhindern, so dass kein schädlicher Einfluss von Ablagerungen auf die Verdampfung des Brennstoffes auftritt. Das in der Vergaserkammer gebildete Gas verlässt die Kammer durch eine Düse mit relativ hoher Geschwindigkeit. Die Verbrennungsluft wird durch einen Lüfter gefördert. Eine modifizierte Form dieses Vergaserbrenners wird in der eingangs erwähnten EP-A-O 136 522 beschrieben. Die in diesen Druckschriften beschriebenen Brenner haben den Nachteil, dass sie relativ viel elektrische Energie zur Verdampfung des Brennstoffes benötigen. Brenner dieser Art sind zudem relativ teuer, weil sie einen Temperaturfühler und einen Temperaturregler benötigen. Verglichen mit anderen Vergaserbrennern, wo die Durchmischung von Brennstoff und Luft vor der Verbrennung in der Vergaserkammer erfolgt, hat die Verbrennung des aus einer Düse mit relativ hoher Geschwindigkeit austretenden Gases den Nachteil, dass sie relativ hohe Geräusche verursacht. Ferner können sich Kaltstartprobleme ergeben, weil die Luft vor der Verbrennung nicht oder nur unwesentlich erhitzt wird. Ferner ist es auch nachteilig, dass beim Abstellen ein Nachbrennen von vergastem Brennstoff mit russender Flamme erfolgen kann, wenn nicht besonders kostspielige Massnahmen zur Verhinderung des weiteren Austritts von vergastem Brennstoff aus der unter Druck stehenden Vergaserkammer getroffen werden.EP-A-0 036 128 describes a gasification burner with an electrically heatable gasification chamber. The temperature of this gasification chamber is measured by a temperature sensor and kept at an optimal value by means of a control device in order to avoid coking of fuel. Another measure to avoid coking is that the gasification chamber has no air inlet openings. In addition, a rotatable device in the form of a wiper is accommodated in the gasification chamber. This wiper is used to finely distribute the fuel on the heated carburetor walls and to prevent the formation of deposits, so that there is no harmful influence of deposits on the evaporation of the fuel. The gas formed in the gasification chamber leaves the chamber through a nozzle at a relatively high speed. The combustion air is conveyed by a fan. A modified form of this gasification burner is described in the aforementioned EP-A-O 136 522. The burners described in these documents have the disadvantage that they require a relatively large amount of electrical energy to evaporate the fuel. Burners of this type are also relatively expensive because they require a temperature sensor and a temperature controller. Compared to other gasification burners, where the fuel and air are mixed before combustion in the gasification chamber, the combustion of the gas emerging from a nozzle at a relatively high speed has the disadvantage that it causes relatively high noise. Furthermore, cold start problems can arise because the air is not heated or is only slightly heated before combustion. Furthermore, it is also disadvantageous that after-burning of gasified fuel with a sooting flame can take place, unless particularly expensive measures are taken to prevent the further escape of gasified fuel from the pressurized gasification chamber.

Die EP-A-O 067 271 zeigt einen stufenlos regulierbaren Oelbrenner mit einer Lufteinlassöffnungen aufweisenden, elektrisch beheizten Verdampfungseinrichtung, welche von einem Thermostat überwacht wird. Diese Verdampfungseinrichtung ist becherförmig, wobei am Boden des Bechers Lufteinlassöffnungen vorgesehen sind. In diesem Becher befindet sich ein rotierender Zylinder zur Oelverteilung. Dieser Zylinder füllt den Verdampferraum im Becher bis auf einen kleinen Spalt aus. Zur Oelverteilung wird dem rotierenden Zylinder über eine hohle Antriebswelle Oel zugeführt, das dann durch die Zentrifugalkraft aus den radialen Bohrungen im rotierenden Zylinder an die Innenwände des Verdampferraums geschleudert wird. Oelbrenner dieser Art haben jedoch keine kommerzielle Anwendung gefunden. Nachteilig ist, dass die Vergaserkammer zu Verschmutzung neigt, wobei der Lufteintritt, bzw. der Luft/Gasgemisch-Austritt gestört wird. Da der Druckunterschied zwischen Lufteinlass und Luft/Gasgemisch-Auslass sehr klein ist, führt bereits eine geringe Verschmutzung zu einer russenden Flamme. Ein weiterer Nachteil besteht darin, dass der rotierende Zylinder über die Zylindermantelfläche sehr viel Wärme aufnimmt und über die Antriebswelle zum Antriebsmotor hinleitet, welcher dadurch Schaden nehmen kann, wenn nicht kostspielige Vorrichtungen zu seinem Schutz getroffen werden. Die Notwendigkeit der Thermostat- überwachung des Vergasers trägt ferner zur Erhöhung der Anschaffungskosten für den Brenner bei.EP-AO 067 271 shows a continuously adjustable oil burner with an electrically heated evaporation device which has air inlet openings and which is monitored by a thermostat. This evaporation device is cup-shaped, air inlet openings being provided on the bottom of the cup. In this cup there is a rotating cylinder for oil distribution. This cylinder fills the evaporator space in the cup to a small gap. For the oil distribution, oil is fed to the rotating cylinder via a hollow drive shaft, which is then thrown by centrifugal force from the radial bores in the rotating cylinder onto the inner walls of the evaporator chamber. However, oil burners of this type have not found commercial use. It is disadvantageous that the gasification chamber tends to become contaminated, whereby the air inlet or the air / gas mixture outlet is disturbed. Since the pressure difference between the air inlet and the air / gas mixture outlet is very small, even slight contamination leads to a sooty flame. Another disadvantage is that the rotating cylinder absorbs a great deal of heat via the cylinder jacket surface and via the drive shaft leads to the drive motor, which can be damaged if costly devices are not taken to protect it. The need for thermostat monitoring of the carburetor also contributes to increasing the purchase costs for the burner.

Die US-PS 3 640 673 beschreibt einen Brenner für einen Petroleumofen, bei welchem ein Ventilator in der elektrisch und durch die Flamme des Brenners beheizbaren Vergaserkammer angeordnet ist. Zwischen der Peripherie des Ventilators und der beheizten Wandungsfläche der Vergaserkammer besteht ein relativ grosser Zwischenraum. Auf der Antriebswelle für den Ventilator befindet sich eine Sprühscheibe für den Brennstoff.Wenn im Betrieb Brennstoff auf die Sprühscheibe gespritzt wird, verteilt diese den Brennstoff in feine Tröpfchen, die durch die Zentrifugalkraft nach aussen geschleudert werden. Dabei werden sie durch den Ventilator mit der in die Vergaserkammer einströmenden, vorgewärmten Luft vermischt. Da der Abstand zwischen der Peripherie des Lüfters und der beheizten Wandungsfläche der Vergaserkammer relativ gross ist, verdampfen die meisten Brennstofftröpfchen ohne je in Kontakt mit einer Wandungsfläche zu kommen. Die wenigen Brennstofftröpfchen, die an der beheizten Wandung der Vergaserkammer auftreffen, verdampfen dann dort. Nachteilig ist dabei, dass sich an den Wandungen Ablagerungen bilden, welche die Verdampfung insbesondere in der Anlaufphase, wenn die Vergaserkammer nur elektrisch beheizt wird, beeinträchtigen. Dies kann dann zu Startproblemen führen. Ein weiterer Nachteil des beschriebenen Brenners besteht darin, dass er praktisch ein atmosphärischer Brenner ist und sich somit nicht zum Einsatz bei einem Heizkessel eignet.US Pat. No. 3,640,673 describes a burner for a petroleum oven in which a fan is arranged in the gasification chamber which can be heated electrically and by the flame of the burner. There is a relatively large space between the periphery of the fan and the heated wall surface of the gasification chamber. There is a spray disc for the fuel on the drive shaft for the fan. When fuel is sprayed onto the spray disc during operation, it distributes the fuel into fine droplets that are thrown outwards by centrifugal force. They are mixed by the fan with the preheated air flowing into the gasifier chamber. Since the distance between the periphery of the fan and the heated wall surface of the gasification chamber is relatively large, most fuel droplets evaporate without ever coming into contact with a wall surface. The few droplets of fuel that hit the heated wall of the gasification chamber then evaporate there. The disadvantage here is that deposits form on the walls, which adversely affect evaporation, particularly in the start-up phase, when the gasification chamber is only heated electrically. This can lead to start problems. Another disadvantage of the burner described is that it is practically an atmospheric burner and is therefore not suitable for use in a boiler.

In der nicht-vorveröffentlichten EP-A 0 166 329 wird ein Vergaserbrenner beschrieben, bei welchem ein mit Schaufeln versehener Rotor, dessen Schaufeln sich bis in die Nähe der beheizbaren Wandung der Vergaserkammer erstrecken, angeordnet ist. Die Vergaserkammer besitzt einen Lufteinlass. Der über die Rotorwelle zugeführte Brennstoff wird vom Rotor fein verteilt und mit verdichteter Luft gemischt, wobei er in der heissen Vergaserkammer verdampft. Das Gemisch kann dann durch Oeffnungen in einer Brennerplatte mit relativ hohem Druck entweichen und mit einer geräuscharmen blauen Flamme verbrennen.In the non-prepublished EP-A 0 166 329 a gasification burner is described in which a rotor provided with blades, the blades of which extend into the vicinity of the heatable wall of the gasification chamber, is arranged. The carburetor chamber has an air inlet. The fuel supplied via the rotor shaft is finely distributed by the rotor and mixed with compressed air, whereby it evaporates in the hot gasification chamber. The mixture can then escape through openings in a burner plate at relatively high pressure and burn with a low-noise blue flame.

Der Vollständigkeit halber wird noch auf den in der CH-PS 628 724 beschriebenen Oelbrenner hingewiesen, der zwar ein Zerstäuberbrenner ist, aber zugleich Merkmale eines Vergasungsbrenners aufweist. Er hat den Zerstäuberbrennern innewohnenden Nachteil, dass er nicht in einem weiten Leistungsbereich regelbar ist. Auch im untersten Leistungsbereich erfordert er noch einen relativ hohen Durchsatz von 1,6 bis 2,1 kg Oel pro Stunde.For the sake of completeness, reference is also made to the oil burner described in CH-PS 628 724, which is an atomizer burner but also features a gasification burner. It has the inherent disadvantage of the atomizer burner that it cannot be regulated in a wide output range. Even in the lowest performance range, it still requires a relatively high throughput of 1.6 to 2.1 kg of oil per hour.

Um eine Vergasung der zersprühten Oeltröpfchen zu erzielen sind koaxial zur Düse ein Mischrohr und ein Flammrohr vorgesehen. Im Betrieb wird das Oel durch die Düse in das Mischrohr gespritzt, in das auch die zur Verbrennung notwendige Luft geblasen wird. Am Ende des Mischrohrs bildet sich dann eine Flamme aus. Ein Teil der heissen Verbrennungsgase wird dann zum Anfang des Mischrohrs rezirkuliert und dort mit dem Oelnebel/Luftgemisch zwecks Wärmeaustausch vermischt. Dieser Brenner ermöglicht dank der Rezirkulation eines Teils der Verbrennungsgase eine weitgehende Vergasung der Oeltröpfchen im Mischrohr und somit eine bessere Verbrennung mit geringerer Russbildung. Wie aber bereits erwähnt wurde, ist er nicht in einem grossen Leistungsbereich regelbar und erfordert im untersten Leistungsbereich einen relativ hohen Oeldurchsatz. Zusätzliche Probleme bietet der beschriebene Brenner beim Starten und beim Abstellen. Dies ist umso gravierender, weil der Brenner intermittierend betrieben werden muss. Beim Start ist das Mischrohr kalt und hat somit keine Verdampferwirkung. Die Flamme ist daher stark russend, bis das Mischrohr eine hohe Temperatur erreicht hat und in der Lage ist, das auftreffende Oel zu verdampfen. Beim Abstellen des Brenners erfolgt ein Nachbrennen des aus der Düse tropfenden Oels mit stark russender Flamme. Da ferner beim Abstellen das nahe der Düse gelegene Mischrohr noch hellrot glühend ist, strahlt es viel Wärme gegen die Düse hin ab, was zu einer Verkokung von Brennstoff in der Düse führen kann. Dadurch kann die Düse, insbesondere wenn es sich um eine kleine Düse handelt, verstopft werden.In order to gasify the sprayed oil droplets, a mixing tube and a flame tube are provided coaxially with the nozzle. In operation, the oil is injected through the nozzle into the mixing tube, into which the air necessary for combustion is also blown. A flame then forms at the end of the mixing tube. Part of the hot combustion gases is then recirculated to the beginning of the mixing tube and mixed there with the oil mist / air mixture for the purpose of heat exchange. Thanks to the recirculation of some of the combustion gases, this burner enables the oil droplets in the mixing tube to be largely gasified and thus better combustion with less soot formation. However, as has already been mentioned, it cannot be regulated over a wide performance range and requires a relatively high oil throughput in the lowest performance range. The burner described offers additional problems when starting and stopping. This is all the more serious because the burner has to be operated intermittently. At the start, the mixing tube is cold and therefore has no vaporizing effect. The flame is therefore sooty until the mixing tube has reached a high temperature and is able to evaporate the oil that hits it. When the burner is switched off, the oil dripping from the nozzle is re-burned with a strongly sooting flame. Furthermore, since the mixing tube near the nozzle is still glowing bright red when it is switched off, it radiates a lot of heat towards the nozzle, which can lead to coking of fuel in the nozzle. This can clog the nozzle, especially if it is a small nozzle.

Es ist Aufgabe der vorliegenden Erfindung, einen Brenner der eingangs erwähnten Art zu schaffen, der die beschriebenen Nachteile der bekannten Brenner mindestens zum Teil vermeidet. Er soll insbesondere ein Betrieb bei geringen Leistungen und/oder eine Anpassung der Leistung entsprechend dem Heizbedarf ermöglichen, betriebssicher sein und wenig Unterhaltsarbeiten erfordern.It is an object of the present invention to provide a burner of the type mentioned at the outset, which at least partially avoids the disadvantages of the known burners described. In particular, it should enable operation at low outputs and / or an adjustment of the output according to the heating requirement, be reliable and require little maintenance work.

Gemäss der Erfindung wird dies bei einem Brenner der eingangs erwähnten Art dadurch erreicht, dass das vergaserseitige Ende des Mantels eine erste Axiallagerfläche aufweist, dass die rotierbare Vorrichtung eine zweite Axiallagerfläche aufweist, und dass Stellmittel vorgesehen sind, um die beiden Axiallagerflächen auseinander oder zueinander zu bewegen, um entsprechend dem Wärmebedarf Brennstoff in die Vergaserkammer einzulassen oder die Brennstoffzufuhr abzustellen. Der Brenner benötigt also keine Düse und vermeidet die damit verbundenen Nachteile, wie Verstopfungsgefahr, fehlende Regelbarkeit, Unmöglichkeit des Betriebs in einem tiefen Leistungsbereich, unvollständige Verbrennung und Russbildung, usw. Durch die rotierende Axiallagerfläche wird eine gute Verteilung des Brennstoffs im Vergaserraum bewirkt, was die vollständige Vergasung des Brennstoffs gewährleistet. Die pro Zeiteinheit geförderte Brennstoffmenge kann auf einfache Weise durch den Förderdruck geregelt werden. Da im Betrieb eine Relativbewegung zwischen den Axiallagerflächen erfolgt, besteht keine Verstopfungsgefahr. Beim Abstellen des Brenners wird ein Nachbrennen vermieden, weil die Axiallagerflächen dicht aneinander liegen und keinen Brennstoff mehr ausfliessen lassen. Es ist ein äusserst einfacher Aufbau möglich, der keine hochpräzisen Teile,wie Zerstäuberdüsen, erfordert. Da die Axiallagerflächen beim Abstellen aneinander reiben, findet eine Selbstreinigung statt.According to the invention, this is achieved in a burner of the type mentioned at the outset in that the carburetor-side end of the casing has a first axial bearing surface, that the rotatable device has a second axial bearing surface, and in that adjusting means are provided in order to move the two axial bearing surfaces apart or towards one another to let fuel into the carburettor chamber or shut off the fuel supply according to the heat demand. The burner therefore does not require a nozzle and avoids the disadvantages associated with it, such as the risk of clogging, lack of controllability, impossibility of operation in a low power range, incomplete combustion and soot formation, etc. The rotating axial bearing surface ensures a good distribution of the fuel in the carburettor chamber, which causes the ensures complete gasification of the fuel. The amount of fuel delivered per unit of time can easily be regulated by the delivery pressure. Since there is a relative movement between the axial bearing surfaces during operation, there is no risk of clogging. After-burning is avoided when the burner is switched off because the thrust bearing surfaces are close together and no longer allow fuel to flow out. An extremely simple construction is possible, which does not require high-precision parts such as atomizer nozzles. Since the axial bearing surfaces at Ab rub against each other, self-cleaning takes place.

Zweckmässigerweise werden die Stellmittel durch eine hydraulische Vorrichtung und eine Feder gebildet. Dies ermöglicht eine einfache und betriebssichere Konstruktion. Die hydraulische Vorrichtung besteht vorteilhaft aus einer Aussparung bei einer Axiallagerfläche. In diese Aussparung kann somit im Betrieb Brennstoff einfliessen und einen Druck erzeugen, welcher die beiden Axiallagerflächen auseinandertreibt und den Austritt des Brennstoffes ermöglicht. Diese Konstruktion ist extrem einfach und billig.The adjusting means are expediently formed by a hydraulic device and a spring. This enables a simple and reliable construction. The hydraulic device advantageously consists of a recess in an axial bearing surface. Fuel can thus flow into this recess during operation and generate a pressure which drives the two axial bearing surfaces apart and enables the fuel to exit. This construction is extremely simple and cheap.

Vorteilhaft ist die Feder eine in einem Raum zwischen Antriebswelle und Mantel angeordnete Schraubenfeder, die mit einem Ende an einem Flansch oder Stellring der Antriebswelle und mit dem anderen Ende an einem Gleitring anliegt, der seinerseits an einem Absatz des Mantels anliegt. Dies ergibt eine einfache und betriebssichere Konstruktion der Stellmittel, wobei eine Schmierung des Gleitrings durch den Brennstoff erfolgen kann. Es wäre aber auch möglich, die Schraubenfeder und die übrigen Elemente in einem Raum anzuordnen, wo sie nicht vom Brennstoff umflossen werden.The spring is advantageously a helical spring arranged in a space between the drive shaft and the casing, one end of which rests on a flange or adjusting ring of the drive shaft and the other end on a slide ring, which in turn rests on a shoulder of the casing. This results in a simple and reliable construction of the actuating means, with the lubrication of the slide ring by the fuel being possible. However, it would also be possible to arrange the coil spring and the other elements in a room where the fuel does not flow around them.

Vorteilhaft wird das vergaserseitige Ende des Mantels durch ein Keramikrohr gebildet. Dieses kann zugleich als Lager für die Antriebswelle der rotierbaren Vorrichtung ausgebildet sein. Eine solche Ausbildung erweist sich als zweckmässig, weil in diesem Bereich relativ hohe Temperaturen auftreten.The carburetor end of the jacket is advantageously formed by a ceramic tube. This can also be designed as a bearing for the drive shaft of the rotatable device. Such training proves to be expedient because relatively high temperatures occur in this area.

An der Peripherie der zweiten Axiallagerfläche ist vorteilhaft eine Sprühkante ausgebildet. Diese ermöglicht beim Rotieren ein leichtes Abreissen der Öltröpfchen und begünstigt damit eine feine Verteilung des Brennstoffes.A spray edge is advantageously formed on the periphery of the second axial bearing surface. This allows the oil droplets to be torn off easily during rotation and thus promotes a fine distribution of the fuel.

Wenn es auch möglich wäre, den Vergaserraum als geschlossene, vor Luftzutritt geschützte Kammer auszubilden, wird gemäss einer Ausführungsform der Erfindung der Vergaserraum im Bereich des die Antriebswelle umschliessenden Mantels mit einem Lufteinlass versehen. Die Durchmischung von Brennstoff und Luft vor der Verbrennung ermöglicht einen ruhigen Betrieb des Brenners. Des weiteren bewirkt die Luftzufuhr in der Nähe der Antriebswelle eine Kühlung derselben und somit einen Schutz der Lager und des Motors.If it were also possible to design the carburetor chamber as a closed chamber protected from air access, according to one embodiment of the invention, the carburetor chamber is provided with an air inlet in the region of the jacket surrounding the drive shaft. The mixing of fuel and air before combustion enables the burner to operate quietly. Furthermore, the air supply in the vicinity of the drive shaft cools it and thus protects the bearings and the motor.

Zweckmässigerweise ist beim Lufteinlass zusätzlich ein Rezirkulationseinlass angeordnet, wobei eine koaxiale Anordnung besonders einfach und zweckmässig ist. Dies ermöglicht eine Rezirkulation von heissen Abgasen, wodurch das Vergasergehäuse und der Vergaserraum aufgeheizt wird. Dies hat den Vorteil, dass nach der Startphase keine elektrische Heizung notwendig ist. Die Verdampfungswärme wird also von der Flamme geliefert. Durch starke Aufheizung des Vergasergehäuses wird die Bildung von Ablagerungen verhindert. Der Leidenfrosteffekt verhindert eine Berührung der mikroskopisch kleinen Oeltröpfchen mit der heissen Wandung. Die Oeltröpfchen tanzen vielmehr auf einer Art Luftkissen, bis sie ganz verdampft sind. Die gewünschte starke Aufheizung der Vergaserraumwandung kann insbesondere durch die Anordnung des Rezirkulationseinlasses an der Peripherie des Lufteinlasses erzielt werden. Eine elektrische Heizung für die Startphase wird zweckmässigerweise an der Wandung des Vergasergehäuses beim Rezirkulationseinlass angeordnet. Da sofort nach der Flammenbildung eine Rezirkulation heisser Gase erfolgt, kann die elektrische Heizung relativ klein dimensioniert werden und kurz nach dem Start ausgeschaltet werden.A recirculation inlet is expediently additionally arranged at the air inlet, a coaxial arrangement being particularly simple and expedient. This enables recirculation of hot exhaust gases, which heats up the carburettor housing and the carburetor chamber. This has the advantage that no electrical heating is necessary after the start-up phase. The heat of vaporization is therefore supplied by the flame. The build-up of deposits is prevented by strongly heating the carburetor housing. The suffering frost effect prevents the microscopic oil droplets from touching the hot wall. Instead, the oil droplets dance on a kind of air cushion until they have completely evaporated. The desired strong heating of the carburetor chamber wall can be achieved in particular by arranging the recirculation inlet on the periphery of the air inlet. An electrical heater for the starting phase is expediently arranged on the wall of the carburetor housing at the recirculation inlet. Since hot gases recirculate immediately after the flame has formed, the electrical heating can be made relatively small and can be switched off shortly after starting.

Das Vergasergehäuse wird vorteilhaft durch ein zylindrisches oder konisches Rohr gebildet. Dies ergibt eine besonders einfache und billige Konstruktion des Vergasergehäuses. Die Innenseite des Rohrs ist vorteilhaft mit einem oberflächenvergrössemden Einsatz, z.B. einem Metallgewebe, versehen. Dadurch wird die Verdampfung des Brennstoffes erleichtert.The carburetor housing is advantageously formed by a cylindrical or conical tube. This results in a particularly simple and cheap construction of the carburetor housing. The inside of the tube is advantageous with a larger surface insert, e.g. a metal mesh. This facilitates the evaporation of the fuel.

Wenn es auch möglich wäre, dass die rotierbare Vorrichtung im Verdampferraum lediglich die beschriebene zweite Axiallagerfläche aufweist, um der Verteilung des Öls zu dienen, erweist es sich doch als vorteilhaft, die rotierbare Vorrichtung weiter als einen mit Schaufeln versehenen Rotor auszubilden, dessen Schaufeln bis in die Nähe der Innenwandung des Rohrs reichen. Durch diesen Rotor wird dann eine noch bessere Verteilung des Brennstoffes erwirkt. Zudem erfolgt eine intensive Durchmischung des Brennstoffes mit Luft und eine Förderwirkung für das Brennstoff/Luftgemisch nebst den übrigen Vorteilen, die in der eingangs erwähnten EP-A 0 166 329 beschrieben werden.If it were also possible for the rotatable device in the evaporator chamber to have only the described second axial bearing surface, in order to serve the distribution of the oil, it proves to be advantageous to further design the rotatable device as a rotor provided with blades, the blades of which extend up to the proximity of the inner wall of the tube is sufficient. An even better distribution of the fuel is then achieved by means of this rotor. In addition, there is intensive mixing of the fuel with air and a promotional effect for the fuel / air mixture in addition to the other advantages which are described in EP-A 0 166 329 mentioned at the outset.

Vorteilhaft ist eine von einem Heizungsregler steuerbare Einrichtung, z.B. ein Druckreduzierventil, vorgesehen, um den Druck in der Brennstoffzufuhrleitung zu regeln. Entsprechend dem Heizbedarf kann der Druck zwischen etwa 0,5 bis 5 bar geregelt werden, was einer Regelung der Leistung im Verhältnis 1 zu 10 entspricht. Diese Regelung kann also mit sehr einfachen Mitteln auf einfache und betriebssichere Weise erfolgen. Da auch ein Betrieb mit einem Durchsatz von etwa 0,1 kg Brennstoff pro Stunde möglich ist, kann der Brenner auch dort eingesetzt werden, wo bisher sogenannte Schalenbrenner eingesetzt wurden. Schalenbrenner brennen mit stark russender Flamme, erzeugen stark mit Schadstoffen belastete Abgase, sind nicht sehr betriebssicher und erfordern viel Unterhaltsarbeiten. Ein Ersatz von Schalenbrennern durch umweltfreundliche und betriebssichere Brenner ist daher ein altes aber bisher nicht erreichtes Ziel.A device that can be controlled by a heating controller, e.g. a pressure reducing valve provided to regulate the pressure in the fuel supply line. Depending on the heating requirement, the pressure can be regulated between approximately 0.5 and 5 bar, which corresponds to regulating the output in a ratio of 1 to 10. This regulation can thus be carried out in a simple and reliable manner using very simple means. Since operation with a throughput of approximately 0.1 kg of fuel per hour is also possible, the burner can also be used where so-called cup burners were previously used. Cup burners burn with a strongly sooting flame, produce exhaust gases that are heavily contaminated, are not very reliable and require a lot of maintenance work. Replacing cup burners with environmentally friendly and reliable burners is therefore an old but not yet achieved goal.

Es ist möglich, beim motorseitigen Ende des Mantels ein weiteres Lager anzuordnen und auf der motorfernen Seite des weiteren Lagers am Mantel einen Anschluss an die Druckseite der Brennstoffpumpe und auf der anderen Seite des weiteren Lagers einen Anschluss für die Saugseite der Brennstoffpumpe vorzusehen. Auf diese Weise wird etwaig durch das weitere Lager fliessendes Lecköl ständig abgesogen. Es ergeben sich somit keine Dichtungsprobleme.It is possible to arrange a further bearing at the motor-side end of the casing and to provide a connection to the pressure side of the fuel pump on the side of the casing further away from the motor and to provide a connection for the suction side of the fuel pump on the other side of the further bearing. In this way, any leakage oil flowing through the further bearing is continuously drawn off. There are therefore no sealing problems.

Eine besonders einfache Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass der Mantel zwei in Abstand voneinander angeordnete Lager zur Lagerung der Antriebswelle aufweist, zwischen welchen ein Raum angeordnet ist, dass zwischen den Lagern ein Anschluss für die Druckseite der Brennstoffpumpe vorgesehen ist und dass ein Durchlass vom genannten Raum zur Aussparung bei der Axiallagerfläche angeordnet ist. Dies ergibt eine äusserst einfache Konstruktion. Diese einfache Konstruktion eignet sich besonders für den Fall, dass mit geringen Drücken gearbeitet wird. Bei geringen Drücken ergeben sich kaum irgendwelche Dichtungsprobleme, so dass auf eine Konstruktion, bei der ein Anschluss für die Saugseite der Brennstoffpumpe vorgesehen ist, verzichtet werden kann.A particularly simple embodiment of the invention is characterized in that the casing has two bearings arranged at a distance from one another for mounting the drive shaft, between which a space is arranged, that a connection for the pressure side of the fuel pump is provided between the bearings and that a passage from the space mentioned is arranged to the recess in the axial bearing surface. This results in an extremely simple construction. This simple construction is particularly suitable in the event that work is carried out with low pressures. At low pressures, there are hardly any sealing problems, so that a construction in which a connection is provided for the suction side of the fuel pump can be dispensed with.

Mit besonderem Vorteil ist die von der Heizungssteuerung steuerbare Einrichtung ein sogenannter Volustat. Darunter versteht man eine Einrichtung, welche gemäss einem Eingangssignal ein entsprechendes Fördervolumen liefert, das durch Widerstände in der Förderleitung praktisch nicht beeinflusst wird. Das Fördervolumen wird auch durch die Viskosität des Brennstoffs kaum beeinflusst. Bei der Verwendung eines Volustats ist es möglich, die Kraft, welche benötigt wird, um die beiden Axiallagerflächen auseinander oder zueinander zu bewegen, gering zu halten. Dies heisst mit anderen Worten, dass eine relativ weiche Feder mit einer flachen Federcharakteristik verwendet werden kann. Dies wiederum bedeutet, dass der Druck des flüssigen Brennstoffs im Mantel immer gering ist, so dass auch keine Dichtungsprobleme entstehen. Es müssen somit keine besonderen Vorkehrungen, z.B. Absaugung, getroffen werden, um eine gute Dichtung zu garantieren. Bei der Verwendung eines Volustats entstehen Drücke von etwa 0,3 bis 0,8 bar bei einem Brennstoffdurchsatz von 0,4 bis 2,5 kg pro Stunde.The device that can be controlled by the heating control is a so-called Volustat with particular advantage. This is understood to mean a device which, according to an input signal, delivers a corresponding delivery volume which is practically not influenced by resistances in the delivery line. The delivery volume is hardly influenced by the viscosity of the fuel. When using a Volustat, it is possible to keep the force required to move the two axial bearing surfaces apart or towards one another to a minimum. In other words, this means that a relatively soft spring with a flat spring characteristic can be used. This in turn means that the pressure of the liquid fuel in the jacket is always low, so that there are no sealing problems. No special precautions need to be taken, e.g. Suction, to ensure a good seal. When using a Volustat, pressures of about 0.3 to 0.8 bar are generated with a fuel throughput of 0.4 to 2.5 kg per hour.

Ein Ausführungsbeispiel der Erfindung wird nun unter Bezugnahme auf die Zeichnung beschrieben. Es zeigt:

  • Fig. eine Ansicht des Brenners,
  • Fig. 2 einen Schnitt durch den Brenner von Figur I,
  • Fig. 3 eine bevorzugte, vereinfachte Ausführungsform der leicht auswechselbaren Einheit 12 von Figur 2.
An embodiment of the invention will now be described with reference to the drawing. It shows:
  • 1 is a view of the burner,
  • 2 shows a section through the burner of FIG. I,
  • 3 shows a preferred, simplified embodiment of the easily exchangeable unit 12 from FIG. 2.

Der in der Zeichnung dargestellte Brenner besitzt einen Motor II, der dem Antrieb der Brennstoffpumpe 13, dem Lüfter 15 und der rotierbaren Vorrichtung 17 dient. Die rotierende Vorrichtung 17 stellt Teil einer leicht auswechselbaren Einheit 12 dar. Die rotierbare Vorrichtung 17 ist über die Antriebswelle 19 und die Kupplung 21 mit der in der Zeichnung nicht sichtbaren Motorwelle verbunden. Ein die Antriebswelle 19 umschliessender Mantel 23 dient als Brennstoffzufuhrorgan in einen Vergaserraum 25. Beim gezeigten Ausführungsbeispiel wird der Mantel 23 durch die Adapterhülse 27 und ein am vergaserseitigen Ende des Adapterrohrs eingesetztes Keramikrohr 29 gebildet. Das Keramikrohr ist durch die Schraube 31 fest mit der Adapterhülse verbunden und dient zugleich als Lager für die Antriebswelle 19. Statt aus den Teilen 27 und 29 könnte der Mantel 23 auch aus einem Stück Metall bestehen. Ein Keramiklager 29 hat aber den Vorteil, dass es sehr wärmebeständig ist und daher den hohen Temperaturen im Vergaserraum 25 widerstehen kann.The burner shown in the drawing has a motor II which serves to drive the fuel pump 13, the fan 15 and the rotatable device 17. The rotating device 17 is part of an easily replaceable unit 12. The rotating device 17 is connected via the drive shaft 19 and the coupling 21 to the motor shaft, which is not visible in the drawing. A jacket 23 enclosing the drive shaft 19 serves as a fuel supply element in a carburetor chamber 25. In the exemplary embodiment shown, the jacket 23 is formed by the adapter sleeve 27 and a ceramic tube 29 inserted at the end of the adapter tube on the carburetor side. The ceramic tube is firmly connected to the adapter sleeve by the screw 31 and also serves as a bearing for the drive shaft 19. Instead of the parts 27 and 29, the jacket 23 could also consist of a piece of metal. However, a ceramic bearing 29 has the advantage that it is very heat-resistant and can therefore withstand the high temperatures in the carburetor chamber 25.

In der Nähe des motorseitigen Endes der Adapterhülse 27 ist ein weiteres Lager 33 für die Antriebswelle 19 angeordnet. Vor diesem Lager befindet sich eine Gleitringdichtung 35. In einem Abstand hinter dem Lager 33 ist eine Lippendichtung 37 angeordnet.Another bearing 33 for the drive shaft 19 is arranged in the vicinity of the motor-side end of the adapter sleeve 27. A mechanical seal 35 is located in front of this bearing. A lip seal 37 is arranged at a distance behind the bearing 33.

Von der Druckseite der Brennstoffpumpe 13 führt die Leitung 39 zu einem Anschluss 41, der zum Raum 43 zwischen den beiden Lagern 29 und 33 führt. Ein weiterer Anschluss 45 dient der Absaugung von etwaigem Lecköl aus dem Raum 47 zwischen dem Lager 33 und der Dichtung 37. Von dem Anschluss 45 führt die Leitung 49 zur Saugseite der Brennstoffpumpe 13.From the pressure side of the fuel pump 13, the line 39 leads to a connection 41, which leads to the space 43 between the two bearings 29 and 33. Another connection 45 is used to extract any leakage oil from the space 47 between the bearing 33 and the seal 37. The line 49 leads from the connection 45 to the suction side of the fuel pump 13.

Von besonderer Bedeutung ist nun, dass sowohl am Keramikrohr 29 als auch an der rotierbaren Vorrichtung 17 Axiallagerflächen 51 bzw. 53 vorgesehen sind, und dass Stellmittel vorhanden sind, um diese Axiallagerflächen 51, 53 auseinander oder zueinander zu bewegen, um entsprechend dem Wärmebedarf Brennstoff aus dem Mantel 23 in der Vergaserraum 25 einzulassen. Als Stellmittel dienen einerseits eine Aussparung 55 bei einer Axiallagerfläche 53 und andererseits eine Schraubenfeder 57 im Raum 43 zwischen Antriebswelle 19 und der Adapterhülse 27.Ein Ende der Schraubenfeder 57 liegt am Stellring 59 an, der mit einer Schraube 61 auf der Antriebswelle 19 befestigt ist. Das andere Ende der Schraubenfeder 57 liegt an einem Gleiterring 63 an, der an einer Stirnfläche des Lagers 29 anliegt. Die Schraubenfeder 65 dient zum Andrücken der Gleitringdichtung 35 an das Lager 33.It is of particular importance that axial bearing surfaces 51 and 53 are provided both on the ceramic tube 29 and on the rotatable device 17, and that adjusting means are provided in order to move these axial bearing surfaces 51, 53 apart or towards one another in order to produce fuel in accordance with the heat requirement let the jacket 23 in the carburetor chamber 25. A recess 55 on an axial bearing surface 53 and a helical spring 57 in the space 43 between the drive shaft 19 and the adapter sleeve 27 serve as adjusting means. One end of the helical spring 57 rests on the adjusting ring 59, which is fastened to the drive shaft 19 with a screw 61. The other end of the coil spring 57 bears against a slide ring 63 which bears against an end face of the bearing 29. The coil spring 65 serves to press the mechanical seal 35 against the bearing 33.

Die Schraubenfeder 57 wirkt auf den Stellring 59 und ist daher bestrebt, die Axiallagerfläche 53 gegen die Axiallagerfläche 51 zu drücken. Solange dieser Druck gross genug ist, kann kein Brennstoff in den Vergaserraum 25 fliessen. Ist aber der Oeldruck in der durch die Aussparung 55 gebildeten Kammer gross genug, so bewegt er die Vorrichtung 17 entgegen der Kraft der Feder 57 in axialer Richtung nach rechts, so dass die beiden Axiallagerflächen 51 und 53 auseinanderrücken und einen Spalt freigeben, durch den Brennstoff in den Vergaserraum 25 fliessen kann. Je höher der Druck in der Leitung 39 ist, desto mehr öffnet sich der Spalt und desto mehr Brennstoff fliesst in den Vergaserraum 25. Um diesen Fluss zu ermöglichen, erstrecktsich eine Nute 67 in axialer Richtung vom Raum 43 zur Aussparung 55 in der Vorrichtung 17. Da sich die Vorrichtung 17 im Betrieb dreht, werden durch die Zentrifugalkraft die Brennstofftröpfchen mit hoher Geschwindigkeit in radialer Richtung in der Vergaserraum 25 geschleudert. Das Zersprühen des Brennstoffs wird noch dadurch erleichtert, dass an der Peripherie der Axiallagerfläche 51 eine Sprühkante 69 vorgesehen ist.The coil spring 57 acts on the adjusting ring 59 and is therefore endeavored to press the axial bearing surface 53 against the axial bearing surface 51. As long as this pressure is high enough, no fuel can flow into the carburetor chamber 25. However, if the oil pressure in the chamber formed by the recess 55 is large enough, it moves the device 17 against the force of the spring 57 in the axial direction to the right, so that the two axial bearing surfaces 51 and 53 move apart and release a gap through the fuel can flow into the carburetor chamber 25. The higher the pressure in the line 39, the more the gap opens and the more fuel flows into the carburetor chamber 25. To enable this flow, a groove 67 extends in the axial direction from the chamber 43 to the recess 55 in the device 17. Since the device 17 rotates during operation, the fuel droplets are thrown in the radial direction in the gasifier chamber 25 at high speed by the centrifugal force. The spraying of the fuel is further facilitated by the fact that a spraying edge 69 is provided on the periphery of the axial bearing surface 51.

Der Vergaserraum 25 weist im Bereich des Lagers 29 einen ringförmigen Lufteinlass 71 auf. Koaxial zu diesem Lufteinlass 71 befindet sich ein ringförmiger Rezirkulationseinlass 73, durch den heisse Brenngase von der Flamme her in die Vergaserkammer zurückströmen können. Beim Rezirkulationseinlass 73 ist an der Wandung des Vergasergehäuses 75 eine elektrische Heizung 77 angeordnet. Das Vergasergehäuse 75 wird durch ein ungefähr zylindrisches oder konisches Rohr gebildet. Die Innenseite dieses Rohrs 75 ist mit einem oberflächenvergrössernden Einsatz 79, z.B. einem Metallgewebe, versehen. Dadurch wird die Verdampfung des Brennstoffes erleichtert. Koaxial und in einem Abstand zum Vergaserraum ist ein Flammrohr 81 vorgesehen. Das Flammrohr 81 wird durch einen Ring 83 in einen vorderen Teil 85 und einen hinteren Teil 87 unterteilt. Im vorderen Teil 85, der das eigentliche Flammrohr bildet, befindet sich ein rohrförmiger Einsatz 89 aus wärmeisolierenden Keramikfasern.The carburetor chamber 25 has an annular air inlet 71 in the area of the bearing 29. Coaxial with this air inlet 71 is an annular recirculation inlet 73 through which hot fuel gases came into the gasifier from the flame can flow back. At the recirculation inlet 73, an electrical heater 77 is arranged on the wall of the carburetor housing 75. The carburetor housing 75 is formed by an approximately cylindrical or conical tube. The inside of this tube 75 is provided with a surface-increasing insert 79, for example a metal mesh. This facilitates the evaporation of the fuel. A flame tube 81 is provided coaxially and at a distance from the carburetor chamber. The flame tube 81 is divided by a ring 83 into a front part 85 and a rear part 87. In the front part 85, which forms the actual flame tube, there is a tubular insert 89 made of heat-insulating ceramic fibers.

Auf der Adapterhülse 27 ist mit den Schrauben 91 ein Support 93 befestigt, welcher die Zündelektrode 95 und die Luftblende 96 trägt. In der Luftblende 96 befindet sich der Lufteinlass 71. Zwischen der Luftblende 96 und dem mit dem Flammrohr 81 verbundenen Ring 83 befindet sich eine ringförmige wärmebeständige Dichtung 91'. Die rotierbare Vorrichtung 17 ist beim gezeigten Ausführungsbeispiel als ein mit Schaufeln 98 versehener Rotor ausgebildet. Die Schaufeln 98 reichen bis in die Nähe der Innenwandung des Vergasergehäuses 75. Sie bewirken eine gute Durchmischung von Brennstoff, Luft und rezirkuliertem Gas, wobei das durch die Schaufeln 98 verdichtete Gemisch durch eine ringförmige Oeffnung 99 zwischenvergasergehäuse 75 und Rotor 17 ausfliessen kann.A support 93 is fastened on the adapter sleeve 27 with the screws 91 and carries the ignition electrode 95 and the air screen 96. The air inlet 71 is located in the air panel 96. Between the air panel 96 and the ring 83 connected to the flame tube 81 there is an annular heat-resistant seal 91 '. In the exemplary embodiment shown, the rotatable device 17 is designed as a rotor provided with blades 98. The blades 98 extend into the vicinity of the inner wall of the carburetor housing 75. They bring about a good mixing of fuel, air and recirculated gas, the mixture compressed by the blades 98 being able to flow out through an annular opening 99 between the carburetor housing 75 and the rotor 17.

Der Rotor 17 ist mit einer Schraube 18 am Ende der Antriebswelle 19 befestigt. Das Ende des Rotors 17 wird durch eine Platte 20 abgedeckt.The rotor 17 is fastened with a screw 18 at the end of the drive shaft 19. The end of the rotor 17 is covered by a plate 20.

Aus der Zeichnung ist ersichtlich, dass das Flammrohr 81 leicht durch Lösen von Schrauben 16 vom Lüftergehäuse 14 weggenommen werden kann. Für Servicearbeiten kann nach dem Lösen der Brennstoffleitungsanschlüsse 41, 45 und der Schraube 24 auch die Einheit 12 entfernt werden. Diese Einheit 12 umfasst im wesentlichen den Mantel 23 mit der ganzen Mechanik, dem Vergaser 25 und der Zündelektrode 95.From the drawing it can be seen that the flame tube 81 can be easily removed from the fan housing 14 by loosening screws 16. For service work, the unit 12 can also be removed after loosening the fuel line connections 41, 45 and the screw 24. This unit 12 essentially comprises the casing 23 with all the mechanics, the carburetor 25 and the ignition electrode 95.

Es ist eine von der Heizungssteuerung 26 steuerbare Einrichtung 22 vorgesehen, um die Brennstoffzufuhr zu regeln. Die handelsüblichen Brennstoffpumpen weisen in der Regel Mittel, z.B. ein Druckreduzierventil, auf, mit welchen der gewünschte Pumpendruck manuell eingestellt werden kann. Anstelle der manuellen Einstellung ist beim Brenner gemäss dem vorliegenden Ausführungsbeispiel ein Stellorgan vorgesehen. Die steuerbare Einrichtung 22 besteht also bei diesem Ausführungsbeispiel aus einem Stellorgan und den genannten Mitteln zur Einstellung des Pumpendrucks. Die Einrichtung 22 ist durch die Heizungssteuerung 26 betätigbar. Im einfachsten Fall ist das Stellorgan ein Solenoid, mit welchem der Pumpendruck beispielsweise von 2 bar auf 4 bar entsprechend dem Wärmebedarf geändert wird. Der Brenner arbeitet dann als zweistufiger Brenner. Bei der Verwendung von zwei Solenoiden sind auch vier verschiedene Stufen möglich. Wird jedoch ein Stellmotor verwendet, so ist es möglich, den Pumpendruck stufenlos von beispielsweise 0,5 bis 5 bar zu regeln.A device 22 that can be controlled by the heating controller 26 is provided in order to regulate the fuel supply. The commercially available fuel pumps usually have means, e.g. a pressure reducing valve, with which the desired pump pressure can be set manually. Instead of the manual setting, an actuator is provided in the burner according to the present exemplary embodiment. In this exemplary embodiment, the controllable device 22 consists of an actuator and the means mentioned for setting the pump pressure. The device 22 can be actuated by the heating control 26. In the simplest case, the actuator is a solenoid, with which the pump pressure is changed, for example, from 2 bar to 4 bar according to the heat requirement. The burner then works as a two-stage burner. When using two solenoids, four different levels are also possible. However, if a servomotor is used, it is possible to continuously regulate the pump pressure from, for example, 0.5 to 5 bar.

Beim Start wird zuerst durch die Heizungssteuerung 26 die elektrische Heizung 77 während etwa zwei Minuten eingeschaltet. Während dieser Zeit wird die Heizung 77 und der benachbarte Einsatz 79 auf ca. 550° erhitzt. Nach Ablauf dieser Vorheizzeit erfolgt die eigentliche Startphase in üblicher Weise wie bei einem Zerstäuberbrenner. Der Druck des Brennstoffs in der Aussparung 55 verursacht eine Kraft, welche bestrebt ist, den Rotor 17 in axialer Richtung entgegen der Kraft der Schraubenfeder 57 nach rechts zu bewegen, so dass zwischen den Axiallagerflächen 51 und 53 ein Spalt geöffnet wird, durch den Brennstoff in den Vergaserraum 25 geschleudert wird. Beim Auftreffen der Öltröpfchen auf die heisse Oberfläche des Einsatzes 79 entsteht ein Öldampf, der durch den Rotor 17 mit der Verbrennungsluft vermischt wird. Beim Austritt des Gemischs aus dem Spalt 99 wird es durch die Elektrode 95 gezündet, wobei sofort eine blaue Flamme entsteht. Ein Teil der nun entstehenden Heissgase wird durch die Injektorwirkung der durch den Lufteinlass 71 eintretenden Luft angesaugt und fliesst durch den Raum zwischen Vergasergehäuse 75 und Einsatz 89 zum Rezirkulationseinlass 73 und durch diesen in den Vergaserraum. Diese heissen Verbrennungsgase sorgen von nun an für die für die Verdampfung notwendige Wärmezufuhr, so dass nach der Startphase die elektrische Heizung 77 völlig abgeschaltet werden kann. Da sich während des Betriebs sowohl der Rotor 17 als auch das Lager 29 erwärmt, wird das ÖI vor dem Versprühen aufgeheizt. Ein zusätzlicher Ölvorwärmer ist daher nicht nötig. Durch die zurückgeführten Verbrennungsgase erfolgt eine starke Aufheizung aller Vergaserteile, so dass dank der Anwesenheit von Sauerstoff eine kontinuierliche Selbstreinigung erfolgt.At the start, the heater control 26 first turns on the electric heater 77 for about two minutes. During this time, the heater 77 and the adjacent insert 79 are heated to approximately 550 ° . After this preheating time has elapsed, the actual starting phase takes place in the usual way as with an atomizer burner. The pressure of the fuel in the recess 55 causes a force which tends to move the rotor 17 to the right in the axial direction against the force of the coil spring 57, so that a gap is opened between the axial bearing surfaces 51 and 53 by the fuel in the carburetor chamber 25 is thrown. When the oil droplets strike the hot surface of the insert 79, an oil vapor is formed which is mixed with the combustion air by the rotor 17. When the mixture emerges from the gap 99, it is ignited by the electrode 95, and a blue flame immediately arises. Some of the hot gases that are now produced are sucked in by the injector effect of the air entering through the air inlet 71 and flows through the space between the carburetor housing 75 and the insert 89 to the recirculation inlet 73 and through this into the carburetor chamber. From now on, these hot combustion gases ensure the heat supply necessary for the evaporation, so that after the start-up phase the electric heater 77 can be switched off completely. Since both the rotor 17 and the bearing 29 heat up during operation, the oil is heated before spraying. An additional oil preheater is therefore not necessary. Due to the recirculated combustion gases, all parts of the carburettor are heated up so that, thanks to the presence of oxygen, continuous self-cleaning takes place.

Wie bereits vorher näher ausgeführt wurde, kann der Öldurchsatz entsprechend dem Heizbedarf in einzelnen Stufen oder stufenlos verändert werden. In der Abstellphase, wenn der Öldruck in der Leitung 39 fällt, bewirkt die Schraubenfeder 57 eine axiale Bewegung des Rotors 17 nach links, so dass die Axiallagerfläche 51 auf der Axiallagerfläche 53 wieder anliegt und kein Brennstoff mehr austreten kann. Dadurch wird ein Nachbrennen sicher verhindert.As has already been explained in more detail earlier, the oil throughput can be changed in individual stages or continuously depending on the heating requirement. In the shutdown phase, when the oil pressure in the line 39 drops, the helical spring 57 causes the rotor 17 to move axially to the left, so that the axial bearing surface 51 rests on the axial bearing surface 53 and no more fuel can escape. This reliably prevents afterburning.

Es ist noch zu beachten, dass etwaiges Lecköl aus dem Raum 47 über die Leitung 49 ständig abgesaugt wird. Sollte die Lippendichtung 37 defekt werden, so saugt die Pumpe 13 über das entstandene Leck Luft an, so dass der Brenner auf Störung geht.It should also be noted that any leakage oil is constantly sucked out of the space 47 via the line 49. Should the lip seal 37 become defective, the pump 13 draws in air via the leak that has occurred, so that the burner goes into a fault.

Es ist bereits bei der Beschreibung von Figur 2 erwähnt worden, dass das Flammrohr 81 durch Lösen von Schrauben 16 vom Lüftergehäuse 14 leicht entfernt werden kann. Auch die Einheit 12 kann leicht entfernt werden. Figur 3 zeigt nun ein bevorzugtes Ausführungsbeispiel der Einheit 12. Sie ist konstruktiv wesentlich einfacher als die in Figur 2 gezeigte Einheit 12 und daher auch erheblich billiger in der Herstellung.It has already been mentioned in the description of FIG. 2 that the flame tube 81 can be easily removed from the fan housing 14 by loosening screws 16. The unit 12 can also be easily removed. Figure 3 now shows a preferred embodiment of the unit 12. It is structurally much simpler than the unit 12 shown in Figure 2 and therefore also significantly cheaper to manufacture.

Bei der in Figur 3 gezeigten Einheit 12 wird die rotierbare Vorrichtung 17 wiederum über die Antriebswelle 19 und die Kupplung 21 vom Motor II (Figur I) des Brenners angetrieben. Ein die Antriebswelle 19 umschliessender Mantel 23 dient als Brennstoffzufuhrorgan in den Vergaserraum 25. Der Mantel 23 wird durch die Adapterhülse 27 und die Lager 29 und 33 gebildet. Die Lager 29 und 33 bestehen vorteilhaft aus einem geeigneten Lagermaterial, z.B. einem Sintermaterial. Es wäre auch möglich, den Mantel 23 aus einem einzigen Stück Metall zu bilden. Am Ende der Hülse 23 ist mittels eines Federrings 36 eine Lippendichtung 37 befestigt.In the unit 12 shown in FIG. 3, the rotatable device 17 is in turn driven by the motor II (FIG. I) of the burner via the drive shaft 19 and the clutch 21. A the drive shaft 19th enclosing jacket 23 serves as a fuel supply member in the carburetor chamber 25. The jacket 23 is formed by the adapter sleeve 27 and the bearings 29 and 33. The bearings 29 and 33 advantageously consist of a suitable bearing material, for example a sintered material. It would also be possible to form the jacket 23 from a single piece of metal. At the end of the sleeve 23, a lip seal 37 is fastened by means of a spring ring 36.

Wie schematisch angedeutet, ist ein Anschluss 41 vorgesehen, an welchen die Leitung 39 angeschlossen werden kann, welche der Brennstoffzufuhr dient.As indicated schematically, a connection 41 is provided, to which the line 39 can be connected, which is used to supply fuel.

Von besonderer Bedeutung ist wiederum, dass Axiallagerflächen 51 bzw. 53 vorgesehen sind, und dass Stellmittel vorhanden sind, um diese Axiallagerfläche 51, 53 auseinander oder zueinander zu bewegen, um Brennstoff aus dem Mantel 23 in den Vergaserraum 25 einzulassen. Als Stellmittel dienen einer seits eine Aussparung 55 bei einer Axiallagerfläche 51 und andererseits eine Schraubenfeder 57. Ein Ende der Schraubenfeder 57 liegt am Stellring 59 an, der mit einer Schraube 61 auf der Antriebswelle 19 befestigt ist. Das andere Ende der Schraubenfeder 57 liegt an einem Gleiterring 63 an, der an einer Stirnfläche des Lagers 33 anliegt.It is again of particular importance that axial bearing surfaces 51 and 53 are provided, and that adjusting means are provided in order to move these axial bearing surfaces 51, 53 apart or towards one another in order to admit fuel from the jacket 23 into the carburetor chamber 25. On the one hand, a recess 55 in an axial bearing surface 51 and, on the other hand, a helical spring 57 serve as adjusting means. One end of the helical spring 57 rests on the adjusting ring 59, which is fastened with a screw 61 on the drive shaft 19. The other end of the coil spring 57 bears against a slide ring 63 which bears against an end face of the bearing 33.

Die Schraubenfeder 57 wirkt auf den mit der Antriebswelle 19 verbundenen Stellring 59 und ist daher bestrebt, die Axiallagerfläche 51 gegen die Axiallagerfläche 53 zu drücken. Solange dieser Druck gross genug ist, kann kein Brennstoff in den Vergaserraum 25 fliessen. Ist aber der Oeldruck in der durch die Aussparung 55 gebildeten Kammer gross genug, so bewegt er die Vorrichtung 17 entgegen der Kraft der Feder 57 in axialer Richtung nach rechts, so dass die beiden Axiallagerflächen 51 und 53 auseinanderrücken und einen Spalt freigeben, durch den Brennstoff in den Vergaserraum 25 fliessen kann. Je höher der Druck der Leitung 39 ist, desto mehr öffnet sich der Spalt und desto mehr Brennstoff fliesst in den Vergaserraum 25. Um diesen Fluss zu ermöglichen, erstreckt sich eine Nute 67 in axialer Richtung vom Raum 43 zur Aussparung 55. Da sich die Vorrichtung 17 im Betrieb dreht, werden durch die Zentrifugalkraft die Brennstofftröpfchen mit hoher Geschwindigkeit in radialer Richtung in den Vergaserraum 25 geschleudert. Das Versprühen des Brennstoffs wird noch dadurch erleichtert, dass am rotierenden Teil 70 eine Sprühkante 69 vorgesehen ist. Der rotierende Teil 70 ist mit der Schraube 18 zusammen mit der Vorrichtung 17 fest mit der Antriebswelle 19 verbunden.The helical spring 57 acts on the adjusting ring 59 connected to the drive shaft 19 and therefore endeavors to press the axial bearing surface 51 against the axial bearing surface 53. As long as this pressure is high enough, no fuel can flow into the carburetor chamber 25. However, if the oil pressure in the chamber formed by the recess 55 is large enough, it moves the device 17 against the force of the spring 57 in the axial direction to the right, so that the two axial bearing surfaces 51 and 53 move apart and release a gap through the fuel can flow into the carburetor chamber 25. The higher the pressure of the line 39, the more the gap opens and the more fuel flows into the carburetor chamber 25. In order to enable this flow, a groove 67 extends in the axial direction from the chamber 43 to the recess 55. Since the device 17 rotates during operation, the fuel droplets are thrown at high speed in the radial direction into the carburetor chamber 25 by the centrifugal force. The spraying of the fuel is further facilitated in that a spraying edge 69 is provided on the rotating part 70. The rotating part 70 is firmly connected to the drive shaft 19 with the screw 18 together with the device 17.

Der Vergaserraum 25 weist im Bereich des Lagers 29 einen ringförmigen Lufteinlass 71 auf. Dieser Lufteinlass wird durch den konischen Teil 72 der Luftblende 96 gebildet.The carburetor chamber 25 has an annular air inlet 71 in the area of the bearing 29. This air inlet is formed by the conical part 72 of the air screen 96.

Durch diese konische Ausgestaltung wird eine vorteilhafte Luftströmung in den Vergaserraum bewirkt, der die Rezirkulation der heissen Brenngase begünstigt. Koaxial zum Lufteinlass 71 befindet sich nämlich ein ringförmiger Rezirkulationseinlass 73, durch den die heissen Brenngase von der Flamme her in die Vergaserkammer 25 zurückströmen können. Beim Rezirkulationseinlass 73 ist an der Wandung des Vergasergehäuses 75 eine elektrische Heizung 77 angeordnet. Das Vergasergehäuse 75 wird durch ein ungefähr zylindrisches Rohr gebildet. Die Innenseite dieses Rohrs 75 ist mit einem Oberflächen vergrössernden Einsatz 79, z.B. einem Metallgewebe, versehen. Das die Einheit 12 umschliessende Flammrohr 81 ist in Figur 3 strichpunktiert angedeutet. In bezug auf das Flammrohr 81 wird auf die Beschreibung von Figur 2 verwiesen.This conical configuration results in an advantageous air flow into the gasification chamber, which favors the recirculation of the hot fuel gases. Coaxial with the air inlet 71 is namely an annular recirculation inlet 73 through which the hot fuel gases can flow back into the gasification chamber 25 from the flame. At the recirculation inlet 73, an electrical heater 77 is arranged on the wall of the carburetor housing 75. The carburetor housing 75 is formed by an approximately cylindrical tube. The inside of this tube 75 is provided with a surface-increasing insert 79, e.g. a metal mesh. The flame tube 81 surrounding the unit 12 is indicated by dash-dotted lines in FIG. With regard to the flame tube 81, reference is made to the description of FIG. 2.

Auf der Adapterhülse 27 ist mit Schrauben 91 ein Support 93 befestigt, welcher die in Figur 3 nicht dargestellte Zündelektrode 95 (Figur 2) und die Luftblende 96 trägt.On the adapter sleeve 27, a support 93 is fastened with screws 91, which supports the ignition electrode 95 (FIG. 2) (not shown in FIG. 3) and the air panel 96.

Die rotierbare Vorrichtung 17 ist auch beim Ausführungsbeispiel von Figur 3 als ein mit Schaufeln 98 versehener Rotor ausgebildet.In the exemplary embodiment in FIG. 3, the rotatable device 17 is also designed as a rotor provided with blades 98.

Für das Ausführungsbeispiel mit der leicht auswechselbaren Einheit 12 von Figur 3 wird vorteilhaft als steuerbare Einrichtung 22 ein Volustat verwendet. Es handelt sich dabei um ein Gerät, das ein einem angelegten Steuersignal entsprechendes Fördervolumen liefert. Bei der Verwendung eines Volustats braucht die Feder 57 nur eine Schliessfunktion beim Abstellen des Brenners zu erfüllen. Die Feder 57 kann somit eine flache Federcharakteristik aufweisen und relativ weich sein. Infolgedessen herrschen im Mantel 23 nur geringe Drücke. Sie reichen bei einem Kleinbrenner von etwa 0,2 bis etwa 0,6 bar entsprechend einem Brennstoffdurchsatz von 0,4 bis 2,5 kg pro Stunde. Bei diesen Drücken reicht die Dichtung 37 grundsätzlich aus, so dass auf weitere Dichtungsmassnahmen, wie sie beim Ausführungsbeispiel von Figur 2 vorgesehen sind, in der Regel verzichtet werden kann. Es ist aber dem Fachmann ersichtlich, dass ein Volustat 22 auch in Kombination mit einer Einheit 12 gemäss Figur 2 verwendet werden könnte.For the exemplary embodiment with the easily replaceable unit 12 from FIG. 3, a Volustat is advantageously used as the controllable device 22. It is a device that delivers a delivery volume corresponding to an applied control signal. When using a Volustat, the spring 57 only has to perform a closing function when the burner is switched off. The spring 57 can thus have a flat spring characteristic and be relatively soft. As a result, there are only slight pressures in the jacket 23. With a small burner, they range from about 0.2 to about 0.6 bar, corresponding to a fuel throughput of 0.4 to 2.5 kg per hour. At these pressures, the seal 37 is generally sufficient, so that further sealing measures, such as are provided in the exemplary embodiment in FIG. 2, can generally be dispensed with. However, it is apparent to the person skilled in the art that a Volustat 22 could also be used in combination with a unit 12 according to FIG. 2.

Versuche haben ergeben, dass beim erfindungsgemässen Brenner etwa 50 Prozent weniger Stickoxide erzeugt werden als bei einem normalen Zerstäuberbrenner. Es wird vermutet, dass dies darauf zurückzuführen ist, dass die Verbrennung nicht wie bei einem Zerstäuberbrenner auf einen relativ kleinen Raum begrenzt ist, sondern sich über einen relativ grossen Raum erstreckt, so dass eine relativ niedrige Flammentemperatur entsteht.Tests have shown that about 50 percent less nitrogen oxides are generated in the burner according to the invention than in a normal atomizer burner. It is believed that this is due to the fact that the combustion is not limited to a relatively small space as in an atomizing burner, but extends over a relatively large space, so that a relatively low flame temperature arises.

Claims (22)

1. A burner comprising a motor (11) to drive a fan (15) and/or a fuel pump (13); a gasification chamber (25) formed by a housing (75), said gasification chamber (25) being provided with at least one heatable wall; rotatable means (17) located in the gasification chamber (25), said rotatable means (17) having a drive shaft (19) coupled to the motor (11); and a sleeve (23) enclosing the drive shaft (19) and serving as fuel supply means into the gasification chamber (25); characterized in that a first axial bearing surface (51) is provided by the end of the sleeve (23) located proximate to the gasification chamber (25), that the rotatable means (17) provide a second axial bearing surface (53), and that actuating means (55, 57) are provided to move the two axial bearing surfaces (51, 53) apart from each other or toward each other to supply fuel into the gasification chamber (25) according to the heating requirements, or to stop fuel supply.
2. The burner according to claim 1, characterized in that the actuating means comprise hydraulic means (55) and a spring (75).
3. The burner according to claim 2, characterized in that the hydraulic means are formed by a recess (55) adjacent to the axial bearing surface (53).
4. The burner according to claim 2 or 3, characterized in that the spring (57) is a helical spring located in a space (43) between the drive shaft (19) and the sleeve (23), said helical spring resting with one end at a flange or setting ring (59) of the drive shaft (19) and with the other end at a slip ring (63) which itself rests on a shoulder of the sleeve (23).
5. The burner according to one of the claims 1 to 4, characterized in that at the periphery of an axial bearing surface (51; 53) a spray rim (69) is located.
6. The burner according to one of the claims 1 to 5, characterized in that the end of the sleeve located proximate to the gasification chamber (25) is formed by a ceramic tube (29).
7. The burner according to claim 6, characterized in that the ceramic tube (29) is also a bearing for the drive shaft (19) of the rotatable means (17).
8. The burner according to one of the claims 1 to 7, characterized in that in the region of the sleeve (23) enclosing in the drive shaft (19) the gasification chamber (25) comprises an air inlet (71).
9. The burner according to claim 8, characterized in that the gasification chamber (25) comprises a recirculation gas inlet (73).
10. The burner according to claim 9, characterized in that the air inlet (71) and the recirculation gas inlet (73) are arranged coaxially.
11. The burner according to claim 10, characterized in that the recirculation gas inlet (73) is located at the periphery of the air inlet (71).
12. The burner according to one of the claims 1 to 11, characterized in that, proximate to the recirculation gas inlet (73) an electric heater (77) is located on the wall of the housing of the gasification chamber (25).
13. The burner according to one of the claims 1 to 12, characterized in that the housing (75) is formed by a substantially cylindrical or conical tube.
14. The burner according to claim 13, characterized in that the inner surface of the tube (75) is provided with a surface increasing insert, e.g. a metal gauze (79).
15. The burner according to one of the claims 1 to 14, characterized in that the rotatable means (17) are provided by a rotor having blades extending close to the inner surface of the tube (75).
16. The burner according to claim 15, characterized in that between the end of the rotor and the housing (75) a slot (99) is provided as an outlet for the gas/air mixture.
17. The burner according to one of the claims 1 to 16, characterized in that a flame tube (81) is located coaxially to and at a distance to the gasification chamber (25).
18. The burner according to one of the claims 1 to 17, characterized in that a control device (22) controllable by the heating control (24) to control the supply of fuel is provided.
19. The burner according to one of the claims 7 to 18, characterized in that near the end of the sleeve (23) located near the motor, a further bearing (33) is located, and that on the side of the further bearing (33) distant from the motor a connector for the pressure side of the fuel pump (13) is located on the sleeve (23) and that on the other side of said further bearing (33) a connector (45) is provided for the suction side of the fuel pump (13).
20. The burner according to one of the claims 1 to 5, characterized in that the sleeve (23) comprises two bearings (29, 33) spaced from each other for support the drive shaft (19), a space (43') being provided between the bearings (29, 33), said space (43') serving as fuel duct; in that a connector (41) for the fuel supply is provided, and in that a duct (67) from said space (43') to the recess (55) in the axial bearing surface (53) is provided.
21. The burner according to one of the claims 8 to 20, characterized in that the air inlet has a conical section (72).
22. The burner according to one of the claims 18 to 21, characterized in that control device (22) controlled by the heating control (26) is a volustat.
EP86810577A 1985-12-30 1986-12-10 Burner, particularly burner for burning liquid fuel in gaseous state Expired EP0232677B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86810577T ATE45417T1 (en) 1985-12-30 1986-12-10 BURNERS, ESPECIALLY BURNERS FOR COMBUSTION OF LIQUID FUELS IN THE GASEOUS STATE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5568/85 1985-12-30
CH556885 1985-12-30

Publications (2)

Publication Number Publication Date
EP0232677A1 EP0232677A1 (en) 1987-08-19
EP0232677B1 true EP0232677B1 (en) 1989-08-09

Family

ID=4295749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86810577A Expired EP0232677B1 (en) 1985-12-30 1986-12-10 Burner, particularly burner for burning liquid fuel in gaseous state

Country Status (4)

Country Link
US (1) US4712997A (en)
EP (1) EP0232677B1 (en)
AT (1) ATE45417T1 (en)
DE (1) DE3664956D1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154597A (en) * 1987-03-13 1992-10-13 Vth Ag Verfahrenstechnik Fur Heizung Burner for combustion of gasified liquid fuels
DE3861600D1 (en) * 1987-03-13 1991-02-28 Fuellemann Patent Ag Brenner.
US5015173A (en) * 1988-06-09 1991-05-14 Vth Ag Verfahrenstechnik Fur Heizung Burner for the combustion of liquids in the gaseous state
EP0595419B1 (en) * 1992-10-30 1999-05-26 Shell Internationale Researchmaatschappij B.V. Liquid fuel burner
US5834869A (en) * 1997-06-02 1998-11-10 Emerson Electric Co. Blower motor housing
DE19981766D2 (en) * 1998-09-01 2001-11-22 Toby Ag Solothurn Burners for liquid fuels
US8070480B2 (en) * 2003-11-21 2011-12-06 Associated Physics Of America, Llc Method and device for combusting liquid fuels using hydrogen
ES1135492Y (en) * 2014-12-11 2015-04-13 Eika S Coop Radiant light adapted to a cooking hob

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1648923A (en) * 1924-10-06 1927-11-15 Penberthy Injector Co Oil burner
US3021892A (en) * 1959-01-07 1962-02-20 Gen Thermique Procedes Brola S Burner apparatus
US3640673A (en) * 1969-07-22 1972-02-08 Matsushita Electric Ind Co Ltd Liquid fuel burner
DE2700671C2 (en) * 1977-01-08 1988-07-28 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Blue-burning oil burner
EP0036128B1 (en) * 1980-03-14 1984-07-25 Stoechio-Matic AG Burner for the combustion of liquid fuels in the gaseous state
DE3123078A1 (en) * 1981-06-11 1982-12-30 Buderus Ag, 6330 Wetzlar CONTINUOUSLY ADJUSTABLE OIL BLOWING BURNER
US4509914A (en) * 1981-12-14 1985-04-09 Stoechio-Matic Ag Apparatus for the combustion of liquid fuels in the gaseous state
ATE37224T1 (en) * 1984-06-25 1988-09-15 Vth Ag BURNERS, ESPECIALLY BURNERS FOR COMBUSTION OF LIQUID FUELS IN THE GASEOUS STATE.

Also Published As

Publication number Publication date
US4712997A (en) 1987-12-15
EP0232677A1 (en) 1987-08-19
DE3664956D1 (en) 1989-09-14
ATE45417T1 (en) 1989-08-15

Similar Documents

Publication Publication Date Title
EP0927321B1 (en) Pre-vaporizing and pre-mixing burner for liquid fuels
CH628724A5 (en) BLUE-BURNING OIL BURNER.
EP1110033B1 (en) Burner for liquid fuel
EP0232677B1 (en) Burner, particularly burner for burning liquid fuel in gaseous state
EP0166329B1 (en) Burner, especially a burner for burning liquid fuel in the gaseous state
CH654392A5 (en) LIQUID FUEL BURNER.
EP0283435B1 (en) Burner
EP0346284B1 (en) Burner for the combustion of liquid fuel in the gaseous phase
DE4216523C2 (en) Burner for a heater operated with liquid fuel, in particular vehicle auxiliary heater
EP0109585B1 (en) Vaporizing oil burner comprising an oil atomizing device
EP0036128B1 (en) Burner for the combustion of liquid fuels in the gaseous state
DE10347509B4 (en) Heater with a spray nozzle
DE2751524A1 (en) Oil burner with blue combustion flame - recirculates combustion gases and has specified length to dia. ratios for mixing and flame tubes
WO1999060306A1 (en) Premix burner for liquid fuels
DE3103684A1 (en) Oil burner
DE7910213U1 (en) OIL BURNER
EP0067271A2 (en) Continuously regulated oil burner and fan unit
DE102007023299B4 (en) Method of flame modeling and blower burner for carrying out the method
WO2023023873A1 (en) Method for burning a liquid or gaseous fuel in a boiler, boiler for carrying out the method and thermal bath having a boiler
EP0180657B1 (en) Burner for low-volatility fuels
WO2007098735A2 (en) Combustion process and fuel reservoir therefor
DD228987A3 (en) COAL DUST pilot burner
EP0054599A1 (en) Burner for liquid fuel
DE8102807U1 (en) OIL BURNER
DE1924386A1 (en) Burners for generating hot gases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19870919

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VTH AG VERFAHRENSTECHNIK FUER HEIZUNG

17Q First examination report despatched

Effective date: 19880616

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19890809

Ref country code: NL

Effective date: 19890809

Ref country code: BE

Effective date: 19890809

Ref country code: SE

Effective date: 19890809

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19890809

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19890809

Ref country code: GB

Effective date: 19890809

REF Corresponds to:

Ref document number: 45417

Country of ref document: AT

Date of ref document: 19890815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3664956

Country of ref document: DE

Date of ref document: 19890914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19891120

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891231

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: FUELLEMANN PATENT AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960130

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19961231

Ref country code: LI

Effective date: 19961231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902