EP0109585B1 - Vaporizing oil burner comprising an oil atomizing device - Google Patents

Vaporizing oil burner comprising an oil atomizing device Download PDF

Info

Publication number
EP0109585B1
EP0109585B1 EP83110696A EP83110696A EP0109585B1 EP 0109585 B1 EP0109585 B1 EP 0109585B1 EP 83110696 A EP83110696 A EP 83110696A EP 83110696 A EP83110696 A EP 83110696A EP 0109585 B1 EP0109585 B1 EP 0109585B1
Authority
EP
European Patent Office
Prior art keywords
mixing tube
shield
oil
radial passage
end wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83110696A
Other languages
German (de)
French (fr)
Other versions
EP0109585A1 (en
Inventor
Erich Adis
Manfred Bader
Winfried Prof. Dr.-Ing. Buschulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority to AT83110696T priority Critical patent/ATE13938T1/en
Publication of EP0109585A1 publication Critical patent/EP0109585A1/en
Application granted granted Critical
Publication of EP0109585B1 publication Critical patent/EP0109585B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle

Definitions

  • the invention relates to a gasification oil burner with an oil atomizing device, a combustion air supply surrounding it, an orifice arranged downstream of the outlet of the oil atomizing device and having an orifice opening, a mixing tube provided coaxially with the orifice opening and a radial passage on the upstream part of the mixing tube, an essentially cylindrical flame tube , the upstream end of which is sealingly connected to the end wall of the combustion air supply which carries the diaphragm, and in which the mixing tube is arranged essentially freely.
  • Such a gasification oil burner is known for example from DE-A-2 918 416 (corresponds to EP-A-0 018 602).
  • the spray generated by the oil atomization device in particular by a pressure swirl nozzle, is injected into the combustion system and at the same time, when flowing through a circular orifice located on the upstream side of the combustion system and arranged concentrically around the nozzle axis, mixed with the combustion air and together with this carried further into the combustion system.
  • This mixture of oil drops and combustion air then enters a mixing tube which is arranged downstream of the orifice and is provided with windows at its upstream end where it adjoins the orifice plate, through which hot recirculation gases are sucked in, owing to the injector effect of the combustion air flow , mixed with the combustion air flow and used to evaporate the fuel drops.
  • the flow rate in the mixing tube of the known arrangement is greater than the flame propagation rate, so that no combustion can stabilize there. For this reason, evaporation of the oil spray droplets is caused in this area only by supplying heat.
  • the cross-sectional widening causes a delay in the flow.
  • the flow velocity passes through the flame propagation velocity at a certain distance from the mixing tube outlet, so that combustion can be established there.
  • the components of the combustion system located upstream of the orifice such as the end wall carrying the orifice, the orifice holder itself and also the combustion air guide tube, are intensively cooled by the combustion air flow, which has approximately ambient temperature.
  • the flame tube and also the mixing tube are in contact with the end wall and / or with the combustion air guide tube in known constructions. There is therefore an intense heat flow from the combustion system and its components into the combustion air duct and its components. In this area, the temperatures of the component walls therefore decrease in the upstream direction.
  • oil burner nozzles for the power range from approx. 65 kW upwards show an increasingly unfavorable spray characteristic for this combustion system.
  • Larger oil film thicknesses and the higher delivery pressures required due to fine atomization and thus higher droplet speeds make the excess fuel in the outer flow area of the mixing tube stronger. As a result, the work situation for the burners worsens with an increasing performance class.
  • the object of the invention is to improve a generic gasification oil burner in such a way that oil and soot formation in the recirculation space and in the area of the orifice plate are reduced, in particular in the case of heating oils with a very high content of aromatic hydrocarbons and / or in the case of excess fuel in the recirculation area.
  • This object is achieved according to the invention in a gasification oil burner of the type described at the outset in that the mixing tube has a closed wall in the section immediately adjacent to the panel, in that the radial passage connects to this mixing tube section with a closed wall and in that the axial length of the between Aperture and radial passage-extending mixing tube section with a closed wall is between 0.1 to 0.6 times the mixing tube diameter.
  • the temperature increase of the components can be controlled by varying the length of the cylindrical mixing tube part between the orifice and the radial passage.
  • a dead space is created in the space between the aperture edge, aperture wall and mixing tube wall up to the radial passage, into which the propellant jet of combustion air and oil mixture which enters through the aperture sucks in hot recirculation gas.
  • the temperature of the recirculation gas is higher and, as a result of the excess fuel, it is ignitable if additional air is added.
  • This fresh air admixture takes place from the combustion air jet entering through the orifice. It can therefore be assumed that the speed reduction in the dead space between the orifice and the mixing tube attachment forms a type of pilot flame which brings about a partial combustion of the excess fuel contained in the recirculation gas.
  • the resulting increase in temperature of the recirculation gases leads to an increase in the temperature level of the propellant jet after admixing to the combustion air space.
  • this promotes the speed of evaporation of the oil drops, on the other hand increases the temperature of the components, in particular the section of the mixing tube downstream of the radial passage, and finally leads to the ignition of the air fuel flow taking place more quickly after leaving the mixing tube.
  • the higher ignitability of the mixture due to the temperature increase achieved in the new design leads to a stabilization of the flame front.
  • the end wall in the area between the mixing tube and the flame tube is offset downstream of the diaphragm, preferably the offset end wall area lies in the same plane as the upstream boundary of the radial passage.
  • this takes the opportunity that deposits can accumulate in the previously existing dead space outside the mixing tube.
  • the staggered wall partly cooled down on its upstream side in the advanced position less by the air flowing into the orifice, so that this also reduces the risk of deposit formation.
  • the inner diameter of the mixing tube section between the orifice and the radial passage differs from that of the mixing tube section located downstream of the radial passage, in particular the inner diameter of the upstream mixing tube section is larger than that of the mixing tube section located downstream of the passage.
  • the end wall can be provided with a thermal insulation layer on its upstream side.
  • a suitable wall temperature can be set by the choice of the insulating material and the insulating material thickness.
  • the gasification oil burner 2 shown in the drawing has a chamber 4, in which a pressure atomizing nozzle 6 is held in the usual way on a nozzle assembly 8.
  • the oil is conveyed by an oil pump 10, which is driven by an electric motor 12, which at the same time drives a fan rotor 14 in a conventional manner.
  • the oil pump 10 conveys the oil into the nozzle block 8 projecting through the atomizer nozzle 6 via an adjustable throttle valve 16 and an electromagnetically operated shut-off valve 18 24, which is adjustable via a motor 26.
  • a pair of ignition electrodes 30 is attached to a holder 28 arranged on the nozzle assembly 8 tert, which is connected to an ignition transformer 32.
  • a diaphragm wall 34 is arranged with a diaphragm passage 36.
  • the aperture 36 is coaxial with the axis of the atomizing nozzle 6.
  • Downstream of the aperture 36 is also arranged coaxially with the axis of the atomizing nozzle 6, a mixing tube 38 which is arranged coaxially in a flame tube 42, the upstream end of which is sealingly connected to an end wall 40.
  • the end wall 40 merges into the diaphragm wall 34 and separates the chamber 4 from the combustion chamber surrounded by the flame tube 42.
  • the diameter of the aperture 36 is smaller than the inner diameter of the mixing tube 38.
  • radial passages 44 are provided, the upstream boundary 46 of which is at a distance from the diaphragm wall 34 which is between 0.1 and 0.6 times the inside diameter of the mixing tube 38.
  • the radial passage 44 is formed by circumferential slots, between which webs 48 remain which connect the upstream mixing tube section 50 and the downstream mixing tube section 52 to one another.
  • the mixing tube section 50 has the same inside diameter as the mixing tube section 52, but within the scope of the invention it is possible to choose the inside diameter of the mixing tube section 50 differently from that of the mixing tube section 52.
  • the extension of the mixing tube section 50 in the axial direction specifically - as mentioned - between 0.1 and 0.6 times the mixing tube diameter.
  • the volume and the geometric dimensions of the dead space 54 can be changed by the variation of the inside diameter and the length of the mixing tube section 50, which is limited on the one hand by the limitation of the aperture passage 36 and the aperture wall 34 surrounding the aperture and on the other hand by the wall of the mixing tube portion 50.
  • the arrangement can be adapted to the operating conditions.
  • an ionization probe 56 protruding through the end wall 40 is provided, which protrudes into the flame tube up to the flame area and which is connected in the usual way to a control device 58, via which the oil supply passes through when the flame is extinguished Closing the valve 18 and switching off the engine 12 is interrupted.
  • FIG. 2 differs from that of FIG. 1 only in the configuration of the end wall 40 and the mixing tube section 50 between the end wall and the radial passage 44. Corresponding parts therefore have the same reference numerals.
  • the inside diameter of the mixing tube section 50 is chosen to be larger than that of the mixing tube section 52.
  • the end wall 40 surrounding the mixing tube section 50 is offset downstream so far that it lies in the same plane as the upstream boundary 46 of the radial passage 44. This avoids the formation of a dead space 60 which surrounds the mixing tube section 50 in the exemplary embodiment in FIG. 1.
  • the end wall 40 carries on its side facing the chamber 4 a thermally insulating layer 62, the choice of material and thickness of which are selected so that the temperature of the end wall 40 guarantees minimal soot deposition on the end wall 40.
  • FIG. 1 it is also possible in the embodiment of FIG. 1 to cover the end wall 40 on its side facing the chamber 4 with an insulating layer 62.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Soil Working Implements (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catching Or Destruction (AREA)

Abstract

In a gasifying oil burner with an oil atomizing device, with combustion air supply means surrounding the atomizing device, with a shield having a shield opening, said shield being disposed downstream of the outlet of the atomizer, with a mixing tube disposed downstream of the outlet of the atomizer, with a mixing tube disposed downsteam of an co-axial with the shield opening, with a radial passage at an upstream portion of the mixing tube, with a generally cylindric flame tube whose upstream end is sealingly connected to the end wall of the combustion air supply means carrying the shield, and wherein it is proposed that the mixing tube be provided with a solid wall at a section thereof adjoining the shield, that the radial passage adjoin a part of the mixing tube provided with the solid wall, and that the axial length of the mixing tube portion with the solid wall extending between the shield and the radial passage be between the 0.1-multiple and the 0.6-multiple of the inside diameter of the mixing tube, in order to provide a soot-free burning of heating oil having a very high content of aromatic hydrocarbons and/or a surplus of fuel in a recirculation region.

Description

Die Erfindung betrifft einen Vergasungsölbrenner mit einer Ölzerstäubungsvorrichtung, einer diese umgebenden Verbrennungsluftzufuhr einer stromabwärts vom Auslaß der Ölzerstäubungsvorrichtung angeordneten Blende mit einer Blendenöffnung, einem koaxial mit der Blendenöffnung stromab von dieser vorgesehenen Mischrohr, einem radialen Durchlaß am stromaufwärtigen Teif des Mischrohres, einem im wesentlichen zylindrischen Flammrohr, dessen stromaufwärts liegendes Ende dichtend mit der die Blende tragenden Endwand der Verbrennungsluftzufuhr verbunden ist und in dem das Mischrohr im wesentlichen frei liegend angeordnet ist.The invention relates to a gasification oil burner with an oil atomizing device, a combustion air supply surrounding it, an orifice arranged downstream of the outlet of the oil atomizing device and having an orifice opening, a mixing tube provided coaxially with the orifice opening and a radial passage on the upstream part of the mixing tube, an essentially cylindrical flame tube , the upstream end of which is sealingly connected to the end wall of the combustion air supply which carries the diaphragm, and in which the mixing tube is arranged essentially freely.

Ein solcher Vergasungsölbrenner ist beispielsweise aus der DE-A-2 918 416 (entspricht der EP-A-0 018 602) bekannt.Such a gasification oil burner is known for example from DE-A-2 918 416 (corresponds to EP-A-0 018 602).

Bei dieser bekannten Anordnung wird der durch die Ölzerstäubungsvorrichtung, insbesondere durch eine Druckdralldüse, erzeugte Sprühnebel in das Verbrennungssystem eingespritzt und gleichzeitig beim Durchströmen einer auf der stromaufwärtigen Seite des Verbrennungssystems liegenden, konzentrisch um die Düsenachse angeordneten, kreisförmigen Blende mit der Brennluft gemischt und zusammen mit dieser weiter in das Verbrennungssystem getragen. Dieses Gemisch aus Öltropfen und Brennluft tritt dann in ein Mischrohr ein, das stromabwärts der Blende angeordnet ist und an seinem stromaufwärtigen Ende, wo es an die Blendenplatte angrenzt, mit Fenstern versehen ist, über die - bedingt durch die Injektorwirkung des Brennluftstromes - heiße Rezirkulationsgase eingesaugt, mit dem Brennluftstrom vermischt und zur Verdampfung der Brennstofftropfen genutzt werden. Die Strömungsgeschwindigkeit im Mischrohr der bekannten Anordnung ist größer als die Flammenfortpflanzungsgeschwindigkeit, so daß sich dort keine Verbrennung stabilisieren kann. Aus diesem Grunde wird in diesem Bereich nur durch Wärmezufuhr eine Verdampfung der Ölsprühnebentropfen bewirkt.In this known arrangement, the spray generated by the oil atomization device, in particular by a pressure swirl nozzle, is injected into the combustion system and at the same time, when flowing through a circular orifice located on the upstream side of the combustion system and arranged concentrically around the nozzle axis, mixed with the combustion air and together with this carried further into the combustion system. This mixture of oil drops and combustion air then enters a mixing tube which is arranged downstream of the orifice and is provided with windows at its upstream end where it adjoins the orifice plate, through which hot recirculation gases are sucked in, owing to the injector effect of the combustion air flow , mixed with the combustion air flow and used to evaporate the fuel drops. The flow rate in the mixing tube of the known arrangement is greater than the flame propagation rate, so that no combustion can stabilize there. For this reason, evaporation of the oil spray droplets is caused in this area only by supplying heat.

Wenn der Gemischstrom aus Brennluft und Öl das Mischrohr verläßt, wird durch die Querschnittsaufweitung eine Verzögerung der Strömung herbeigeführt. Die Strömungsgeschwindigkeit durchschreitet in einem gewissen Abstand vom Mischrohraustritt die Flammenfortpflanzungsgeschwindigkeit, so daß sich dort die Verbrennung etablieren kann.When the mixture flow of combustion air and oil leaves the mixing tube, the cross-sectional widening causes a delay in the flow. The flow velocity passes through the flame propagation velocity at a certain distance from the mixing tube outlet, so that combustion can be established there.

Durch die saugpumpenähnliche Wirkung des Injektorstrahls der Brennluft durch die Blende wird außerhalb des radialen Durchlasses im Mischrohr im Ringraum zwischen Mischrohr und Flammrohr stromabwärts der Blende ein Unterdruck erzeugt. Dieser Unterdruck saugt aus dem stromabwärts liegenden Bereich der Verbrennung Gase ab. Diese Gase sind zum Teil Verbrennungsgase nach der Reaktion von Öl mit Luft, zum Teil aber noch gasförmiges, unverbranntes Öl und Luft. Insgesamt stellt sich im Rezirkulationsraum ein Mischungsverhältnis ein, das einen mehr oder weniger deutlichen Überschuß an Brennstoff aufweist. Die hohen Temperaturen im Rezirkulationsraum, die beispielsweise zwischen 870 und 1070 K liegen, führen insbesondere bei weniger stabilen Molekülstrukturen von aromatischen Kohlenwasserstoffen dazu, daß diese zerbrechen (»cracken«). Häufiger Bestandteil unter den Crackprodukten sind Acetylene, die überdies eine Neigung zur Polymerisation haben. Aus den Acetylenen entsteht sehr leicht Ruß. Die Rußbildung ist bei den nichtaromatischen Kohlenwasserstoffen erheblich geringer.Due to the suction pump-like effect of the injector jet of the combustion air through the orifice, a negative pressure is generated outside the radial passage in the mixing tube in the annular space between the mixing tube and the flame tube downstream of the orifice. This vacuum draws gases from the downstream area of the combustion. Some of these gases are combustion gases after the reaction of oil with air, but some are still gaseous, unburned oil and air. Overall, a mixing ratio is established in the recirculation space, which has a more or less clear excess of fuel. The high temperatures in the recirculation space, which are, for example, between 870 and 1070 K, lead in particular to the less stable molecular structures of aromatic hydrocarbons that they break ("crack"). A common ingredient among cracking products are acetylenes, which moreover tend to polymerize. Soot is very easily formed from the acetylenes. The soot formation is considerably less with the non-aromatic hydrocarbons.

Die stromaufwärts der Blende liegenden Bauteile des Verbrennungssystems, wie die die Blende tragende Endwand, die Blendenhalterung selbst und auch das Brennluftführungsrohr werden durch den Brennluftstrom, der etwa Umgebungstemperatur hat, intensiv gekühlt. Das Flammrohr und auch das Mischrohr sind bei vorbekannten Konstruktionen mit der Endwand und/oder mit dem Brennluftführungsrohr in Kontakt. Es findet deshalb ein intensiver Wärmefluß vom Verbrennungssystem und dessen Bauteilen in den Brennluftführungsraum und dessen Bauteile statt. In diesem Bereich sinken deshalb in stromaufwärtiger Richtung gesehen die Temperaturen der Bauteilwände.The components of the combustion system located upstream of the orifice, such as the end wall carrying the orifice, the orifice holder itself and also the combustion air guide tube, are intensively cooled by the combustion air flow, which has approximately ambient temperature. The flame tube and also the mixing tube are in contact with the end wall and / or with the combustion air guide tube in known constructions. There is therefore an intense heat flow from the combustion system and its components into the combustion air duct and its components. In this area, the temperatures of the component walls therefore decrease in the upstream direction.

Darüber hinaus zeigen Ölbrennerdüsen für den Leistungsbereich ab ca. 65 kW aufwärts eine für dieses Verbrennungssystem zunehmend ungünstigere Sprühcharakteristik. Größere Ölfilmdicken und wegen der Feinzerstäubung notwendige höhere Förderdrücke und damit größere Tropfengeschwindigkeiten lassen den Brennstoffüberschuß im äußeren Strömungsbereich des Mischrohres stärker werden. Damit verschlechtert sich die Arbeitssituation für die Brenner mit steigender Leistungsklasse.In addition, oil burner nozzles for the power range from approx. 65 kW upwards show an increasingly unfavorable spray characteristic for this combustion system. Larger oil film thicknesses and the higher delivery pressures required due to fine atomization and thus higher droplet speeds make the excess fuel in the outer flow area of the mixing tube stronger. As a result, the work situation for the burners worsens with an increasing performance class.

Beide Effekte führen dazu, daß sich zunächst an den Wänden Anlagerungen von Ruß sammeln, die sich bei weiterem Absinken der Temperatur mit auskondensierenden, höhersiedenden Bestandteilen des Heizöls mischen und bei Temperaturen um 600-700 K Öl-Kohle zu bilden beginnen. Die Anlagerungsrate ist proportional zur Rußbildungsrate im Rezirkulationsbereich. Dies bedeutet, daß diese Anlagerungsraten bei der Anwendung von Heizölen mit hohen Aromatengehalten sehr viel höher sind als bei normalen, heute üblicherweise verwendeten Heizölen. Außerdem steigt sie mit der Brennerleistung. Versuche zur Anwendung von Heizöl mit hohen Aromatengehalten im Verbrennungssystem, wie sie eingangs beschrieben sind, führten bei bekannten Konstruktionen zu so hohen Ablagerungsraten von Ruß- und Ölkohle, daß nach relativ kurzer Betriebszeit von größenordnungsmäßig 100 bis 200 Stunden Rezirkulationsfenster. und teilweise auch Blenden-Durchlaßquerschnitt durch Anlagerungen in so starkem Maße verengt wurden, daß die rußfreie Verbrennung erheblich gestört wurde.Both effects lead to the accumulation of soot on the walls, which mix with condensing, higher-boiling components of the heating oil as the temperature drops further and begin to form oil-coal at temperatures around 600-700 K. The deposition rate is proportional to the soot formation rate in the recirculation area. This means that these addition rates are much higher when using heating oils with high aromatics contents than with normal heating oils that are commonly used today. It also increases with the burner output. Attempts to use heating oil with high aromatics contents in the combustion system, as described at the beginning, led to so high deposition rates of soot and coal in known constructions that after a relatively short operating time of the order of 100 to 200 hours of recirculation windows. and in some cases the aperture cross-section was narrowed to such an extent that the soot-free combustion was considerably disturbed.

Der Erfindung liegt die Aufgabe zugrunde, einen gattungsgemäßen Vergasungsölbrenner derart zu verbessern, daß Öl- und Rußbildung im Rezirkulationsraum und im Bereich der Blende herabgesetzt werden, insbesondere bei Heizölen mit sehr hohem Gehalt an aromatischen Kohlenwasserstoffen und/oder bei einem Brennstoff- überschuß im Rezirkulationsbereich.The object of the invention is to improve a generic gasification oil burner in such a way that oil and soot formation in the recirculation space and in the area of the orifice plate are reduced, in particular in the case of heating oils with a very high content of aromatic hydrocarbons and / or in the case of excess fuel in the recirculation area.

Diese Aufgabe wird bei einem Vergasungsölbrenner der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß das Mischrohr in dem unmittelbar an die Blende anschließenden Teilstück eine geschlossene Wand aufweist, daß sich der radiale Durchlaß an dieses Mischrohrteilstück mit geschlossener Wand anschließt und daß die axiale Länge des sich zwischen Blende und radialem Durchlaß erstreckende Mischrohrteilstück mit geschlossener Wand zwischen dem 0,1- bis 0,6fachen Mischrohrdurchmesser liegt.This object is achieved according to the invention in a gasification oil burner of the type described at the outset in that the mixing tube has a closed wall in the section immediately adjacent to the panel, in that the radial passage connects to this mixing tube section with a closed wall and in that the axial length of the between Aperture and radial passage-extending mixing tube section with a closed wall is between 0.1 to 0.6 times the mixing tube diameter.

Versuche mit einer solchen Ausgestaltung haben gezeigt, daß durch diese Abänderung gegenüber vorbekannten Konstruktionen die Bauteile rußfrei bleiben, die Bauteiltemperaturen sich gegenüber vorbekannten Konstruktionen leicht erhöhen und als Nebeneffekt eine fühlbare Verringerung des Geräuschpegels im Abgasrohr eintritt.Experiments with such a configuration have shown that this modification means that the components remain soot-free compared to previously known constructions, the component temperatures increase slightly compared to previously known constructions and, as a side effect, a noticeable reduction in the noise level in the exhaust pipe occurs.

Nach dem bisherigen Stand der Kenntnisse kann man durch die Variation der Länge des zylindrischen Mischrohrteiles zwischen Blende und radialem Duchlaß die Temperaturerhöhung der Bauteile steuern.According to the current state of knowledge, the temperature increase of the components can be controlled by varying the length of the cylindrical mixing tube part between the orifice and the radial passage.

Durch den zylindrischen Mischrohrteil stromaufwärts des radialen Durchlasses wird in dem Raum zwischen Blendenrand, Blendenwand und Mischrohrwand bis zum radialen Durchlaß ein Totraum erzeugt, in den der Treibstrahl aus Brennluft und Ölgemisch, der durch die Blende eintritt, heißes Rezirkulationsgas einsaugt. Die Temperatur des Rezirkulationsgases ist höher und dadurch ist diese wegen des enthaltenen Brennstoffüberschusses zündfähig, wenn weitere Luft zugemischt wird. Diese Frischluftzumischung erfolgt aus dem durch die Blende eintretenden Brennluftstrahl. Es kann deshalb davon ausgegangen werden, daß durch die Geschwindigkeitserniedrigung im Totraum zwischen Blende und Mischrohransatz sich eine Art Pilotflamme bildet, die eine teilweise Verbrennung des im Rezirkulationsgas enthaltenen Brennstoffüberschusses bewerkstelligt.Through the cylindrical mixing tube part upstream of the radial passage, a dead space is created in the space between the aperture edge, aperture wall and mixing tube wall up to the radial passage, into which the propellant jet of combustion air and oil mixture which enters through the aperture sucks in hot recirculation gas. The temperature of the recirculation gas is higher and, as a result of the excess fuel, it is ignitable if additional air is added. This fresh air admixture takes place from the combustion air jet entering through the orifice. It can therefore be assumed that the speed reduction in the dead space between the orifice and the mixing tube attachment forms a type of pilot flame which brings about a partial combustion of the excess fuel contained in the recirculation gas.

Die daraus resuliterende Temperaturerhöhung der Rezirkulationsgase führt nach Zumischung zum Brennluftraum zu einer Erhöhung des Temperaturniveaus des Treibstrahis. Dieser begünstigt auf der einen Seite die Geschwindigkeit der Verdampfung der Öltropfen, erhöht auf der anderen Seite die Temperatur der Bauteile, insbesondere des Mischrohrteilstückes stromabwärts des radialen Durchlasses, und führt schließlich dazu, daß die Entzündung des Luftbrennstoffstromes nach dem Verlassen des Mischrohres schneller erfolgt. Die höhere Zündwilligkeit des Gemisches durch die bei der neuen Konstruktion erzielte Temperaturerhöhung führt zu einer Stabilisierung der Flammenfront.The resulting increase in temperature of the recirculation gases leads to an increase in the temperature level of the propellant jet after admixing to the combustion air space. On the one hand, this promotes the speed of evaporation of the oil drops, on the other hand increases the temperature of the components, in particular the section of the mixing tube downstream of the radial passage, and finally leads to the ignition of the air fuel flow taking place more quickly after leaving the mixing tube. The higher ignitability of the mixture due to the temperature increase achieved in the new design leads to a stabilization of the flame front.

Bei einer bevorzugten Ausgestaltung ist vorgesehen, daß die Endwand im Bereich zwischen dem Mischrohr und dem Flammrohr gegenüber der Blende stromabwärts versetzt ist, vorzugsweise liegt der versetzte Endwandbereich in derselben Ebene wie die stromaufwärts gelegene Begrenzung des radialen Durchlasses. Dadurch wird einerseits die Gelegenheit genommen, daß sich in dem vorher vorhandenen Totraum außerhalb des Mischrohres Ablagerungen ansammeln können. Zum anderen wird der versetzte Wand. teil auf seiner stromaufwärtigen Seite in der vorgezogenen Lage weniger durch die der Blende zuströmende Luft herabgekühlt, so daß dadurch ebenfalls die Gefahr einer Belagbildung vermindert wird.In a preferred embodiment it is provided that the end wall in the area between the mixing tube and the flame tube is offset downstream of the diaphragm, preferably the offset end wall area lies in the same plane as the upstream boundary of the radial passage. On the one hand, this takes the opportunity that deposits can accumulate in the previously existing dead space outside the mixing tube. On the other hand, the staggered wall. partly cooled down on its upstream side in the advanced position less by the air flowing into the orifice, so that this also reduces the risk of deposit formation.

Bei einer weiteren bevorzugten Ausgestaltung ist vorgesehen, daß der Innendurchmesser des Mischrohrteilstückes zwischen Blende und radialem Durchlaß von dem des stromabwärts des radialen Durchlasses gelegenen Mischrohrteilstück abweicht, insbesondere ist der Innendurchmesser des stromaufwärts gelegenen Mischrohrteilstückes größer als der des stromabwärts des Durchlasses gelegenen Mischrohrteilstückes. Durch Variationen des Abstandes zwischen Blende und Durchlaß einerseits und des Innendurchmessers des stromaufwärts gelegenen Mischrohrteilstückes andererseits läßt sich das Volumen des Totraums im Inneren des Mischrohransatzes variieren und den jeweiligen Betriebsbedingungen optimal anpassen.In a further preferred embodiment it is provided that the inner diameter of the mixing tube section between the orifice and the radial passage differs from that of the mixing tube section located downstream of the radial passage, in particular the inner diameter of the upstream mixing tube section is larger than that of the mixing tube section located downstream of the passage. By varying the distance between the orifice and the passage on the one hand and the inside diameter of the upstream mixing tube section on the other hand, the volume of the dead space inside the mixing tube extension can be varied and optimally adapted to the respective operating conditions.

Die Endwand kann auf ihrer stromaufwärts gelegenen Seite mit einer Wärmeisolationsschicht versehen sein. Durch die Wahl des Isolierstoffes und der Isolierstoffstärke läßt sich eine verfahrensgünstige Wandtemperatur einstellen.The end wall can be provided with a thermal insulation layer on its upstream side. A suitable wall temperature can be set by the choice of the insulating material and the insulating material thickness.

Die nachfolgende Beschreibung bevorzugter Ausführungsformen der Erfindung dient im Zusammenhang mit der Zeichnung der näheren Erläuterung. Es zeigt

  • Fig. 1 einen schematischen Längsschnitt eines Vergasungsölbrenners gemäß der Erfindung und
  • Fig. 2 eine Ansicht ähnlich Fig. 1 eines abgewandelten Ausführungsbeispiels eines Vergasungsölbrenners in vereinfachter Darstellung.
The following description of preferred embodiments of the invention serves in conjunction with the drawing for a more detailed explanation. It shows
  • Fig. 1 is a schematic longitudinal section of a gasification oil burner according to the invention and
  • Fig. 2 is a view similar to Fig. 1 of a modified embodiment of a gasification oil burner in a simplified representation.

Der in der Zeichnung dargestellte Vergasungsölbrenner 2 weist eine Kammer4 auf, in der in üblicher Weise auf einem Düsenstock 8 eine Druckzerstäuberdüse 6 gehaltert ist. Das Öl wird von einer Ölpumpe 10 gefördert, die von einem Elektromotor 12 angetrieben wird, der gleichzeitig in üblicher Weise einen Gebläserotor 14 antreibt. Die Ölpumpe 10 fördert über ein einstellbares Drosselventil 16 und ein elektromagnetisch betätigtes Absperrventil 18 das Öl in den die Zerstäuberdüse 6 ragenden Düsenstock 8. Der Gebläserotor 14 fördert die Verbrennungsluft über einen Luftkanal 20 in die Kammer 4, und zwar über ein Drosselventil 22 mit einer Luftklappe 24, die über einen Motor 26 verstellbar ist. Mit einer auf dem Düsenstock 8 angeordneten Halterung 28 wird ein Zündelektrodenpaar 30 gehaltert, das mit einem Zündtransformator 32 in Verbindung steht.The gasification oil burner 2 shown in the drawing has a chamber 4, in which a pressure atomizing nozzle 6 is held in the usual way on a nozzle assembly 8. The oil is conveyed by an oil pump 10, which is driven by an electric motor 12, which at the same time drives a fan rotor 14 in a conventional manner. The oil pump 10 conveys the oil into the nozzle block 8 projecting through the atomizer nozzle 6 via an adjustable throttle valve 16 and an electromagnetically operated shut-off valve 18 24, which is adjustable via a motor 26. A pair of ignition electrodes 30 is attached to a holder 28 arranged on the nozzle assembly 8 tert, which is connected to an ignition transformer 32.

Vor der Mündung der Zerstäuberdüse 6 ist eine als Blende ausgebildete Blendenwand 34 mit einem Blendendurchlaß 36 angeordnet. Der Blendendurchlaß 36 liegt koaxial zur Achse der Zerstäuberdüse 6. Stromabwärts des Blendendurchlasses 36 ist ebenfalls koaxial zur Achse der Zerstäuberdüse 6 ein Mischrohr 38 angeordnet, welches koaxial in einem Flammrohr 42 angeordnet ist, dessen stromaufwärtiges Ende dichtend mit einer Endwand 40 verbunden ist. Die Endwand 40 geht in die Blendenwand 34 über und trennt die Kammer 4 von dem vom Flammrohr 42 umgebenen Brennraum ab.In front of the mouth of the atomizer nozzle 6, a diaphragm wall 34 is arranged with a diaphragm passage 36. The aperture 36 is coaxial with the axis of the atomizing nozzle 6. Downstream of the aperture 36 is also arranged coaxially with the axis of the atomizing nozzle 6, a mixing tube 38 which is arranged coaxially in a flame tube 42, the upstream end of which is sealingly connected to an end wall 40. The end wall 40 merges into the diaphragm wall 34 and separates the chamber 4 from the combustion chamber surrounded by the flame tube 42.

Der Durchmesser des Blendendurchlasses 36 ist geringer als der Innendurchmesser des Mischrohres 38.The diameter of the aperture 36 is smaller than the inner diameter of the mixing tube 38.

In der Wand des Mischrohres 38 sind radiale Durchlässe 44 vorgesehen, deren stromaufwärts gelegene Begrenzung 46 von der Blendenwand 34 einen Abstand haben, der zwischen dem 0,1-und dem 0,6fachen des Innendurchmessers des Mischrohres 38 liegt. Der radiale Durchlaß 44 wird durch Umfangsschlitze gebildet, zwischen denen Stege 48 stehenbleiben, die das stromaufwärts gelegene Mischrohrteilstück 50 und das stromabwärts angeordnete Mischrohrteilstück 52 miteinander verbinden.In the wall of the mixing tube 38, radial passages 44 are provided, the upstream boundary 46 of which is at a distance from the diaphragm wall 34 which is between 0.1 and 0.6 times the inside diameter of the mixing tube 38. The radial passage 44 is formed by circumferential slots, between which webs 48 remain which connect the upstream mixing tube section 50 and the downstream mixing tube section 52 to one another.

Bei dem in Fig. 1 dargestellten Ausführungsbeispiel weist das Mischrohrteilstück 50 denselben Innendurchmesser auf wie das Mischrohrteilstück 52, es ist im Rahmen der Erfindung jedoch möglich, den Innendurchmesser des Mischrohrteilstückes 50 abweichend von dem des Mischrohrteilstückes 52 zu wählen.In the exemplary embodiment shown in FIG. 1, the mixing tube section 50 has the same inside diameter as the mixing tube section 52, but within the scope of the invention it is possible to choose the inside diameter of the mixing tube section 50 differently from that of the mixing tube section 52.

Ferner ist es möglich, die Erstreckung des Mischrohrteilstückes 50 in axialer Richtung zu variieren, und zwar - wie erwähnt - etwa zwischen dem 0,1- und dem 0,6fachen des Mischrohrdurchmessers. Durch die Variation des Innendurchmessers und der Länge des Mischrohrteilstückes 50 lassen sich das Volumen und die geometrischen Abmessungen des Totraumes 54 verändern, der einerseits durch die Begrenzung des Blendendurchlasses 36 und die die Blende umgebende Blendenwand 34 und andererseits durch die Wand des Mischrohrteilstückes 50 begrenzt wird. Durch diese Änderung der Abmessungen dieses Totraumes 54 kann die Anordnung an die Betriebsbedingungen angepaßt werden.Furthermore, it is possible to vary the extension of the mixing tube section 50 in the axial direction, specifically - as mentioned - between 0.1 and 0.6 times the mixing tube diameter. The volume and the geometric dimensions of the dead space 54 can be changed by the variation of the inside diameter and the length of the mixing tube section 50, which is limited on the one hand by the limitation of the aperture passage 36 and the aperture wall 34 surrounding the aperture and on the other hand by the wall of the mixing tube portion 50. By changing the dimensions of this dead space 54, the arrangement can be adapted to the operating conditions.

Nur der Vollständigkeitshalber wird noch darauf hingewiesen, daß eine durch die Endwand 40 hindurchragende lonisationssonde 56 vorgesehen ist, die in das Flammrohr bis in den Flammenbereich vorsteht und die in üblicher Weise an ein Steuergerät 58 angeschlossen ist, über das bei Verlöschen der Flamme die Ölzufuhr durch Schließen des Ventils 18 und Abschalten des Motors 12 unterbrochen wird.For the sake of completeness, it is pointed out that an ionization probe 56 protruding through the end wall 40 is provided, which protrudes into the flame tube up to the flame area and which is connected in the usual way to a control device 58, via which the oil supply passes through when the flame is extinguished Closing the valve 18 and switching off the engine 12 is interrupted.

Das in Fig. 2 dargestellte Ausführungsbeispiel unterscheidet sich von dem der Fig. 1 lediglich durch die Ausgestaltung der Endwand 40 und des Mischrohrteilstückes 50 zwischen Endwand und radialem Durchlaß 44. Entsprechende Teile tragen daher dieselben Bezugszeichen.The exemplary embodiment shown in FIG. 2 differs from that of FIG. 1 only in the configuration of the end wall 40 and the mixing tube section 50 between the end wall and the radial passage 44. Corresponding parts therefore have the same reference numerals.

Bei dem Ausführungsbeispiel der Fig. 2 ist der Innendurchmesser des Mischrohrteilstückes 50 größer gewählt als der des Mischrohrteilstückes 52. Außerdem ist die das Mischrohrteilstück 50 umgebende Endwand 40 stromabwärts so weit versetzt, daß sie in derselben Ebene liegt wie die stromaufwärts gelegene Begrenzung 46 des radialen Durchlasses 44. Dadurch wird die Ausbildung eines Totraumes 60, der im Ausführungsbeispiel der Fig. 1 das Mischrohrteilstück 50 umgibt, vermieden.In the embodiment of FIG. 2, the inside diameter of the mixing tube section 50 is chosen to be larger than that of the mixing tube section 52. In addition, the end wall 40 surrounding the mixing tube section 50 is offset downstream so far that it lies in the same plane as the upstream boundary 46 of the radial passage 44. This avoids the formation of a dead space 60 which surrounds the mixing tube section 50 in the exemplary embodiment in FIG. 1.

Zusätzlich trägt die Endwand 40 auf ihrer der Kammer 4 zugewandten Seite eine thermisch isolierende Schicht 62, deren Materialwahl und Dicke so gewählt werden, daß die Temperatur der Endwand 40 eine minimale Rußablagerung an der Endwand 40 garantiert.In addition, the end wall 40 carries on its side facing the chamber 4 a thermally insulating layer 62, the choice of material and thickness of which are selected so that the temperature of the end wall 40 guarantees minimal soot deposition on the end wall 40.

Selbstverständlich ist es bei der Ausgestaltung der Fig. ebenfalls möglich, den Innendurchmesser und die axiale Erstreckung des Mischrohrteilstückes 50 zu variieren, so daß auch bei dieser Ausgestaltung Volumen und Gestalt des Totraumes 54 den Betriebsbedingungen optimal angepaßt werden kann.Of course, it is also possible in the configuration of FIG. To vary the inside diameter and the axial extent of the mixing tube section 50, so that the volume and shape of the dead space 54 can also be optimally adapted to the operating conditions in this configuration.

Umgekehrt ist es auch bei der Ausgestaltung der Fig. 1 möglich, die Endwand 40 auf ihrer der Kammer 4 zugewandten Seite mit einer lsolierschicht 62 zu belegen.Conversely, it is also possible in the embodiment of FIG. 1 to cover the end wall 40 on its side facing the chamber 4 with an insulating layer 62.

Claims (6)

1. An oil gasifying burner (2) comprising an oil atomizing device a combustion air supply means surrounding said device, a shield (34, 36) having a shield opening (36) and being disposed downstream of the outlet from the oil atomizing device, a mixing tube (38) co-axial with the shield opening and disposed downstream of the same, a radial passage (44) at the upstream portion of the mixing tube, a substantially cylindrical flame tube (42) whose upstream end is sealingly connected with the end wall (40) of the combustion air supply means supporting the shield, the mixing tube being substantially freely arranged within said flame tube, characterized in that the mixing tube (38) is provided with a solid wall at a portion (50) adjoining the shield (34, 36), that the radial passage (44) adjoins the mixing tube portion (50) having a solid wall, and that the axial length of the mixing tube portion (50) with the solid wall, extending between the shield (34, 36) and the radial passage (44) is between 0.1-multiple and 0.6-multiple of the diameter of the mixing tube.
2. An oil burner as defined in claim 1, characterized in that in the region between the mixing tube (38) and the flame tube (42) the end wall (40) is offset to the shield (34, 36) so as to be downstream thereof.
3. An oil burner as defined in claim 2, characterized in that the offset end wall section (40) is co-planar with the upstream limit (46) of the radial passage (44).
4. An oil burner as defined in any of the preceding claims, characterized in that the inside diameter of the mixing tube portion (50) between the shield (34, 36) and the radial passage (44) is different to that of the mixing tube portion (52) disposed downstream of the radial passage (44).
5. An oil burner as defined in claim 4, characterized in that the inside diameter of the mixing tube portion (50) between the shield (34, 36) and the radial passage (44) is greater than the inside diameter of the mixing tube portion (52) disposed downstream of the radial passage (44).
6. An oil burner as defined in any of the preceding claims, characterized in that the end wall (40) is provided with a heat insulation layer (62) on its surface facing the chamber (4).
EP83110696A 1982-11-11 1983-10-26 Vaporizing oil burner comprising an oil atomizing device Expired EP0109585B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83110696T ATE13938T1 (en) 1982-11-11 1983-10-26 CARIFYING OIL BURNER WITH AN OIL ATOMIZATION DEVICE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3241730 1982-11-11
DE19823241730 DE3241730A1 (en) 1982-11-11 1982-11-11 GASIFICATION OIL BURNER WITH AN OIL SPRAYING DEVICE

Publications (2)

Publication Number Publication Date
EP0109585A1 EP0109585A1 (en) 1984-05-30
EP0109585B1 true EP0109585B1 (en) 1985-06-19

Family

ID=6177878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110696A Expired EP0109585B1 (en) 1982-11-11 1983-10-26 Vaporizing oil burner comprising an oil atomizing device

Country Status (10)

Country Link
US (1) US4604104A (en)
EP (1) EP0109585B1 (en)
AT (1) ATE13938T1 (en)
CA (1) CA1227412A (en)
DE (2) DE3241730A1 (en)
DK (1) DK158320C (en)
ES (1) ES8406694A1 (en)
FI (1) FI72379C (en)
IE (1) IE55040B1 (en)
NO (1) NO155115C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238529A1 (en) * 1992-11-14 1994-05-19 Deutsche Forsch Luft Raumfahrt Burner for hot gas prodn. - has burner tube with heat feed reducing component between flame and support tubes, component connecting fuel jet direction to diaphragm and having insulation ring

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT387838B (en) * 1985-12-23 1989-03-28 Bruecker Helmut Dr OIL BURNER
DE3636787A1 (en) * 1986-10-29 1988-05-19 Man Technologie Gmbh Burner with an oil-atomising device
US5015173A (en) * 1988-06-09 1991-05-14 Vth Ag Verfahrenstechnik Fur Heizung Burner for the combustion of liquids in the gaseous state
DE9007612U1 (en) * 1989-07-13 1993-05-06 Elco Energiesysteme AG, Vilters Burner for stoichiometric combustion of liquid or gaseous fuels
DE3928214A1 (en) * 1989-08-25 1990-03-08 Zimmermann Hans Georg Dipl Ing BURNER WITH FUEL GAS RECIRCULATION FOR FLOWABLE FUELS
DE4209221A1 (en) * 1992-03-21 1993-09-23 Deutsche Forsch Luft Raumfahrt LOW-NITROXIDE BURNER
JP4739275B2 (en) * 2006-08-11 2011-08-03 Jx日鉱日石エネルギー株式会社 Burner
US10711699B2 (en) * 2017-07-07 2020-07-14 Woodward, Inc. Auxiliary torch ignition
US10704469B2 (en) * 2017-07-07 2020-07-07 Woodward, Inc. Auxiliary Torch Ingnition
US11421601B2 (en) 2019-03-28 2022-08-23 Woodward, Inc. Second stage combustion for igniter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2918416A1 (en) * 1979-05-08 1980-11-13 Deutsche Forsch Luft Raumfahrt GASIFICATION OIL BURNER

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2424765A (en) * 1942-10-06 1947-07-29 Stewart Warner Corp Hot-air heater having means to recirculate cooled gases
US2857961A (en) * 1954-07-13 1958-10-28 Brown Fintube Co Oil burners
BE656014A (en) * 1963-11-22
US3685977A (en) * 1969-04-16 1972-08-22 Texas Instruments Inc Partial oxidation of hydrocarbons
DE2059693A1 (en) * 1970-12-04 1972-06-15 Werner Pieper Liquid fuel burners
US3981142A (en) * 1974-04-01 1976-09-21 General Motors Corporation Ceramic combustion liner
DE2511500C2 (en) * 1975-03-15 1983-08-11 Smit Nijmegen B.V., Nijmegen Burners for burning liquid fuel
US4130388A (en) * 1976-09-15 1978-12-19 Flynn Burner Corporation Non-contaminating fuel burner
US4364725A (en) * 1977-01-08 1982-12-21 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. Blue-flame oil burner
DE2700671C2 (en) * 1977-01-08 1988-07-28 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Blue-burning oil burner
US4120639A (en) * 1977-06-30 1978-10-17 Midland-Ross Corporation High momentum burners
DE2821932A1 (en) * 1978-05-19 1979-11-22 Karl Bodemer Mixing arrangement for burning liq. hydrocarbon(s) - has burner arrangement ensuring blue flame from start
EP0007424B1 (en) * 1978-06-28 1982-11-24 Smit Ovens Nijmegen B.V. Burner device for combustion of liquid fuel
DE3035707A1 (en) * 1980-09-22 1982-04-08 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln OIL AND GAS BURNERS FOR INSTALLATION IN HEATING AND STEAM GENERATING BOILERS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2918416A1 (en) * 1979-05-08 1980-11-13 Deutsche Forsch Luft Raumfahrt GASIFICATION OIL BURNER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238529A1 (en) * 1992-11-14 1994-05-19 Deutsche Forsch Luft Raumfahrt Burner for hot gas prodn. - has burner tube with heat feed reducing component between flame and support tubes, component connecting fuel jet direction to diaphragm and having insulation ring
DE4238529C2 (en) * 1992-11-14 1999-02-04 Deutsch Zentr Luft & Raumfahrt Burners for hot gas generation

Also Published As

Publication number Publication date
DK513783D0 (en) 1983-11-10
EP0109585A1 (en) 1984-05-30
DK513783A (en) 1984-05-12
FI834127A (en) 1984-05-12
FI834127A0 (en) 1983-11-10
IE55040B1 (en) 1990-05-09
ATE13938T1 (en) 1985-07-15
ES527156A0 (en) 1984-08-01
DE3360303D1 (en) 1985-07-25
NO834103L (en) 1984-05-14
FI72379B (en) 1987-01-30
US4604104A (en) 1986-08-05
DK158320C (en) 1990-10-01
DE3241730A1 (en) 1984-05-17
NO155115C (en) 1987-02-11
NO155115B (en) 1986-11-03
IE832624L (en) 1984-05-11
CA1227412A (en) 1987-09-29
ES8406694A1 (en) 1984-08-01
FI72379C (en) 1987-05-11
DK158320B (en) 1990-04-30

Similar Documents

Publication Publication Date Title
DE2641685C2 (en)
DE69519197T2 (en) Atomizer for the combustion of liquid fuel with a small spray angle
EP0902233B1 (en) Combined pressurised atomising nozzle
DE60106815T2 (en) Oil atomiser
DE2446398A1 (en) AXIAL SWIRL CARBURETOR WITH CENTRAL INJECTION
DE2801367C2 (en)
EP0109585B1 (en) Vaporizing oil burner comprising an oil atomizing device
DE2747678A1 (en) FUEL NOZZLE FOR GAS TURBINES
DE2300217C3 (en) Injection device for injecting liquid fuel into blast furnaces
DE3819898C2 (en)
DE3010078A1 (en) BURNER USED WITH LIQUID FUEL FOR HEATING DEVICES
DE1501802A1 (en) burner
DE2953648C2 (en) Liquid fuel burners
DE19637025A1 (en) Pre-evaporating and premixing burner for liquid fuels
EP0233330B1 (en) Burner-boiler unit
DE2250503A1 (en) COMBUSTION DEVICE
EP0843083B1 (en) Fuel preevaporator
EP0877156B1 (en) Method and device to vaporize liquid fuel for use in a gas turbine combustor
EP0283435B1 (en) Burner
EP0346284A2 (en) Burner for the combustion of liquid fuel in the gaseous phase
EP0072950A2 (en) Method of vaporising and combusting liquid fuels, and burner therefor
WO1999060306A1 (en) Premix burner for liquid fuels
DE2743124A1 (en) FUEL SUPPLY DEVICE FOR SUPER SOUND FLOW IN THE INTAKE PIPE OF A COMBUSTION ENGINE
EP0209631B1 (en) Process and burner for combusting liquid fuel
EP0867658B1 (en) Process and device for combustion of liquid fuel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840606

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 13938

Country of ref document: AT

Date of ref document: 19850715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3360303

Country of ref document: DE

Date of ref document: 19850725

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911029

Year of fee payment: 9

Ref country code: AT

Payment date: 19911029

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911030

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911101

Year of fee payment: 9

Ref country code: CH

Payment date: 19911101

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911108

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911115

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921026

Ref country code: AT

Effective date: 19921026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921031

Ref country code: CH

Effective date: 19921031

Ref country code: BE

Effective date: 19921031

BERE Be: lapsed

Owner name: DEUTSCHE FORSCHUNGS- UND VERSUCHSANSTALT FUR LUFT

Effective date: 19921031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83110696.8

Effective date: 19930510