EP0228947B1 - Superheterodynempfänger zweier Mikrowellensignale gegensinniger Zirkularpolarisation - Google Patents

Superheterodynempfänger zweier Mikrowellensignale gegensinniger Zirkularpolarisation Download PDF

Info

Publication number
EP0228947B1
EP0228947B1 EP19860402728 EP86402728A EP0228947B1 EP 0228947 B1 EP0228947 B1 EP 0228947B1 EP 19860402728 EP19860402728 EP 19860402728 EP 86402728 A EP86402728 A EP 86402728A EP 0228947 B1 EP0228947 B1 EP 0228947B1
Authority
EP
European Patent Office
Prior art keywords
probes
waveguide
local oscillator
printed circuit
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19860402728
Other languages
English (en)
French (fr)
Other versions
EP0228947A1 (de
Inventor
Laurent Kerger
Alain Pavion
Patrick Potier
Didier Cheval
Lassima Sanogo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S E R E L Ste
Original Assignee
S E R E L Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S E R E L Ste filed Critical S E R E L Ste
Publication of EP0228947A1 publication Critical patent/EP0228947A1/de
Application granted granted Critical
Publication of EP0228947B1 publication Critical patent/EP0228947B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/173Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a conductive element

Definitions

  • the invention relates to a device for the simultaneous reception of two waves with circular or elliptical polarization in opposite directions.
  • the reception devices are capable of receiving circularly polarized waves in opposite directions.
  • Such a device is located in the vicinity of the antenna. It comprises a waveguide means transforming the waves with circular polarization into waves with rectilinear polarization. Each wave with rectilinear polarization is introduced at the input of a circuit which comprises an amplifier, in particular at low noise, a filter, a local oscillator, a mixer and an amplifier at intermediate frequency IF.
  • a reception device according to the preamble of claim 1 is known from document US-A-3,092,828 (see FIG. 9).
  • the device according to the invention is characterized by the characteristics of the characterizing part.
  • the example which will be described in relation to the figures relates to the reception of television broadcasts transmitted via a geostationary satellite, the television signals being carried by microwave waves with circular gyroplane or dextrorotatory polarization .
  • a parabolic antenna 10 (FIG. 1) is provided, the axis of which is directed towards the satellite and which thus receives the waves emitted by the latter to reflect them on its focus.
  • a device for receiving microwave waves 11 is therefore placed at the focal point of the parabolic antenna 10.
  • Such a device 11 comprises a receiving horn 12 (FIG. 2) constituting the inlet of the device 11.
  • This horn 12 has the shape of a truncated cone. It is extended, at the rear, by a waveguide 13 of circular section which may contain a bandpass or highpass filter.
  • This waveguide 13 is connected to a waveguide 15 of rectangular section via a waveguide 14 allowing the transition from the circular section to the rectangular section.
  • the waveguide 15 of rectangular section has, over part of its length, a depolarizing metal strip 16 parallel to two walls 17 and 18 (FIG. 3) of the rectangular parallelepiped that constitutes the waveguide 15 and at equal distance from these walls.
  • the front edge 19 of the blade 16 has a general bevel shape ( Figures 2 and 6) which allows depolarization: polarized waves circular to the right are transformed into waves with rectilinear polarization remaining on one side of the blade 16, the side being a function of the direction (right) of the circular polarization.
  • the front edge 19 has a staircase shape.
  • FIGS. 2 a to 2 j are diagrams which allow a good understanding of the depolarizing role of the blade 16 and of its entry edge 19.
  • a circularly polarized wave (right or left) can be broken down into two linearly polarized waves ( Figure 2 j ,) represented by the two electric field vectors whose directions form an angle of ⁇ 2 radians.
  • the direction of rotation (right or left) of the circular wave depends on the sign of the phase shift between these two vectors
  • Figures 2 a to 2 d show the propagation of the vector component
  • Figures 2 e to 2 h show the propagation of the vector component
  • Figures 2b and 2f are sections of the guide 15 in a cross section corresponding to the front part of the bevel 19; the diagrams in FIGS. 2 c and 2 g correspond to straight sections in the posterior zone of the bevel 19 while FIGS. 2 d , 2 h and 2 i correspond to the waveguide at the rear of the bevel 19.
  • the effect of the blade 16 on the horizontal vector is to separate it into two vectors in the same directions on either side of the blade 16.
  • the component of the input wave corresponding to the vector is divided into two waves with rectilinear polarization in phase.
  • the effect of the blade 16 on the wave with vertical rectilinear polarization is to transform the latter into two waves with horizontal rectilinear polarization in opposite directions ( Figures 2 e to 2 h ).
  • FIGS. 2 h and 2 d to the left of the blade 16 there is obtained a wave with horizontal rectilinear polarization in tune with the wave
  • the wave with rectilinear polarization is in phase opposition with the wave with rectilinear polarization
  • the circularly polarized wave of components is transformed into a wave with rectilinear polarization on one side of the blade 16 ( Figure 2 i ), the components canceling out on the other side.
  • Rectilinear probes 21 and 22 pass through the walls 17 and 18 perpendicularly to the latter, and therefore parallel to the electric field vector on each side of the metal blade 16, behind the bevel edge 19. These probes 21 and 22 are aligned, and therefore in positions symmetrical to one another with respect to the blade 16.
  • the probe 21 is connected with its end 21a to the outside of the waveguide 15, to a circuit on a printed circuit board 23 ( Figures 3 and 5) parallel to the wall 17 and at a short distance the latter.
  • the probe 22 is associated with a printed circuit board 24 identical to the board 23 and of position symmetrical with respect to the plane of the blade 16.
  • FIG 4 there is shown, on the one hand, the circuit 231 superheterodyne located on the wafer 23, on the other hand, the circuit 241 on the wafer 24 and, on the other hand finally, the common local oscillator 25 to these two circuits which is on a printed circuit board 26 (FIGS. 3 and 5) perpendicular to the boards 23 and 24, that is to say parallel to another wall 27 of the waveguide 15 of rectangular section, and at a short distance from this wall 27.
  • the plate 26 is applied against the external face of the wall 27.
  • bridges are provided for connection, respectively between the plate 26 and the plate 23, and 31 between the plate 26 and the plate 24. These bridges overlap edges in contact with the plates 23 and 26 and 24 and 26.
  • the circuit 231 comprises a low noise amplifier 32 receiving the signal from the probe 21 and which is connected to the first input 341 of a mixer 34 via a bandpass filter 33.
  • the second input 342 of the mixer 34 is connected to a first output of the power divider associated with the local oscillator 25.
  • the output 343 of the mixer is connected to the output of the circuit via an intermediate frequency amplifier FI 35.
  • the circuit 241 includes an amplifier 36 with low noise, a bandpass filter 37, a mixer 38, one input of which is connected to a second output of the power divider associated with the local oscillator 25 and an intermediate frequency amplifier FI 39.
  • the printed circuit board 23 rests on a wall 40 parallel to the wall 17 and at a short distance from the latter; a cover 41 is associated with this wall 40. In this way the printed circuit board 23 is sealed in a box formed by the wall 40 and the cover 41. Similarly, the boards 24 and 26 are enclosed in respective boxes with base wall and cover.
  • the set of waveguides 13, 14, 15 and printed circuit boards with their boxes is placed in another protective box 45 (FIG. 2) forming a single piece with the horn 12.
  • the arrangement of the invention which consists in providing a local oscillator common to circuits 231 and 241 avoids interference between these two circuits.
  • the arrangement which consists in providing probes 21, 22 perpendicular to the walls 17, 18 and connected to circuits on parallel plates 23, 24 and at a short distance from said walls 17, 18, or applied against the latter, allows an embodiment compact receiving device, i.e. to minimize the volume occupied by this device 11.
  • the resulting advantage is a reduction in the wind resistance and a reduction in the risk of obscuring the wave coming from the satellite before it is received by the device.
  • a waveguide of rectangular or square section is not used, but a waveguide 50 of circular section which is separated , in longitudinal direction, in two parts by a wall 51 having an elongated slot 52 in a determined direction.
  • a probe 53 passes through the wall of the waveguide, in a radial direction, and is connected to a printed circuit board 54 which is applied against a flat outer face 55 of the device 15 ⁇ for separating the waves at circular polarization in opposite directions.
  • this wall 51 leaves the passage to waves with perpendicular polarization.
  • a probe 56 crosses radially the wall of the waveguide 50 in a direction perpendicular to that of the probe 53, but downstream of the wall 51.
  • the part of the waveguide 50 which contains the end of the probe 56 is closed by an end wall 57 constituting a short circuit for all the waves, whatever their polarization.
  • the probe 56 is, like the probe 53, connected to a circuit located on a printed circuit board 58 applied against a flat external face 59 perpendicular to the face 55.
  • the circuits on the pads 54 and 58 are analogous to the circuits 231 and 241 described in relation to FIG. 4.
  • a common local oscillator 25 ⁇ is provided. This is placed on another printed circuit board 60 connected to the circuits on the boards 54 and 58 by bridges 61 and 62 (FIG. 8).
  • the trigger guard 61 overlaps the edges in contact 54 a and 60 has plates 54 and 60; similarly the trigger guard 62 overlaps edges in contact 58 b and 60 b of the plates 58 and 60.
  • the device 15 ⁇ has an oblique face 70 of short length relative to the faces 55 and 59 (FIG. 8) forming an interruption of the joint edge 71 to said faces 55 and 59.
  • this face 70 is inclined by about 45 ° relative to the adjacent faces 55 and 59.
  • This face 70 is inside the rectangular parallelepiped that constitutes the part 15 ⁇ ; the depth of the withdrawal is sufficient for the wafer 60 and the oscillator 25 non not to exceed this rectangular parallelepiped either, which maintains the compact nature of the device.
  • the waveguide 50 is formed of three pieces of cast aluminum, the first 63 ending in a nose 64 closed by the wall 51 and the second, 65, having a countersink 66 receiving by force adjustment the nose 64.
  • the third piece is the end plug 57.
  • the local oscillator 25 common to the circuits of the two channels is on a printed circuit board while the other circuit elements are on two separate boards. Other distributions of the circuit elements are however possible. Thus in one example the common local oscillator 25 and the IF amplifiers 35, 39 are on the same printed circuit board.

Landscapes

  • Waveguide Aerials (AREA)

Claims (11)

  1. Vorrichtung zum gleichzeitigen Empfang von unterschiedlichen Fernsehsendungen, die mit Hilfe von in umgekehrten Richtungen zirkular polarisierten Wellen ausgesandt werden, mit einem Wellenleiter (15, 15'), der Mittel (16) zu Umwandlung der zirkular polarisierten Wellen in linear polarisierte Wellen unterschiedlicher Richtungen aufweist, und mit einem Superheterodynkreis (23₁, 24₁) für jede linear polarisierte Welle, wobei die beiden Kreise einen gemeinsamen örtlichen Oszillator (25, 25') besitzen, dadurch gekennzeichnet, daß
    - die linear polarisierten Wellen in einander entgegengesetzten Richtungen polarisiert sind,
    - der Wellenleiter (15, 15') allgemein parallelepipedische äußere Form besitzt,
    - und zwei Sonden (21, 22; 53, 56) die Wände des Wellenleiters senkrecht zu Außenseiten durchqueren und an Kreise auf Druckschaltungsplatten angeschlossen sind, die an diese Außenseiten angelegt sind oder parallel und mit geringem Abstand zu diesen Seiten verlaufen.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der gemeinsame örtliche Oszillator (25, 25') auf einer Druckschaltungsplatte liegt, die sich an eine dritten Außenseite des Wellenleiters (15, 15') befindet.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Wellenleiter (15, 15') die allgemeine innere Form eines Parallelepipeds besitzt und eine Depolarisationslamelle (16) enthält, um die Umwandlung und Trennung der in entgegengesetzten Richtungen zirkular polarisierten Wellen durchzuführen, wobei diese Lamelle zu zwei Innenseiten des Wellenleiters parallel und vorzugsweise in gleichen Abständen zu diesen verläuft und wobei die Sonden (21, 22) senkrecht zu diesen Innenseiten verlaufen.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Sonden (21, 22) zueinander fluchten.
  5. Vorrichtung nach den Ansprüchen 2 und 3, dadurch gekennzeichnet, daß die Druckschaltungsplatte für den gemeinsamen örtlichen Oszillator (25) der beiden Kreise sich auf eine Seite oder parallel und in geringem Abstand von eines Seite befindet, die senkrecht zu den beiden die an die Sonden angeschlossenen Platten tragenden Seiten liegt.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Druckschaltungsplatte, auf der der örtliche Oszillator (25, 25') angeordnet ist, Kanten besitzt, die in Berührung mit entsprechenden Kanten der Druckschaltungsplatten liegen, an die die Sonden angeschlossen sind, wobei die Verbindung zwischen einem dem gemeinsamen örtlichen Oszillator zugeordneten Leistungsteiler und den an die Sonden angeschlossenen Druckschaltungsplatten über Verbindungsüberbrückungen (30, 31) erfolgt, die über die sich berührenden Kanten hinwegreichen.
  7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß jeder Kreis einen rauscharmen Verstärker (32, 36) enthält.
  8. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die beiden Sonden (53, 56) zueinander senkrechte Richtungen besitzen, wobei die Druckschaltungsplatten, an die diese beiden Sonden angeschlossen sind, ebenfalls in zwei senkrechten Richtungen verlaufen, und daß der gemeinsame örtliche Oszillator (25') sich auf einer Druckschaltungsplatte befindet, die unter etwa 45° bezüglich der beiden erstgenannten Platten geneigt ist.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß das Parallelepiped, das den Wellenleiter (15') bildet, entlang einer seiner Kanten einen Ausschnitt oder eine Nut besitzt, an deren Boden die den gemeinsamen örtlichen Oszillator (25, 25') enthaltende Platte (60) liegt, wobei diese Platte und dieser Oszillator über das rechtwinklige Parallelepiped nicht vorstehen.
  10. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der gemeinsame örtliche Oszillator (25, 25') gleichen Abstand zu den Sonden (21, 22; 53, 56) aufweist.
  11. Anwendung der Vorrichtung gemäß einem der vorhergehenden Ansprüche auf den Empfang von Fernsehsendungen, die von einem geostationären Satelliten übertragen werden.
EP19860402728 1985-12-10 1986-12-09 Superheterodynempfänger zweier Mikrowellensignale gegensinniger Zirkularpolarisation Expired - Lifetime EP0228947B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8518255A FR2591407B1 (fr) 1985-12-10 1985-12-10 Dispositif de reception, a guide d'onde et circuits superheterodynes, de deux signaux hyperfrequences a polarisation de sens inverses
FR8518255 1985-12-10

Publications (2)

Publication Number Publication Date
EP0228947A1 EP0228947A1 (de) 1987-07-15
EP0228947B1 true EP0228947B1 (de) 1993-08-11

Family

ID=9325617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860402728 Expired - Lifetime EP0228947B1 (de) 1985-12-10 1986-12-09 Superheterodynempfänger zweier Mikrowellensignale gegensinniger Zirkularpolarisation

Country Status (3)

Country Link
EP (1) EP0228947B1 (de)
DE (1) DE3688881T2 (de)
FR (1) FR2591407B1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034750A (en) * 1983-10-31 1991-07-23 Raytheon Company Pulse radar and components therefor
DE3619220A1 (de) * 1986-06-07 1988-02-18 Kolbe & Co Hans Konvertersystem
JPH0336243U (de) * 1989-08-22 1991-04-09
US5701591A (en) * 1995-04-07 1997-12-23 Telecommunications Equipment Corporation Multi-function interactive communications system with circularly/elliptically polarized signal transmission and reception
US6233435B1 (en) 1997-10-14 2001-05-15 Telecommunications Equipment Corporation Multi-function interactive communications system with circularly/elliptically polarized signal transmission and reception

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3059186A (en) * 1960-11-30 1962-10-16 Philip J Allen Polarization resolver and mixer
US3092828A (en) * 1961-04-28 1963-06-04 Philip J Allen Polarization modulation apparatus
US3955202A (en) * 1975-04-15 1976-05-04 Macrowave Development Laboratories, Inc. Circularly polarized wave launcher
US4126835A (en) * 1977-06-20 1978-11-21 Ford Motor Company Balanced phase septum polarizer
DE3108758A1 (de) * 1981-03-07 1982-09-16 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Mikrowellen-empfangseinrichtung
US4418429A (en) * 1982-05-07 1983-11-29 General Electric Company Mixer for use in a microwave system
JPS5999801A (ja) * 1982-11-30 1984-06-08 Toshiba Corp マイクロ波受信装置
EP0131633B1 (de) * 1983-01-20 1988-10-26 Matsushita Electric Industrial Co., Ltd. Frequenzumwandler

Also Published As

Publication number Publication date
DE3688881D1 (de) 1993-09-16
FR2591407B1 (fr) 1988-08-05
FR2591407A1 (fr) 1987-06-12
DE3688881T2 (de) 1993-11-25
EP0228947A1 (de) 1987-07-15

Similar Documents

Publication Publication Date Title
CA2267536A1 (fr) Dispositif de radiocommunication et antenne bifrequence realisee selon la technique des microrubans
WO1999035711A1 (fr) Emetteur/recepteur d'ondes electromagnetiques
FR2938971A1 (fr) Cage de faraday pour camera
EP0426566A1 (de) Multifokale Empfangsantenne mit einer einzigen Ausrichtung für den Empfang mehrerer Satelliten
FR2704358A1 (fr) Duplexeur de polarissation à guide d'ondes.
EP0707357B1 (de) Antennensystem mit mehreren Speisesystemen, integriert in einem rauscharmen Umsetzer (LNC)
EP0228947B1 (de) Superheterodynempfänger zweier Mikrowellensignale gegensinniger Zirkularpolarisation
EP0074295B1 (de) Passiver Mikrowellenduplexer mit Halbleitern
EP0736924A1 (de) Tragbarer Empfänger mit einer Antenne
FR2677176A1 (fr) Convertisseur mode coaxial-mode guide d'ondes.
EP0174250B1 (de) Vorrichtung zum Empfang von dual polarisierten Mikrowellensignalen
FR2591406A1 (fr) Dispositif de reception simultanee de deux signaux hyperfrequences a polarisation circulaire de sens inverses
FR3003700A1 (fr) Dispositif de reduction de signature radar d'antenne et systeme antennaire associe
EP0073165A1 (de) Mikrowellenschalter
FR2515432A1 (fr) Coupleur de puissance micro-onde de dimensions reduites
FR2723801A1 (fr) Diplexeur a intervalle d'un octave entre bandes.
CA2342953C (fr) Element rayonnant hyperfrequence bi-bande
EP3249823B1 (de) Kompakter doppelpolarisierter funkfrequenzerreger mit mehrfachfrequenzen für antennenprimärstrahler, und mit einem solchen funkfrequenzerreger ausgestatteter antennenprimärstrahler
FR2522883A1 (fr) Joint pivotant pour guides d'ondes hyperfrequences
EP1066741B1 (de) Elektronische schaltungsstruktur mit optimisierung des platzbedarfs in abhangigkeit vom vorhandenen volumen
EP0329050B1 (de) Elektronische Mikroschaltung
FR2716049A1 (fr) Convertisseur.
EP3035445B1 (de) Anschlusskoppler mit orthogonalmodus, und entsprechender polarisations- und frequenztrennschalter
EP0213040A2 (de) Äusserliche Speisungseinheit für Mikrowellenantenne
FR2577719A1 (fr) Duplexeur de polarisations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19870813

17Q First examination report despatched

Effective date: 19890629

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3688881

Country of ref document: DE

Date of ref document: 19930916

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19971104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011109

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020124

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee