EP0166329B1 - Burner, especially a burner for burning liquid fuel in the gaseous state - Google Patents
Burner, especially a burner for burning liquid fuel in the gaseous state Download PDFInfo
- Publication number
- EP0166329B1 EP0166329B1 EP85107391A EP85107391A EP0166329B1 EP 0166329 B1 EP0166329 B1 EP 0166329B1 EP 85107391 A EP85107391 A EP 85107391A EP 85107391 A EP85107391 A EP 85107391A EP 0166329 B1 EP0166329 B1 EP 0166329B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burner
- burner according
- gasification chamber
- rotor
- gasification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 48
- 239000007788 liquid Substances 0.000 title claims abstract description 6
- 238000002309 gasification Methods 0.000 claims abstract description 79
- 238000002485 combustion reaction Methods 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 238000001704 evaporation Methods 0.000 claims abstract description 10
- 238000007599 discharging Methods 0.000 claims abstract 2
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910010293 ceramic material Inorganic materials 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 239000004809 Teflon Substances 0.000 claims description 2
- 229920006362 Teflon® Polymers 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000010992 reflux Methods 0.000 claims 5
- 238000010438 heat treatment Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000011084 recovery Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000004071 soot Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 241001156002 Anthonomus pomorum Species 0.000 description 2
- 206010065929 Cardiovascular insufficiency Diseases 0.000 description 2
- 235000009781 Myrtillocactus geometrizans Nutrition 0.000 description 2
- 240000009125 Myrtillocactus geometrizans Species 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/04—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying action being obtained by centrifugal action
- F23D11/06—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying action being obtained by centrifugal action using a horizontal shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/005—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space with combinations of different spraying or vaporising means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/44—Preheating devices; Vaporising devices
- F23D11/441—Vaporising devices incorporated with burners
Definitions
- the invention relates to a burner, in particular a burner for burning liquid fuels in the gaseous state.
- the burner is also suitable for the combustion of suspensions of solid fuels in a carrier liquid.
- the burner has a gasification chamber formed by a housing and a rotor arranged in the gasification chamber and provided with blades and driven by a motor, the gasification chamber having inlet means for fuel and air, a wall surface which can be heated electrically and / or by the flame of the burner for the evaporation of the Has fuel and means for outlet of the fuel / air mixture generated.
- gasification burners In contrast to atomizing burners, gasification burners have the advantage that they can be regulated continuously to very low outputs in accordance with the heating requirement, the aforementioned disadvantages being avoided. Furthermore, combustion significantly reduces the emission of pollutants, for example unburned hydrocarbons and soot.
- gasification burners Despite the many advantages that gasification burners have, they are only used to a small extent. A major reason for this is that most gasification burners need a lot of maintenance. With many gasification burners, undesirable deposits can form in the gasification chamber, which will soon significantly impair the effectiveness of the gasification.
- EP-A 0 036 128 describes a carburetor burner with a carburetor chamber which has no air inlet openings and in which a wiper which rotates quickly with a motor is accommodated in order to finely distribute the fuel on the heated carburetor walls and to prevent the formation of deposits that there is no harmful influence of deposits on the evaporation of the fuel.
- the gas formed in the gasification chamber leaves the chamber through a nozzle at a relatively high speed.
- the combustion air is conveyed by a fan.
- This burner has the advantage that it requires little maintenance and is reliable in operation.
- the disadvantage is that, in contrast to other gasification burners, where fuel and air are mixed before combustion in the gasification chamber, it causes more noise. Since only the fuel is heated at the start, but not the air before the combustion, cold start problems can arise. It is also disadvantageous that after-burning takes place with a sooting flame, unless particularly expensive measures are taken to prevent the further escape of gasified fuel.
- EP-A 0067271 shows an oil burner with a heated evaporation device having air inlet openings.
- This is cup-shaped, air inlet openings being provided on the bottom of the cup.
- a rotating cylinder for oil distribution, which fills the evaporator space in the cup to a small gap.
- oil is supplied to the rotating cylinder via a hollow drive shaft, which is then thrown by centrifugal force from the radial bores in the rotating cylinder onto the inner walls of the evaporator chamber.
- oil burners of this type have not found commercial use. It is disadvantageous that the gasification chamber tends to become contaminated, the air inlet or the air / gas mixture outlet being disturbed.
- US-A 3640673 describes a burner for a petroleum oven, in which a fan is arranged in a gasification chamber which can be heated electrically and by the flame of the burner. There is a relatively large space between the periphery of the fan and the heated wall surface of the gasification chamber. There is a spray disc for the fuel on the drive shaft for the fan. When fuel is sprayed onto the spray disc during operation, it distributes the fuel into fine droplets that are thrown outwards by centrifugal force. They are mixed by the fan with the preheated air flowing into the gasification chamber. Since the distance between the periphery of the fan and the heated wall surface of the gasification chamber is relatively large, most of the fuel evaporates droplets without ever coming into contact with a wall surface.
- Another disadvantage of the burner described is that it is practically an atmospheric burner and is therefore not suitable for use in a boiler.
- this is achieved in that the blades extend radially into the vicinity of the heatable wall surface.
- the fuel / air mixture generated in the gasification chamber leaves the gasification chamber under relatively high pressure, so that the burner is particularly suitable for use in boilers with a relatively high flue gas resistance. Since the air and fuel are mixed before the combustion, the flame is relatively silent. Tests have shown that no deposits form in the area of the heated wall surface of the gasification chamber. It is assumed that the high peripheral speed of the rotor tears the oil out into extremely small oil droplets, which evaporate immediately. Interestingly, relatively high temperatures of the carburetor chamber walls are possible without coking. It is assumed that the blades, which bring about a compression of the gas / air mixture, exert a pneumatic wiper action, which cleans the gasification chamber walls.
- the rotating blades ensure a considerable pressure difference between the air inlet and the fuel / air mixture outlet, so that a considerable cleaning effect is already achieved by the flow caused thereby.
- the burner is therefore largely maintenance-free. Since the gas emerging from the gasification chamber is a mixture of fuel and air, there are no cold start problems. It is also advantageous that the heatable wall surface of the gasification chamber is adjacent to the peripheral parts of the rotor. The fuel / air mixture has the highest compression in this area, so that the heat transfer takes place very effectively here.
- a wall of the gasification chamber is expediently formed by a burner plate having outlet openings.
- the flame thus arises directly at the gasification chamber, so that heat from the flame is already released into the gasification chamber via the burner plate. This significantly reduces the need for electrical energy, at least after the start-up phase.
- the outlet openings of the gasification chamber are expediently arranged near the periphery of the burner plate. The pressure is greatest there.
- the housing of the gasification chamber for heat recovery has a part which extends beyond the burner plate.
- This expediently tubular part is then located in the immediate area of the flame, so that the heat recovery is very good. It is possible to form the housing of the carburetor chamber and a flame tube in one piece. This lowers the manufacturing costs.
- the heat recirculation part may have a cavity which is filled with a metal, e.g. Sodium, is provided with a relatively low melting and / or evaporation point. During operation, the metal in the cavity melts and / or evaporates, and the circulation that arises in the melt or in the gas then ensures particularly effective heat recovery.
- An advantageous exemplary embodiment provides that an axially displaceable tube piece for regulating the air supply is provided practically concentrically to the shaft of the rotor.
- the rotor advantageously extends in the immediate vicinity of the burner plate. Tests have shown that this prevents the flame from kicking back into the gasification chamber.
- transition points between the part for heat recovery and the housing of the gasification chamber can be designed such that no heat transfer to the housing of the gasification chamber takes place that exceeds the optimal gasification temperature.
- at least a large part of the heat required for evaporation can be supplied by the flame, while the electric heater only has to deliver a fraction of the necessary evaporation energy.
- the rotor can be designed both as a radial compressor and as an axial compressor. Both types of rotors make it possible, at least in the case of relatively small burners, such as those used for single-family houses and smaller multi-family houses, to do without additional fans, which leads to considerable simplification and cost reduction.
- the means for supplying fuel can be formed by a fuel supply channel which leads through the drive shaft of the rotor to the periphery of the rotor. This causes the drive shaft to cool so that there are no bearing problems for the drive shaft.
- the design of the rotor with blades has the advantage that it absorbs less heat than a rotating cylinder.
- a temperature sensor for maintaining an optimal carburetor temperature can be provided on the housing of the carburetor chamber.
- the housing of the carburetor chamber can consist of ceramic or be coated on the inside with ceramic.
- the ceramic can also act as a catalyst for better gasification.
- the burner has a gasification chamber 11, which is formed, for example, by a housing 13.
- this housing can be made of cast aluminum or cast iron, for example.
- the gasification chamber 11 has the shape of a rotating body, e.g. of a cylinder.
- FIGS. 3 and 4 show, other rotational body shapes are also possible.
- a carburetor chamber housing 13 made of ceramic material or a coating of the carburetor chamber walls made of ceramic material is also recommended.
- a coating made of a heat-resistant plastic, e.g. "Teflon” can be an advantage because such material prevents fuel residues from adhering.
- An electric heating element 15 in the form of a heating coil is used to heat the gasification chamber 11.
- the wall 12 is heated by this heating winding 15.
- a temperature sensor 17 can also be provided, with which the electrical heating element 15 is controlled via a control device (not shown).
- the gasification chamber 11 has a part 21 which extends beyond the burner plate 19 to return heat from the flame.
- the part 21 encloses a flame tube or cup 23.
- the transition point 22 between the flame tube 23 and / or the part 21 and the housing 13 is designed in such a way that no heat transfer that exceeds the optimum gasification temperature takes place.
- housing 13 and flame tube 23 or flame tube 23 and burner plate 19 can also consist of one piece.
- Figure 2 shows a special design of part 21 for heat recovery. It has a cavity 25 which has a filling 27 made of a metal, e.g. Sodium, with a relatively low melting and / or evaporation point. When the burner is in operation, the metal 27 then melts and / or evaporates, so that circulation begins in this liquid or gaseous medium, which transfers heat to the region of the gasification chamber 11.
- a metal e.g. Sodium
- a wall of the gasification chamber 11 is formed by the burner plate 19, which has a plurality of outlet openings 29 for the hot fuel / air mixture on the periphery.
- the outlet openings 29 are arranged close to the periphery of the burner plate 19. The greatest pressure in the chamber prevails when using a radial fan.
- FIG. 4 shows, a distribution of the outlet openings 29 over the burner plate 19 is possible in particular when using an axial fan.
- the gasification chamber 11 there is not only a wiper for cleaning the heatable wall surfaces of the gasification chamber 11, but a rotor 33 provided with blades 31, the blades extending radially into the vicinity of the heatable wall surface.
- This rotor has the function of a wiper, which keeps the carburetor chamber 11 free of deposits.
- the rotor 33 also functions as a fan which draws in combustion air and, mixed with evaporated fuel, presses it through the openings 29 in the burner plate 19.
- a significant advantage of the gasification burner described is therefore that, at least for relatively low outputs, for example up to 1.2 kg of oil per hour, it does not need an additional fan 35.
- the rotor 33 is driven by the motor 37 via the shaft 39.
- the additional fan 35 which may be necessary for greater burner outputs, is located on the same shaft 39.
- the fuel is supplied through a fuel supply channel 41 via the drive shaft 39. This fuel supply channel leads via one or more branch lines 43 to the periphery of the rotor 31.
- the air is fed into the gasification chamber 11 through the air inlet opening 45.
- a pipe section 46 is arranged displaceably in this air inlet opening.
- the air supply can be regulated in a simple manner by an axial displacement of this pipe section 46.
- FIGS. 3 and 4 provide for the use of a radial or axial compressor, as used, for example, for turbochargers Find motor vehicles use.
- Rotors 33 constructed in this way enable higher compression, so that an additional fan wheel can usually be dispensed with even at relatively high powers.
- the housing 13 with the electric heater 15 When the burner is started up, the housing 13 with the electric heater 15 is initially brought to a temperature at which the supplied fuel evaporates. The vaporized fuel then escapes through the openings 29 and is ignited by the electrode 49. The resulting flame then causes heat to be returned via part 21 of the gasification chamber 11, so that the heater 15 can be switched off. However, if precise regulation of the gasifier temperature is desired, the heater 15 can be used to supply the additional heat required.
- the temperature sensor 17 is used to control the heater 15.
- the gasification burner according to the invention can operate reliably in a wide temperature range of the gasification chamber 11. While the gasification burner according to EP-A 0 036128 no longer works at a gasification chamber temperature below 340 ° C, because at this temperature the pressure builds up too slowly and the gasification chamber is thus overfilled with fuel, the burner according to the invention also works at temperatures below 340 ° C. In tests with temperatures around 500 ° C., oil throughputs of 2 kg per hour could be achieved with the burner according to the invention. It has also been shown that there are no corking problems at high temperatures. It is assumed that at high temperatures the heating oil does not come into contact with the carburetor walls due to the suffering frost effect.
- the burner described also offers a large number of further advantages. For example, there are no temperature problems on the engine side because the combustion air cools it. It is therefore not necessary to take any special measures to protect the drive shaft bearings. The flame cup is exposed to less high temperatures because heat is continuously dissipated. There are also no cold start problems because the combustion air is preheated.
- the burner is very simple and compact in construction and is therefore particularly suitable as a burner for floor heating. The burner is switched off without re-steaming. The burner can easily be used for heating from above (lint burner) or heating from below. Of particular importance, however, is the low-noise combustion thanks to the optimal mixture of air and fuel and the stable blue flame, which creates no soot problems.
- the gasification burner according to the exemplary embodiment of FIG. 5 is constructed similarly to that of FIG. 1.
- the same reference numerals can therefore largely be used.
- the rotor divides the gasification chamber 11 into a first space 51 and a second space 53 arranged concentrically to it.
- the first space 51 is used to gasify the fuel.
- the second space which is divided by approximately radially arranged partition walls 55, which act like the blades of a compressor, serves as an air compressor. If a fan is already present in any case, further air compression may be dispensed with, so that it would suffice if the second space 53 merely served as an air passage.
- a burner plate 19 is provided in the exemplary embodiment shown, a third space 54 is formed between the rotor 33 and the burner plate 19, which serves for the mixing of gas and air.
- a gap 59 is provided between the rotor end 57 and the carburetor housing 13 for the passage of the gasified fuel from the first space 51.
- This gap 59 is ring-shaped and is adjacent to the likewise ring-shaped outlet 58 for the air from the space 53.
- the first space 51 has at least one air inlet 61 in order to carry out a premixing of gas and air in this space 51.
- a large part of the air required for combustion flows through space 53.
- the air supply to the space 51 can be controlled by axially displacing the pipe section 46.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Spray-Type Burners (AREA)
Abstract
Description
Die Erfindung betrifft einen Brenner, insbesondere einen Brenner zur Verbrennung von flüssigen Brennstoffen in gasförmigem Zustand. Der Brenner eignet sich jedoch auch für die Verbrennung von Suspensionen von festen Brennstoffen in einer Trägerflüssigkeit. Der Brenner besitzt eine durch ein Gehäuse gebildete Vergaserkammer und einen in der Vergaserkammer angeordneten, mit Schaufeln versehenen, von einem Motor antreibbaren Rotor, wobei die Vergaserkammer Einlassmittel für Brennstoff und Luft, eine elektrisch und/oder durch die Flamme des Brenners heizbare Wandungsfläche zur Verdampfung des Brennstoffs und Mittel zum Auslass des erzeugten Brennstoff/Luft-Gemischs aufweist.The invention relates to a burner, in particular a burner for burning liquid fuels in the gaseous state. However, the burner is also suitable for the combustion of suspensions of solid fuels in a carrier liquid. The burner has a gasification chamber formed by a housing and a rotor arranged in the gasification chamber and provided with blades and driven by a motor, the gasification chamber having inlet means for fuel and air, a wall surface which can be heated electrically and / or by the flame of the burner for the evaporation of the Has fuel and means for outlet of the fuel / air mixture generated.
In Haushaltbrennern üblicher Bauart wird der Brennstoff mit einer Düse versprüht und unter Luftzufuhr in einem Brennraum verbrannt. Da die Zerstäuberleistung der Düse nur innerhalb enger Grenzen variiert werden kann, sind Zerstäuberbrenner nicht kontinuierlich bis auf eine geringe Leistung herunter regelbar. Zerstäuberbrenner sind vielmehr auf eine maximale Leistung ausgelegt und werden bei geringem Wärmebedarf intermittierend betrieben. Deshalb werden relativ grosse Heizkessel als Energiespeicher für die Betriebspausen benötigt. Das wiederholte Anspringen des Brenners bringt eine starke Temperaturwechselbelastung der Materialien sowie eine hohe Russ- und Schadstoffbelastung von Heizkessel; Kamin und Abgasen. Unvollständige Verbrennung und Russbildung beeinträchtigen den Gesamtwirkungsgrad einer Heizungsanlage erheblich. Auch Abstrahlungsverluste durch grosse Heizkessel tragen weiter zur Verminderung des Wirkungsgrades bei.In household burners of conventional design, the fuel is sprayed with a nozzle and burned in a combustion chamber with the supply of air. Since the atomizing performance of the nozzle can only be varied within narrow limits, atomizing burners cannot be regulated continuously down to a low output. Atomizer burners are designed for maximum performance and are operated intermittently with low heat requirements. Therefore, relatively large boilers are required as energy storage for the breaks. The repeated start-up of the burner brings a strong change in temperature of the materials as well as a high soot and pollutant load in the boiler; Chimney and exhaust. Incomplete combustion and soot formation have a significant impact on the overall efficiency of a heating system. Radiation losses due to large boilers also contribute to a reduction in efficiency.
Im Gegensatz zu Zerstäuberbrennern haben Vergasungsbrenner den Vorteil, dass sie entsprechend dem Heizbedarf kontinuierlich auf sehr kleine Leistungen herunter geregelt werden können, wobei die vorgenannten Nachteile vermieden werden. Ferner wird bei der Verbrennung eine wesentliche Verminderung der Emission von Schadstoffen, beispielsweise von unverbrannten Kohlenwasserstoffen und Russ, erreicht.In contrast to atomizing burners, gasification burners have the advantage that they can be regulated continuously to very low outputs in accordance with the heating requirement, the aforementioned disadvantages being avoided. Furthermore, combustion significantly reduces the emission of pollutants, for example unburned hydrocarbons and soot.
Trotz der vielen Vorteile, welche Vergasungsbrenner aufweisen, werden sie nur in geringem Ausmass eingesetzt. Ein wesentlicher Grund dafür besteht darin, dass die meisten Vergasungsbrenner viel Unterhalt benötigen. Bei vielen Vergaserbrennern können sich nämlich in der Vergaserkammer unerwünschte Ablagerungen bilden, die bald die Wirksamkeit der Vergasung erheblich beeinträchtigen.Despite the many advantages that gasification burners have, they are only used to a small extent. A major reason for this is that most gasification burners need a lot of maintenance. With many gasification burners, undesirable deposits can form in the gasification chamber, which will soon significantly impair the effectiveness of the gasification.
In der EP-A 0 036 128 wird ein Vergaserbrenner mit einer Vergaserkammer beschrieben, die keine Lufteinlassöffnungen aufweist und in welcher ein motorisch rasch drehender Wischer untergebracht ist, um auf den beheizten Vergaserwänden den Brennstoff fein zu verteilen und eine Bildung von Ablagerungen zu verhindern, so dass kein schädlicher Einfluss von Ablagerungen auf die Verdampfung des Brennstoffes auftritt. Das in der Vergaserkammer gebildete Gas verlässt die Kammer durch eine Düse mit relativ hoher Geschwindigkeit. Die Verbrennungsluft wird durch einen Lüfter gefördert. Dieser Brenner hat den Vorteil, dass er wenig Unterhalt erfodert und zuverlässig im Betrieb ist. Nachteilig ist jedoch, dass er im Gegensatz zu anderen Vergaserbrennern, wo die Durchmischung von Brennstoff und Luft vor der Verbrennung in der Vergaserkammer erfolgt, mehr Geräusche verursacht. Da beim Start nur der Brennstoff, nicht aber die Luft vor der Verbrennung erhitzt wird, können sich Kaltstartprobleme ergeben. Ferner ist nachteilig, dass beim Abstellen ein Nachbrennen mit russender Flamme erfolgt, wenn nicht besondere kostspielige Massnahmen zur Verhinderung des weiteren Austritts von vergastem Brennstoff getroffen werden.EP-A 0 036 128 describes a carburetor burner with a carburetor chamber which has no air inlet openings and in which a wiper which rotates quickly with a motor is accommodated in order to finely distribute the fuel on the heated carburetor walls and to prevent the formation of deposits that there is no harmful influence of deposits on the evaporation of the fuel. The gas formed in the gasification chamber leaves the chamber through a nozzle at a relatively high speed. The combustion air is conveyed by a fan. This burner has the advantage that it requires little maintenance and is reliable in operation. The disadvantage, however, is that, in contrast to other gasification burners, where fuel and air are mixed before combustion in the gasification chamber, it causes more noise. Since only the fuel is heated at the start, but not the air before the combustion, cold start problems can arise. It is also disadvantageous that after-burning takes place with a sooting flame, unless particularly expensive measures are taken to prevent the further escape of gasified fuel.
Die EP-A 0067271 zeigt einen Ölbrenner mit einer Lufteinlassöffnungen aufweisenden beheizten Verdampfungseinrichtung. Diese ist becherförmig, wobei am Boden des Bechers Lufteinlassöffnungen vorgesehen sind. In diesem Becher befindet sich ein rotierender Zylinder zur Ölverteilung, der den Verdampferraum im Becher bis auf einen kleinen Spalt ausfüllt. Zur Ölverteilung wird beim rotierenden Zylinder über eine hohle Antriebswelle Öl zugeführt, das dann durch die Zentrifugalkraft aus den radialen Bohrungen im rotierenden Zylinder an die Innenwände des Verdampferraums geschleudert wird. Ölbrenner dieser Art haben jedoch keine kommerzielle Anwendung gefunden. Nachteilig ist, dass die Vergaserkammer zu Verschmutzung neigt, wobei der Lufteintritt bzw. der Luft/Gasgemisch-Austritt gestört wird. Da der Druckunterschied zwischen Lufteinlass und Luft/Gasgemisch-Auslass sehr klein ist, führt bereits eine geringe Verschmutzung zu einer russenden Flamme. Ein weiterer Nachteil besteht darin, dass der rotierende Zylinder über die Zylindermantelfläche sehr viel Wärme aufnimmt und über die Antriebswelle zum Antriebsmotor hin transportiert, welcher dadurch Schaden nehmen kann, wenn nicht kostspielige Vorkehrungen zu seinem Schutz getroffen werden.EP-A 0067271 shows an oil burner with a heated evaporation device having air inlet openings. This is cup-shaped, air inlet openings being provided on the bottom of the cup. In this cup there is a rotating cylinder for oil distribution, which fills the evaporator space in the cup to a small gap. For oil distribution, oil is supplied to the rotating cylinder via a hollow drive shaft, which is then thrown by centrifugal force from the radial bores in the rotating cylinder onto the inner walls of the evaporator chamber. However, oil burners of this type have not found commercial use. It is disadvantageous that the gasification chamber tends to become contaminated, the air inlet or the air / gas mixture outlet being disturbed. Since the pressure difference between the air inlet and the air / gas mixture outlet is very small, even slight contamination leads to a sooty flame. Another disadvantage is that the rotating cylinder absorbs a great deal of heat via the cylinder surface and transports it to the drive motor via the drive shaft, which can be damaged if costly precautions are not taken to protect it.
Die US-A 3640673 beschreibt einen Brenner für einen Petroleumofen, bei welchem ein Ventilator in einer elektrisch und durch die Flamme des Brenners beheizbaren Vergaserkammer angeordnet ist. Zwischen der Peripherie des Ventilators und der beheizten Wandungsfläche der Vergaserkammer besteht ein relativ grosser Zwischenraum. Auf der Antriebswelle für den Ventilator befindet sich eine Sprühscheibe für den Brennstoff. Wenn im Betrieb Brennstoff auf die Sprühscheibe gespritzt wird, verteilt diese den Brennstoff in feine Tröpfchen, die durch die Zentrifugalkraft nach aussen geschleudert werden. Dabei werden sie durch den Ventilator mit der in die Vergaserkammer einströmenden, vorgewärmten Luft vermischt. Da der Abstand zwischen der Peripherie des Lüfters und der beheizten Wandungsfläche der Vergaserkammer relativ gross ist, verdampfen die meisten Brennstofftröpfchen ohne je in Kontakt mit einer Wandungsfläche zu kommen. Die wenigen Brennstofftröpfchen, die an der beheizten Wandung der Vergaserkammer auftreffen, verdampfen dann dort. Nachteilig ist dabei, dass sich an den Wandungen Ablagerungen bilden können, welche die Verdampfung insbesondere in der Anlaufphase, wenn die Vergaserkammer nur elektrisch beheizt wird, beeinträchtigen. Dies kann dann zu Startproblemen führen.US-A 3640673 describes a burner for a petroleum oven, in which a fan is arranged in a gasification chamber which can be heated electrically and by the flame of the burner. There is a relatively large space between the periphery of the fan and the heated wall surface of the gasification chamber. There is a spray disc for the fuel on the drive shaft for the fan. When fuel is sprayed onto the spray disc during operation, it distributes the fuel into fine droplets that are thrown outwards by centrifugal force. They are mixed by the fan with the preheated air flowing into the gasification chamber. Since the distance between the periphery of the fan and the heated wall surface of the gasification chamber is relatively large, most of the fuel evaporates droplets without ever coming into contact with a wall surface. The few droplets of fuel that hit the heated wall of the gasification chamber then evaporate there. The disadvantage here is that deposits can form on the walls, which adversely affect evaporation, particularly in the start-up phase when the gasification chamber is only electrically heated. This can lead to start problems.
Ein weiterer Nachteil des beschriebenen Brenners besteht darin, dass er praktisch ein atmosphärischer Brenner ist und sich somit nicht zum Einsatz bei einem Heizkessel eignet.Another disadvantage of the burner described is that it is practically an atmospheric burner and is therefore not suitable for use in a boiler.
Es ist Aufgabe der vorliegenden Erfindung, einen Brenner der eingangs erwähnten Art zu schaffen, der die beschriebenen Nachteile mindestens zum Teil vermeidet, insbesondere einen ruhigen Betrieb gewährleistet und wenig Unterhaltsarbeiten benötigt.It is an object of the present invention to provide a burner of the type mentioned at the outset which at least partially avoids the disadvantages described, in particular ensures quiet operation and requires little maintenance work.
Gemäss der Erfindung wird dies dadurch erreicht, dass die Schaufeln sich radial bis in die Nähe der heizbaren Wandungsfläche erstrecken.According to the invention, this is achieved in that the blades extend radially into the vicinity of the heatable wall surface.
Das in der Vergaserkammer erzeugte Brennstoff/Luft-Gemisch verlässt die Vergaserkammer unter relativ hohem Druck, so dass sich der Brenner insbesondere für die Verwendung bei Heizkesseln mit relativ hohem Rauchgaswiderstand eignet. Da eine Vermischung von Luft und Brennstoff bereits vor der Verbrennung erfolgt, ist die Flamme relativ geräuschlos. Versuche haben gezeigt, dass sich keine Ablagerungen im Bereich der beheizten Wandungsfläche der Vergaserkammer bilden. Es wird vermutet, dass durch die hohe Umfangsgeschwindigkeit des Rotors das austretende Öl in äusserst kleinste Öltröpfchen zerrissen wird, die sofort verdampfen. Interessanterweise sind relativ sehr hohe Temperaturen der Vergaserkammerwände möglich, ohne dass eine Verkokung auftritt. Es wird vermutet, dass die Schaufeln, welche eine Verdichtung des Gas/ Luftgemisches bewirken, eine pneumatische Wischerwirkung ausüben, welche die Vergaserkammerwände reinigt. Auf jeden Fall sorgen die rotierenden Schaufeln für einen erheblichen Druckunterschied zwischen Lufteinlass und Brennstoff/Luftgemisch-Auslass, so dass bereits durch die dadurch bewirkte Strömung eine erhebliche Reinigungswirkung erzielt wird. Der Brenner ist somit weitgehend wartungsfrei. Da das aus der Vergaserkammer austretende Gas ein Gemisch aus Brennstoff und Luft ist, ergeben sich keine Kaltstartprobleme. Vorteilhaft ist auch, dass die heizbare Wandungsfläche der Vergaserkammer den peripheren Teilen des Rotors benachbart ist. In diesem Bereich besitzt das Brennstoff/Luft-Gemisch die höchste Verdichtung, so dass der Wärmeübergang hier sehr wirksam erfolgt.The fuel / air mixture generated in the gasification chamber leaves the gasification chamber under relatively high pressure, so that the burner is particularly suitable for use in boilers with a relatively high flue gas resistance. Since the air and fuel are mixed before the combustion, the flame is relatively silent. Tests have shown that no deposits form in the area of the heated wall surface of the gasification chamber. It is assumed that the high peripheral speed of the rotor tears the oil out into extremely small oil droplets, which evaporate immediately. Interestingly, relatively high temperatures of the carburetor chamber walls are possible without coking. It is assumed that the blades, which bring about a compression of the gas / air mixture, exert a pneumatic wiper action, which cleans the gasification chamber walls. In any case, the rotating blades ensure a considerable pressure difference between the air inlet and the fuel / air mixture outlet, so that a considerable cleaning effect is already achieved by the flow caused thereby. The burner is therefore largely maintenance-free. Since the gas emerging from the gasification chamber is a mixture of fuel and air, there are no cold start problems. It is also advantageous that the heatable wall surface of the gasification chamber is adjacent to the peripheral parts of the rotor. The fuel / air mixture has the highest compression in this area, so that the heat transfer takes place very effectively here.
Zweckmässigerweise wird eine Wandung der Vergaserkammer durch eine Auslassöffnungen aufweisende Brennerplatte gebildet. Die Flamme entsteht somit unmittelbar bei der Vergaserkammer, so dass bereits über die Brennerplatte Wärme der Flamme in die Vergaserkammer abgegeben wird. Dadurch wird auch mindestens nach der Startphase der Bedarf an elektrischer Energie erheblich gemindert. Die Auslassöffnungen der Vergaserkammer sind zweckmässigerweise nahe der Peripherie der Brennerplatte angeordnet. Dort ist der Druck am grössten.A wall of the gasification chamber is expediently formed by a burner plate having outlet openings. The flame thus arises directly at the gasification chamber, so that heat from the flame is already released into the gasification chamber via the burner plate. This significantly reduces the need for electrical energy, at least after the start-up phase. The outlet openings of the gasification chamber are expediently arranged near the periphery of the burner plate. The pressure is greatest there.
Ein vorteilhaftes Ausführungsbeispiel der Erfindung sieht vor, dass das Gehäuse der Vergaserkammer zur Wärmerückführung einen sich über die Brennerplatte hinaus erstreckenden Teil aufweist. Dieser zweckmässig rohrförmige Teil befindet sich dann im unmittelbaren Bereich der Flamme, so dass die Wärmerückführung sehr gut ist. Es ist möglich, das Gehäuse der Vergaserkammer und ein Flammrohr aus einem Stück zu bilden. Dadurch werden die Herstellungskosten erniedrigt. Der Teil zur Wärmerückführung kann einen Hohlraum aufweisen, der mit einer Füllung aus einem Metall, z.B. Natrium, mit relativ niedrigem Schmelz- und/oder Verdampfungspunkt versehen ist. Im Betrieb schmilzt und/oder verdampft dann das Metall im Hohlraum und die in der Schmelze oder im Gas entstehende Zirkulation sorgt dann für eine besonders effektive Wärmerückführung.An advantageous embodiment of the invention provides that the housing of the gasification chamber for heat recovery has a part which extends beyond the burner plate. This expediently tubular part is then located in the immediate area of the flame, so that the heat recovery is very good. It is possible to form the housing of the carburetor chamber and a flame tube in one piece. This lowers the manufacturing costs. The heat recirculation part may have a cavity which is filled with a metal, e.g. Sodium, is provided with a relatively low melting and / or evaporation point. During operation, the metal in the cavity melts and / or evaporates, and the circulation that arises in the melt or in the gas then ensures particularly effective heat recovery.
Ein vorteilhaftes Ausführungsbeispiel sieht vor, dass praktisch konzentrisch zur Welle des Rotors ein axial verschiebbares Rohrstück zur Regelung der Luftzufuhr vorgesehen ist.An advantageous exemplary embodiment provides that an axially displaceable tube piece for regulating the air supply is provided practically concentrically to the shaft of the rotor.
Der Rotor erstreckt sich vorteilhaft bis in unmittelbare Nähe der Brennerplatte. Versuche haben gezeigt, dass dadurch ein Rückschlageo der Flamme in die Vergaserkammer verhindert wird.The rotor advantageously extends in the immediate vicinity of the burner plate. Tests have shown that this prevents the flame from kicking back into the gasification chamber.
Die Übergangsstellen zwischen dem Teil zur Wärmerückführung und dem Gehäuse der Vergaserkammer können so ausgebildet sein, dass keine die optimale Vergasungstemperatur überschreitende Wärmeübertragung zum Gehäuse der Vergaserkammer stattfindet. In diesem Falle kann mindestens ein grosser Teil der zur Verdampfung benötigten Wärme von der Flamme geliefert werden, währenddem die elektrische Heizung nur noch einen Bruchteil der notwendigen Verdampfungsenergie zu liefern braucht.The transition points between the part for heat recovery and the housing of the gasification chamber can be designed such that no heat transfer to the housing of the gasification chamber takes place that exceeds the optimal gasification temperature. In this case, at least a large part of the heat required for evaporation can be supplied by the flame, while the electric heater only has to deliver a fraction of the necessary evaporation energy.
Der Rotor kann sowohl als Radialverdichter als auch als Axialverdichter ausgebildet sein. Beide Arten von Rotoren ermöglichen es, mindestens bei relativ kleinen Brennern, wie sie für Einfamilienhäuser und kleinere Mehrfamilienhäuser verwendet werden, ohne zusätzlichen Lüfter auszukommen, was zu einer erheblichen Vereinfachung und Verbilligung führt.The rotor can be designed both as a radial compressor and as an axial compressor. Both types of rotors make it possible, at least in the case of relatively small burners, such as those used for single-family houses and smaller multi-family houses, to do without additional fans, which leads to considerable simplification and cost reduction.
Die Mittel zur Brennstoffzufuhr können durch einen Brennstoffzufuhrkanal gebildet werden, welcher durch die Antriebswelle des Rotors bis zur Peripherie des Rotors führt. Dies bewirkt eine Kühlung der Antriebswelle, so dass keine Lagerprobleme für die Antriebswelle bestehen. Zudem hat die Ausbildung des Rotors mit Schaufeln den Vorteil, dass er weniger Wärme als ein rotierender Zylinder aufnimmt. Ein Temperaturfühler zur Aufrechterhaltung einer optimalen Vergasertemperatur kann am Gehäuse der Vergaserkammer vorgesehen sein.The means for supplying fuel can be formed by a fuel supply channel which leads through the drive shaft of the rotor to the periphery of the rotor. This causes the drive shaft to cool so that there are no bearing problems for the drive shaft. In addition, the design of the rotor with blades has the advantage that it absorbs less heat than a rotating cylinder. A temperature sensor for maintaining an optimal carburetor temperature can be provided on the housing of the carburetor chamber.
Wenn ein Betrieb mit hohen Temperaturen erwünscht ist, kann das Gehäuse der Vergaserkammer aus Keramik bestehen oder innen mit Keramik beschichtet sein. Die Keramik kann dabei auch als Katalysator für eine bessere Vergasung wirken.When operating at high temperatures he is desired, the housing of the carburetor chamber can consist of ceramic or be coated on the inside with ceramic. The ceramic can also act as a catalyst for better gasification.
Ausführungsbeispiele der Erfindung werden nun unter Bezugnahme auf die Zeichnungen beschrieben. Es zeigt:
- Fig. 1 eine schematische Darstellung, im Schnitt, eines Ausführungsbeispiels des erfindungsgemässen Brenners,
- Fig. 2 einen Schnitt durch eine besondere Ausführungsform des Vergasergehäuses,
- Fig.3 die Ausbildung des Rotors als Radialverdichter,
- Fig. 4 die Ausbildung des Rotors als Axialverdichter, und
- Fig. 5 eine schematische Darstellung eines weiteren Ausführungsbeispiels des erfindungsgemässen Brenners.
- 1 is a schematic representation, in section, of an embodiment of the burner according to the invention,
- 2 shows a section through a special embodiment of the carburetor housing,
- 3 the design of the rotor as a radial compressor,
- Fig. 4 shows the design of the rotor as an axial compressor, and
- Fig. 5 is a schematic representation of another embodiment of the burner according to the invention.
Der Brenner besitzt eine Vergaserkammer 11, die beispielsweise durch ein Gehäuse 13 gebildet wird. Je nach den zu erwartenden Betriebstemperaturen des Brenners kann dieses Gehäuse beispielsweise aus Aluminiumguss oder Gusseisen bestehen. Beim gezeigten Ausführungsbeispiel besitzt die Vergaserkammer 11 die Form eines Rotationskörpers, z.B. eines Zylinders. Wie aber die Figuren 3 und 4 zeigen, sind auch andere Rotationskörperformen möglich. Wenn mit hohen Temperaturen gearbeitet wird, was besonders bei hohen Brennerleistungen zweckmässig ist, empfiehlt sich auch ein Vergaserkammergehäuse 13 aus Keramikmaterial oder eine Beschichtung der Vergaserkammerwände aus Keramikmaterial. Wird mit relativ niedrigen Temperaturen gearbeitet, so kann auch eine Beschichtung aus einem hitzebeständigen Kunststoff, z.B. «Teflon», von Vorteil sein, weil solches Material das Anhaften von Brennstoffrückständen verhindert.The burner has a
Zum Aufheizen der Vergaserkammer 11 dient ein elektrisches Heizelement 15 in Form einer Heizwicklung. Durch diese Heizwicklung 15 wird die Wandung 12 beheizt. Zur Aufrechterhaltung einer optimalen Vergasungstemperatur kann ferner ein Temperaturfühler 17 vorgesehen sein, mit dem über eine nicht-eingezeichnete Regeleinrichtung das elektrische Heizelement 15 gesteuert wird. Die Vergaserkammer 11 weist zur Wärmerückführung von der Flamme einen bis über die Brennerplatte 19 sich hinaus erstreckenden Teil 21 auf. Beim gezeigten Ausführungsbeispiel umschliesst der Teil 21 ein Flammrohr oder -becher 23. Die Übergangsstelle 22 zwischen dem Flammrohr 23 und/oder dem Teil 21 und dem Gehäuse 13 ist so ausgebildet, dass keine die optimale Vergasungstemperatur übersteigende Wärmeübertragung stattfindet. Wie die Figuren 3 und 4 zeigen, können Gehäuse 13 und Flammrohr 23 oder Flammrohr 23 und Brennerplatte 19 auch aus einem Stück bestehen. Figur 2 zeigt eine besondere Ausbildung des Teils 21 zur Wärmerückführung. Er besitzt einen Hohlraum 25, der eine Füllung 27 aus einem Metall, z.B. Natrium, mit relativ niedrigem Schmelz- und/oder Verdampfungspunkt aufweist. Im Betrieb des Brenners schmilzt und/oder verdampft dann das Metall 27, so dass in diesem flüssigen oder gasförmigen Medium eine Zirkulation einsetzt, welche Wärme in das Gebiet der Vergaserkammer 11 überträgt.An
Eine Wandung der Vergaserkammer 11 wird durch die Brennerplatte 19 gebildet, welche an der Peripherie eine Vielzahl von Auslassöffnungen 29 für das heisse Brennstoff/Luft-Gemisch aufweist. Die Auslassöffnungen 29 sind beim Ausführungsbeispiel von Figur 1 nahe an der Peripherie der Brennerplatte 19 angeordnet. In diesem Bereich herrscht bei der Verwendung eines Radiallüfters der grösste Druck in der Kammer. Wie Figur 4 jedoch zeigt, ist insbesondere bei der Verwendung eines Axiallüfters eine Verteilung der Auslassöffnungen 29 über die Brennerplatte 19 möglich.A wall of the
Von grosser Bedeutung ist nun, dass in der Vergaserkammer 11 nicht bloss ein Wischer zur Reinigung der heizbaren Wandflächen der Vergaserkammer 11 vorhanden ist, sondern ein mit Schaufeln 31 versehener Rotor 33, wobei die Schaufeln sich radial bis in die Nähe der beheizbaren Wandungsfläche erstrecken. Dieser Rotor hat die Funktion eines Wischers, der die Vergaserkammer 11 frei von Ablagerungen hält. Zugleich hat aber der Rotor 33 auch die Funktion eines Lüfters, der Verbrennungsluft ansaugt und diese vermischt mit verdampftem Brennstoff durch die Öffnungen 29 der Brennerplatte 19 presst. Ein wesentlicher Vorteil des beschriebenen Vergasungsbrenners besteht daher darin, dass er wenigstens für relativ kleine Leistungen, etwa bis 1,2kg Öl pro Stunde, keinen zusätzlichen Lüfter 35 braucht.It is of great importance that in the
Der Rotor 33 wird durch den Motor 37 über die Welle 39 angetrieben. Auf der gleichen Welle 39 sitzt der eventuell für grössere Leistungen des Brenners notwendige zusätzliche Lüfter 35. Die Brennstoffzufuhr erfolgt durch einen Brennstoffzufuhrkanal 41 über die Antriebswelle 39. Dieser Brennstoffzufuhrkanal führt über eine oder mehrere Zweigleitungen 43 zur Peripherie des Rotors 31.The
Die Luftzufuhr in die Vergaserkammer 11 erfolgt durch die Lufteinlassöffnung 45. In dieser Lufteinlassöffnung ist ein Rohrstück 46 verschiebbar angeordnet. Durch eine axiale Verschiebung dieses Rohrstücks 46 kann die Luftzufuhr auf einfache Weise geregelt werden.The air is fed into the
Versuche haben gezeigt, dass es zweckmässig ist, wenn der Rotor 33 sich bis in unmittelbare Nähe der Brennerplatte 19 erstreckt. Dadurch wird ein Zurückschlagen der Flamme in die Vergaserkammer 11 verhindert.Tests have shown that it is expedient for the
Während in Figur 1 als Rotor 33 ein gewöhnliches Lüfterrad von einem kommerziellen Ölbrenner Verwendung findet, sehen die Figuren 3 und 4 die Verwendung eines Radial- bzw. Axialverdichters vor, wie sie beispielsweise für Turbolader bei Motorfahrzeugen Verwendung finden. Derart konstruierte Rotoren 33 ermöglichen eine höhere Verdichtung, so dass auch bei relativ hohen Leistungen auf ein zusätzliches Lüfterrad meist verzichtet werden kann.While a conventional fan wheel from a commercial oil burner is used as the
Bei der Inbetriebsetzung des Brenners wird das Gehäuse 13 mit der elektrischen Heizung 15 vorerst auf eine Temperatur gebracht, bei der eine Verdampfung des zugeführten Brennstoffes stattfindet. Der verdampfte Brennstoff entweicht dann durch die Öffnungen 29 und wird von der Elektrode 49 entzündet. Die so entstehende Flamme bewirkt dann eine Wärmerückführung über den Teil 21 der Vergaserkammer 11, so dass die Heizung 15 abgeschaltet werden kann. Wenn jedoch eine genaue Regulierung der Vergasertemperatur erwünscht ist, so kann die Heizung 15 dazu benützt werden, die noch zusätzlich notwendige Wärme zu liefern. Der Temperaturfühler 17 dient dabei der Steuerung der Heizung 15.When the burner is started up, the
Die bisherigen Versuche haben jedoch gezeigt, dass der erfindungsgemässe Vergasungsbrenner in einem weiten Temperaturbereich der Vergaserkammer 11 zuverlässig arbeiten kann. Währenddem der Vergasungsbrenner gemäss der EP-A 0 036128 bei einer Vergaserkammertemperatur unter 340°C nicht mehr arbeitet, weil sich bei dieser Temperatur der Druck zu langsam aufbaut und somit die Vergaserkammer mit Brennstoff überfüllt wird, arbeitet der erfindungsgemässe Brenner auch noch bei Temperaturen unter 340°C. Bei Versuchen mit Temperaturen um 500°C konnten beim erfindungsgemässen Brenner Öldurchsätze von 2kg pro Stunde erreicht werden. Es hat sich auch gezeigt, dass bei hohen Temperaturen keine Verkorkungsprobleme bestehen. Es wird vermutet, dass bei hohen Temperaturen wegen des Leidenfrosteffekts keine Berührung des Heizöls mit den Vergaserwänden stattfindet.However, previous tests have shown that the gasification burner according to the invention can operate reliably in a wide temperature range of the
Der beschriebene Brenner bietet ausser den bereits erwähnten Vorteilen noch eine grosse Anzahl von weiteren Vorteilen. So bestehen beispielsweise motorseitig keine Temperaturprobleme, weil eine Kühlung durch die Verbrennungsluft erfolgt. Es brauchen daher auch keine speziellen Massnahmen zum Schutze der Lager der Antriebswelle getroffen zu werden. Der Flammbecher wird weniger hohen Temperaturen ausgesetzt, da fortlaufend Wärme abgeführt wird. Es bestehen auch keine Kaltstartprobleme, weil die Verbrennungsluft vorerhitzt wird. Der Brenner ist sehr einfach und kompakt im Aufbau und eignet sich daher speziell als Brenner für Etagenheizungen. Das Abstellen des Brenners erfolgt ohne Nachdampfen. Der Brenner kann problemlos für eine Beheizung von oben (Sturzbrenner) oder eine Beheizung von unten verwendet werden. Von besonderer Bedeutung ist jedoch die geräuscharme Verbrennung dank der optimalen Gemischbildung von Luft und Brennstoff und die stabile Blauflamme, die keine Verrussungsprobleme schafft. Der Vergasungsbrenner gemäss dem Ausführungsbeispiel von Figur 5 ist ähnlich aufgebaut wie jener von Figur 1. Es können daher weitgehend die gleichen Bezugszeichen verwendet werden. Beim Brenner von Figur 5 teilt der Rotor die Vergaserkammer 11 in einen ersten Raum 51 und einen konzentrisch dazu angeordneten zweiten Raum 53 auf. Der erste Raüm 51 dient der Vergasung des Brennstoffes. Der zweite Raum, der durch ungefähr radial angeordnete Zwischenwände 55, welche wie die Schaufeln eines Verdichters wirken, unterteilt ist, dient als Luftverdichter. Wenn ohnehin schon ein Lüfter vorhanden ist, kann gegebenenfalls auf die weitere Luftverdichtung verzichtet werden, so dass es genügen würde, wenn der zweite Raum 53 lediglich als Luftdurchlass dient. Da beim gezeigten Ausführungsbeispiel eine Brennerplatte 19 vorgesehen ist, wird zwischen dem Rotor 33 und der Brennerplatte 19 ein dritter Raum 54 gebildet, welcher der Vermischung von Gas und Luft dient.In addition to the advantages already mentioned, the burner described also offers a large number of further advantages. For example, there are no temperature problems on the engine side because the combustion air cools it. It is therefore not necessary to take any special measures to protect the drive shaft bearings. The flame cup is exposed to less high temperatures because heat is continuously dissipated. There are also no cold start problems because the combustion air is preheated. The burner is very simple and compact in construction and is therefore particularly suitable as a burner for floor heating. The burner is switched off without re-steaming. The burner can easily be used for heating from above (lint burner) or heating from below. Of particular importance, however, is the low-noise combustion thanks to the optimal mixture of air and fuel and the stable blue flame, which creates no soot problems. The gasification burner according to the exemplary embodiment of FIG. 5 is constructed similarly to that of FIG. 1. The same reference numerals can therefore largely be used. In the burner of FIG. 5, the rotor divides the
Zwischen dem Rotorende 57 und dem Vergasergehäuse 13 ist ein Spalt 59 zum Durchlass des vergasten Brennstoffes aus dem ersten Raum 51 vorgesehen. Dieser Spalt 59 ist ringförmig und dem ebenfalls ringförmigen Auslass 58 für die Luft aus dem Raum 53 benachbart. Wenn somit die Luft mit hoher Geschwindigkeit aus dem Raum 53 des Rotors strömt, hilft sie durch den Venturi-Effekt, vergasten Brennstoff aus dem Raum 51 zu fördern. Dieser wird im Raum 54 mit Luft durchgemischt und verlässt durch die Öffnungen 29 den Brenner unter Bildung einer blauen Flamme.A
Der erste Raum 51 weist mindestens einen Lufteinlass 61 auf, um in diesem Raum 51 eine Vormischung von Gas und Luft durchzuführen. Im Gegensatz zum zuerst beschriebenen Ausführungsbeispiel fliesst aber ein Grossteil der zur Verbrennung benötigten Luft durch den Raum 53. Es wäre aber auch möglich, die Vergasung im Raum 51 ohne Luftzufuhr durchzuführen. Die Luftzufuhr zum Raum 51 kann durch axiales Verschieben des Rohrstücks 46 gesteuert werden.The
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT85107391T ATE37224T1 (en) | 1984-06-25 | 1985-06-14 | BURNERS, ESPECIALLY BURNERS FOR COMBUSTION OF LIQUID FUELS IN THE GASEOUS STATE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH304984 | 1984-06-25 | ||
CH3049/84 | 1984-06-25 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0166329A2 EP0166329A2 (en) | 1986-01-02 |
EP0166329A3 EP0166329A3 (en) | 1987-06-24 |
EP0166329B1 true EP0166329B1 (en) | 1988-09-14 |
Family
ID=4247462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85107391A Expired EP0166329B1 (en) | 1984-06-25 | 1985-06-14 | Burner, especially a burner for burning liquid fuel in the gaseous state |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0166329B1 (en) |
AT (1) | ATE37224T1 (en) |
DE (1) | DE3565002D1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3664956D1 (en) * | 1985-12-30 | 1989-09-14 | Vth Ag | Burner, particularly burner for burning liquid fuel in gaseous state |
EP0283435B1 (en) * | 1987-03-13 | 1991-01-23 | Füllemann Patent Ag | Burner |
CH678568A5 (en) * | 1989-03-15 | 1991-09-30 | Asea Brown Boveri | |
CH680157A5 (en) * | 1989-12-01 | 1992-06-30 | Asea Brown Boveri | |
EP0598619A1 (en) * | 1992-11-19 | 1994-05-25 | Samsung Electronics Co. Ltd. | Liquid fuel burner |
DE19821672A1 (en) * | 1998-05-14 | 1999-11-18 | Walter Swoboda | Pre-mix burner for liquid fuel |
DE10231883B4 (en) * | 2002-07-12 | 2008-01-17 | J. Eberspächer GmbH & Co. KG | Evaporator arrangement, in particular for producing a hydrocarbon / mixed material mixture decomposable in a hydrogen recovery reformer |
CH696153A5 (en) * | 2003-06-11 | 2007-01-15 | Toby Ag | Burner for liquid fuels. |
DE10343282B3 (en) | 2003-09-18 | 2005-04-21 | J. Eberspächer GmbH & Co. KG | Burner arrangement, in particular for a vehicle heater |
AT507704B1 (en) * | 2008-12-19 | 2012-06-15 | Fronius Int Gmbh | DEVICE FOR LOADING AN ENERGY STORAGE, AND METHOD FOR GENERATING HEAT ENERGY |
CN105202593A (en) * | 2013-12-04 | 2015-12-30 | 政和县星原节能燃料有限公司 | Alcohol-based high-temperature gasifying fire control furnace |
DE102015112932A1 (en) * | 2015-08-06 | 2017-02-09 | Eberspächer Climate Control Systems GmbH & Co. KG | mixing arrangement |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3640673A (en) * | 1969-07-22 | 1972-02-08 | Matsushita Electric Ind Co Ltd | Liquid fuel burner |
DE3123078A1 (en) * | 1981-06-11 | 1982-12-30 | Buderus Ag, 6330 Wetzlar | CONTINUOUSLY ADJUSTABLE OIL BLOWING BURNER |
-
1985
- 1985-06-14 DE DE8585107391T patent/DE3565002D1/en not_active Expired
- 1985-06-14 EP EP85107391A patent/EP0166329B1/en not_active Expired
- 1985-06-14 AT AT85107391T patent/ATE37224T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE3565002D1 (en) | 1988-10-20 |
EP0166329A3 (en) | 1987-06-24 |
EP0166329A2 (en) | 1986-01-02 |
ATE37224T1 (en) | 1988-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0166329B1 (en) | Burner, especially a burner for burning liquid fuel in the gaseous state | |
EP1110033B1 (en) | Burner for liquid fuel | |
DE19637025A1 (en) | Pre-evaporating and premixing burner for liquid fuels | |
DE1501802A1 (en) | burner | |
CH542402A (en) | Liquid fuel burners | |
CH654392A5 (en) | LIQUID FUEL BURNER. | |
EP0346284B1 (en) | Burner for the combustion of liquid fuel in the gaseous phase | |
WO1996015408A1 (en) | Evaporation burner for a heater | |
EP0283435B1 (en) | Burner | |
EP0232677B1 (en) | Burner, particularly burner for burning liquid fuel in gaseous state | |
DE69717880T2 (en) | Energy generator for the production of a hot fluid | |
EP0109585B1 (en) | Vaporizing oil burner comprising an oil atomizing device | |
DE3343617A1 (en) | ULTRASONIC SPRAYER BURNER FOR SMALLER HEATERS | |
DE2745756C3 (en) | Incinerator | |
EP0036128B1 (en) | Burner for the combustion of liquid fuels in the gaseous state | |
DE10347509B4 (en) | Heater with a spray nozzle | |
DE19821672A1 (en) | Pre-mix burner for liquid fuel | |
DE2649669C2 (en) | Burners for liquid fuels, in particular oils | |
DE19812561C2 (en) | Heater operated with liquid fuel, in particular for motor vehicles | |
EP0006974B1 (en) | Burner for pulverised coal | |
DE4126745A1 (en) | Oil-fired heater with rotary fuel atomiser - has ring of nozzles which direct air to form cylindrical window | |
EP0067271A2 (en) | Continuously regulated oil burner and fan unit | |
DE19521296A1 (en) | Vaporising burner for heater in vehicle | |
DE2518325C2 (en) | Gasification burner | |
WO1987006681A1 (en) | Heating device with reheater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19870520 |
|
17Q | First examination report despatched |
Effective date: 19871116 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VTH AG VERFAHRENSTECHNIK FUER HEIZUNG |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19880914 Ref country code: NL Effective date: 19880914 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19880914 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19880914 Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19880914 Ref country code: BE Effective date: 19880914 |
|
REF | Corresponds to: |
Ref document number: 37224 Country of ref document: AT Date of ref document: 19880915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3565002 Country of ref document: DE Date of ref document: 19881020 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19890627 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19890630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19890703 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19890706 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19900614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19900630 Ref country code: CH Effective date: 19900630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19910301 |