EP0228947B1 - Superheterodyne receiver for two microwave signals with two opposite circular polarizations - Google Patents

Superheterodyne receiver for two microwave signals with two opposite circular polarizations Download PDF

Info

Publication number
EP0228947B1
EP0228947B1 EP19860402728 EP86402728A EP0228947B1 EP 0228947 B1 EP0228947 B1 EP 0228947B1 EP 19860402728 EP19860402728 EP 19860402728 EP 86402728 A EP86402728 A EP 86402728A EP 0228947 B1 EP0228947 B1 EP 0228947B1
Authority
EP
European Patent Office
Prior art keywords
probes
waveguide
local oscillator
printed circuit
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19860402728
Other languages
German (de)
French (fr)
Other versions
EP0228947A1 (en
Inventor
Laurent Kerger
Alain Pavion
Patrick Potier
Didier Cheval
Lassima Sanogo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S E R E L Ste
Original Assignee
S E R E L Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S E R E L Ste filed Critical S E R E L Ste
Publication of EP0228947A1 publication Critical patent/EP0228947A1/en
Application granted granted Critical
Publication of EP0228947B1 publication Critical patent/EP0228947B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/173Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a conductive element

Definitions

  • the invention relates to a device for the simultaneous reception of two waves with circular or elliptical polarization in opposite directions.
  • the reception devices are capable of receiving circularly polarized waves in opposite directions.
  • Such a device is located in the vicinity of the antenna. It comprises a waveguide means transforming the waves with circular polarization into waves with rectilinear polarization. Each wave with rectilinear polarization is introduced at the input of a circuit which comprises an amplifier, in particular at low noise, a filter, a local oscillator, a mixer and an amplifier at intermediate frequency IF.
  • a reception device according to the preamble of claim 1 is known from document US-A-3,092,828 (see FIG. 9).
  • the device according to the invention is characterized by the characteristics of the characterizing part.
  • the example which will be described in relation to the figures relates to the reception of television broadcasts transmitted via a geostationary satellite, the television signals being carried by microwave waves with circular gyroplane or dextrorotatory polarization .
  • a parabolic antenna 10 (FIG. 1) is provided, the axis of which is directed towards the satellite and which thus receives the waves emitted by the latter to reflect them on its focus.
  • a device for receiving microwave waves 11 is therefore placed at the focal point of the parabolic antenna 10.
  • Such a device 11 comprises a receiving horn 12 (FIG. 2) constituting the inlet of the device 11.
  • This horn 12 has the shape of a truncated cone. It is extended, at the rear, by a waveguide 13 of circular section which may contain a bandpass or highpass filter.
  • This waveguide 13 is connected to a waveguide 15 of rectangular section via a waveguide 14 allowing the transition from the circular section to the rectangular section.
  • the waveguide 15 of rectangular section has, over part of its length, a depolarizing metal strip 16 parallel to two walls 17 and 18 (FIG. 3) of the rectangular parallelepiped that constitutes the waveguide 15 and at equal distance from these walls.
  • the front edge 19 of the blade 16 has a general bevel shape ( Figures 2 and 6) which allows depolarization: polarized waves circular to the right are transformed into waves with rectilinear polarization remaining on one side of the blade 16, the side being a function of the direction (right) of the circular polarization.
  • the front edge 19 has a staircase shape.
  • FIGS. 2 a to 2 j are diagrams which allow a good understanding of the depolarizing role of the blade 16 and of its entry edge 19.
  • a circularly polarized wave (right or left) can be broken down into two linearly polarized waves ( Figure 2 j ,) represented by the two electric field vectors whose directions form an angle of ⁇ 2 radians.
  • the direction of rotation (right or left) of the circular wave depends on the sign of the phase shift between these two vectors
  • Figures 2 a to 2 d show the propagation of the vector component
  • Figures 2 e to 2 h show the propagation of the vector component
  • Figures 2b and 2f are sections of the guide 15 in a cross section corresponding to the front part of the bevel 19; the diagrams in FIGS. 2 c and 2 g correspond to straight sections in the posterior zone of the bevel 19 while FIGS. 2 d , 2 h and 2 i correspond to the waveguide at the rear of the bevel 19.
  • the effect of the blade 16 on the horizontal vector is to separate it into two vectors in the same directions on either side of the blade 16.
  • the component of the input wave corresponding to the vector is divided into two waves with rectilinear polarization in phase.
  • the effect of the blade 16 on the wave with vertical rectilinear polarization is to transform the latter into two waves with horizontal rectilinear polarization in opposite directions ( Figures 2 e to 2 h ).
  • FIGS. 2 h and 2 d to the left of the blade 16 there is obtained a wave with horizontal rectilinear polarization in tune with the wave
  • the wave with rectilinear polarization is in phase opposition with the wave with rectilinear polarization
  • the circularly polarized wave of components is transformed into a wave with rectilinear polarization on one side of the blade 16 ( Figure 2 i ), the components canceling out on the other side.
  • Rectilinear probes 21 and 22 pass through the walls 17 and 18 perpendicularly to the latter, and therefore parallel to the electric field vector on each side of the metal blade 16, behind the bevel edge 19. These probes 21 and 22 are aligned, and therefore in positions symmetrical to one another with respect to the blade 16.
  • the probe 21 is connected with its end 21a to the outside of the waveguide 15, to a circuit on a printed circuit board 23 ( Figures 3 and 5) parallel to the wall 17 and at a short distance the latter.
  • the probe 22 is associated with a printed circuit board 24 identical to the board 23 and of position symmetrical with respect to the plane of the blade 16.
  • FIG 4 there is shown, on the one hand, the circuit 231 superheterodyne located on the wafer 23, on the other hand, the circuit 241 on the wafer 24 and, on the other hand finally, the common local oscillator 25 to these two circuits which is on a printed circuit board 26 (FIGS. 3 and 5) perpendicular to the boards 23 and 24, that is to say parallel to another wall 27 of the waveguide 15 of rectangular section, and at a short distance from this wall 27.
  • the plate 26 is applied against the external face of the wall 27.
  • bridges are provided for connection, respectively between the plate 26 and the plate 23, and 31 between the plate 26 and the plate 24. These bridges overlap edges in contact with the plates 23 and 26 and 24 and 26.
  • the circuit 231 comprises a low noise amplifier 32 receiving the signal from the probe 21 and which is connected to the first input 341 of a mixer 34 via a bandpass filter 33.
  • the second input 342 of the mixer 34 is connected to a first output of the power divider associated with the local oscillator 25.
  • the output 343 of the mixer is connected to the output of the circuit via an intermediate frequency amplifier FI 35.
  • the circuit 241 includes an amplifier 36 with low noise, a bandpass filter 37, a mixer 38, one input of which is connected to a second output of the power divider associated with the local oscillator 25 and an intermediate frequency amplifier FI 39.
  • the printed circuit board 23 rests on a wall 40 parallel to the wall 17 and at a short distance from the latter; a cover 41 is associated with this wall 40. In this way the printed circuit board 23 is sealed in a box formed by the wall 40 and the cover 41. Similarly, the boards 24 and 26 are enclosed in respective boxes with base wall and cover.
  • the set of waveguides 13, 14, 15 and printed circuit boards with their boxes is placed in another protective box 45 (FIG. 2) forming a single piece with the horn 12.
  • the arrangement of the invention which consists in providing a local oscillator common to circuits 231 and 241 avoids interference between these two circuits.
  • the arrangement which consists in providing probes 21, 22 perpendicular to the walls 17, 18 and connected to circuits on parallel plates 23, 24 and at a short distance from said walls 17, 18, or applied against the latter, allows an embodiment compact receiving device, i.e. to minimize the volume occupied by this device 11.
  • the resulting advantage is a reduction in the wind resistance and a reduction in the risk of obscuring the wave coming from the satellite before it is received by the device.
  • a waveguide of rectangular or square section is not used, but a waveguide 50 of circular section which is separated , in longitudinal direction, in two parts by a wall 51 having an elongated slot 52 in a determined direction.
  • a probe 53 passes through the wall of the waveguide, in a radial direction, and is connected to a printed circuit board 54 which is applied against a flat outer face 55 of the device 15 ⁇ for separating the waves at circular polarization in opposite directions.
  • this wall 51 leaves the passage to waves with perpendicular polarization.
  • a probe 56 crosses radially the wall of the waveguide 50 in a direction perpendicular to that of the probe 53, but downstream of the wall 51.
  • the part of the waveguide 50 which contains the end of the probe 56 is closed by an end wall 57 constituting a short circuit for all the waves, whatever their polarization.
  • the probe 56 is, like the probe 53, connected to a circuit located on a printed circuit board 58 applied against a flat external face 59 perpendicular to the face 55.
  • the circuits on the pads 54 and 58 are analogous to the circuits 231 and 241 described in relation to FIG. 4.
  • a common local oscillator 25 ⁇ is provided. This is placed on another printed circuit board 60 connected to the circuits on the boards 54 and 58 by bridges 61 and 62 (FIG. 8).
  • the trigger guard 61 overlaps the edges in contact 54 a and 60 has plates 54 and 60; similarly the trigger guard 62 overlaps edges in contact 58 b and 60 b of the plates 58 and 60.
  • the device 15 ⁇ has an oblique face 70 of short length relative to the faces 55 and 59 (FIG. 8) forming an interruption of the joint edge 71 to said faces 55 and 59.
  • this face 70 is inclined by about 45 ° relative to the adjacent faces 55 and 59.
  • This face 70 is inside the rectangular parallelepiped that constitutes the part 15 ⁇ ; the depth of the withdrawal is sufficient for the wafer 60 and the oscillator 25 non not to exceed this rectangular parallelepiped either, which maintains the compact nature of the device.
  • the waveguide 50 is formed of three pieces of cast aluminum, the first 63 ending in a nose 64 closed by the wall 51 and the second, 65, having a countersink 66 receiving by force adjustment the nose 64.
  • the third piece is the end plug 57.
  • the local oscillator 25 common to the circuits of the two channels is on a printed circuit board while the other circuit elements are on two separate boards. Other distributions of the circuit elements are however possible. Thus in one example the common local oscillator 25 and the IF amplifiers 35, 39 are on the same printed circuit board.

Landscapes

  • Waveguide Aerials (AREA)

Description

L'invention est relative à un dispositif de réception simultanée de deux ondes à polarisation circulaire ou elliptique de sens inverses.The invention relates to a device for the simultaneous reception of two waves with circular or elliptical polarization in opposite directions.

Un accord international a prévu que les émissions de télévision transmises par satellite géostationnaire pourraient être effectuées sur 40 canaux de fréquences porteuses comprises entre 11,7 et 12,5 GHz, chaque canal occupant une bande s'étalant sur 27 MHz. Ainsi deux canaux consécutifs peuvent présenter des fréquences qui se recouvrent. Pour éviter les brouillages, on prévoit que deux canaux successifs soient transmis par des ondes à polarisations circulaires inverses, l'une étant à polarisation circulaire droite (dextrogyre) et l'autre à polarisation circulaire gauche (lévogyre).An international agreement has provided that television broadcasts transmitted by geostationary satellite could be carried out on 40 channels of carrier frequencies between 11.7 and 12.5 GHz, each channel occupying a band spanning 27 MHz. Thus two consecutive channels can have overlapping frequencies. To avoid interference, provision is made for two successive channels to be transmitted by waves with reverse circular polarizations, one being with right circular polarization (dextrorotatory) and the other with left circular polarization (levorotoric).

Dans une zone recevant deux canaux de fréquences adjacentes il est donc préférable que les dispositifs de réception soient capables de recevoir des ondes polarisées circulairement en sens inverses. Pour minimiser les coûts on prévoit de n'utiliser en général qu'une seule antenne pour recevoir ces signaux, celle-ci étant donc associée à un dispositif de séparation.In an area receiving two adjacent frequency channels, it is therefore preferable that the reception devices are capable of receiving circularly polarized waves in opposite directions. To minimize costs, provision is made in general to use only a single antenna for receiving these signals, the latter therefore being associated with a separation device.

Un tel dispositif se trouve au voisinage de l'antenne. Il comprend un moyen à guide d'onde transformant les ondes à polarisation circulaire en ondes à polarisation rectiligne. Chaque onde à polarisation rectiligne est introduite à l'entrée d'un circuit qui comprend un amplificateur, notamment à faible bruit, un filtre, un oscillateur local, un mélangeur et un amplificateur à fréquence intermédiaire FI.Such a device is located in the vicinity of the antenna. It comprises a waveguide means transforming the waves with circular polarization into waves with rectilinear polarization. Each wave with rectilinear polarization is introduced at the input of a circuit which comprises an amplifier, in particular at low noise, a filter, a local oscillator, a mixer and an amplifier at intermediate frequency IF.

On a constaté que les images de télévision obtenues à partir des signaux provenant de ces circuits présentent des défauts, se présentant notamment sous forme de lignes verticales.It has been found that the television images obtained from the signals originating from these circuits have defects, in particular in the form of vertical lines.

Les inventeurs ont découvert que ces défauts proviennent du fait que, d'une part, les fréquences des oscillateurs locaux ne peuvent pas être strictement égales et, d'autre part, malgré les soins que l'on peut apporter à la construction du dispositif de séparation les signaux de chaque voie agissent sur l'autre voie. Il en résulte ainsi des interférences ou battements qui provoquent les défauts visibles sur une image de télévision.The inventors have discovered that these defects arise from the fact that, on the one hand, the frequencies of the local oscillators cannot be strictly equal and, on the other hand, despite the care that can be taken in the construction of the separation device, the signals of each channel act on the other channel. This results in interference or beats which cause visible defects on a television picture.

Un dispositif de réception selon le préambule de la revendication 1 est connu du document US-A-3 092 828 (voir figure 9). Le dispositif selon l'invention est caractérisé par les caractéristiques de la partie caractérisante.A reception device according to the preamble of claim 1 is known from document US-A-3,092,828 (see FIG. 9). The device according to the invention is characterized by the characteristics of the characterizing part.

D'autres caractéristiques et avantages de l'invention apparaîtront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels:

  • la figure 1 est un schéma d'une antenne et d'un dispositif de réception associé,
  • la figure 2 est une vue en coupe axiale à échelle agrandie du dispositif de réception de la figure 1,
  • les figures 2a à 2j sont des schémas montrant le fonctionnement d'un dispositif de séparation,
  • la figure 3 est une coupe selon la ligne 3-3 de la figure 2,
  • la figure 4 est un schéma de circuit du dispositif de réception de la figure 1,
  • la figure 5 est une coupe selon la ligne 5-5 de la figure 2,
  • la figure 6 est une vue schématique en perspective correspondant à une partie du dispositif de réception de la figure 2,
  • la figure 7 est une vue en perspective et en coupe d'une partie de dispositif de réception pour une variante, et
  • la figure 8 est une autre vue en perspective du dispositif de la figure 7.
Other characteristics and advantages of the invention will appear with the description of some of its embodiments, this being carried out with reference to the attached drawings in which:
  • FIG. 1 is a diagram of an antenna and an associated reception device,
  • FIG. 2 is a view in axial section on an enlarged scale of the reception device of FIG. 1,
  • FIGS. 2 a to 2 j are diagrams showing the operation of a separation device,
  • FIG. 3 is a section along line 3-3 in FIG. 2,
  • FIG. 4 is a circuit diagram of the reception device of FIG. 1,
  • FIG. 5 is a section along line 5-5 of FIG. 2,
  • FIG. 6 is a schematic perspective view corresponding to a part of the reception device in FIG. 2,
  • FIG. 7 is a perspective view in section of a part of the receiving device for a variant, and
  • FIG. 8 is another perspective view of the device in FIG. 7.

L'exemple qu'on va décrire en relation avec les figures se rapporte à la réception d'émissions de télévision transmises par l'intermédiaire d'un satellite géostationnaire, les signaux de télévision étant portés par des ondes hyperfréquences à polarisation circulaire lévogyre ou dextrogyre.The example which will be described in relation to the figures relates to the reception of television broadcasts transmitted via a geostationary satellite, the television signals being carried by microwave waves with circular gyroplane or dextrorotatory polarization .

Pour recevoir de telles ondes on prévoit une antenne parabolique 10 (figure 1) dont l'axe est dirigé vers le satellite et qui reçoit ainsi les ondes émises par ce dernier pour les réfléchir à son foyer. Un dispositif de réception d'ondes hyperfréquences 11 est donc disposé au foyer de l'antenne parabolique 10.To receive such waves, a parabolic antenna 10 (FIG. 1) is provided, the axis of which is directed towards the satellite and which thus receives the waves emitted by the latter to reflect them on its focus. A device for receiving microwave waves 11 is therefore placed at the focal point of the parabolic antenna 10.

Un tel dispositif 11 comporte un cornet de réception 12 (figure 2) constituant l'entrée du dispositif 11. Ce cornet 12 a la forme d'un tronc de cône. Il est prolongé, à l'arrière, par un guide d'onde 13 de section circulaire pouvant contenir un filtre passe-bande ou passe-haut. Ce guide d'onde 13 est raccordé à un guide d'onde 15 de section rectangulaire par l'intermédiaire d'un guide d'onde 14 permettant la transition de la section circulaire à la section rectangulaire.Such a device 11 comprises a receiving horn 12 (FIG. 2) constituting the inlet of the device 11. This horn 12 has the shape of a truncated cone. It is extended, at the rear, by a waveguide 13 of circular section which may contain a bandpass or highpass filter. This waveguide 13 is connected to a waveguide 15 of rectangular section via a waveguide 14 allowing the transition from the circular section to the rectangular section.

Le guide d'onde 15 de section rectangulaire présente, sur une partie de sa longueur, une lame métallique dépolarisante 16 parallèle à deux parois 17 et 18 (figure 3) du parallélépipède rectangle que constitue le guide d'onde 15 et à égale distance de ces parois. Le bord antérieur 19 de la lame 16 a une forme générale en biseau (figures 2 et 6) qui permet la dépolarisation : les ondes à polarisation circulaire à droite sont transformées en ondes à polarisation rectiligne subsistant d'un seul côté de la lame 16, le côté étant fonction du sens (à droite) de la polarisation circulaire. En variante le bord antérieur 19 a une forme en marche d'escalier.The waveguide 15 of rectangular section has, over part of its length, a depolarizing metal strip 16 parallel to two walls 17 and 18 (FIG. 3) of the rectangular parallelepiped that constitutes the waveguide 15 and at equal distance from these walls. The front edge 19 of the blade 16 has a general bevel shape (Figures 2 and 6) which allows depolarization: polarized waves circular to the right are transformed into waves with rectilinear polarization remaining on one side of the blade 16, the side being a function of the direction (right) of the circular polarization. As a variant, the front edge 19 has a staircase shape.

Les figures 2a à 2j sont des schémas qui permettent de bien comprendre le rôle dépolarisant de la lame 16 et de son bord d'entrée 19.FIGS. 2 a to 2 j are diagrams which allow a good understanding of the depolarizing role of the blade 16 and of its entry edge 19.

Une onde à polarisation circulaire (droite ou gauche) peut être décomposée en deux ondes polarisées linéairement (figure 2j,) représentées par les deux vecteurs champ électrique

Figure imgb0001

dont les directions forment entre eux un angle de π 2
Figure imgb0002
radians. Le sens de rotation (à droite ou à gauche) de l'onde circulaire dépend du signe du déphasage entre ces deux vecteurs
Figure imgb0003

Ainsi la propagation d'une onde à polarisation circulaire dans le guide d'onde 15 correspond à la propagation de deux ondes à polarisation rectiligne. Les figures 2a à 2d montrent la propagation de la composante de vecteur
Figure imgb0004

et les figures 2e à 2h montrent la propagation de la composante de vecteur
Figure imgb0005
A circularly polarized wave (right or left) can be broken down into two linearly polarized waves (Figure 2 j ,) represented by the two electric field vectors
Figure imgb0001

whose directions form an angle of π 2
Figure imgb0002
radians. The direction of rotation (right or left) of the circular wave depends on the sign of the phase shift between these two vectors
Figure imgb0003

Thus, the propagation of a wave with circular polarization in the waveguide 15 corresponds to the propagation of two waves with rectilinear polarization. Figures 2 a to 2 d show the propagation of the vector component
Figure imgb0004

and Figures 2 e to 2 h show the propagation of the vector component
Figure imgb0005

Les figures 2b et 2f sont des coupes du guide 15 dans une section droite correspondant à la partie antérieure du biseau 19; les schémas des figures 2c et 2g correspondent à des sections droites dans la zone postérieure du biseau 19 tandis que les figures 2d, 2h et 2i correspondent au guide d'onde à l'arrière du biseau 19.Figures 2b and 2f are sections of the guide 15 in a cross section corresponding to the front part of the bevel 19; the diagrams in FIGS. 2 c and 2 g correspond to straight sections in the posterior zone of the bevel 19 while FIGS. 2 d , 2 h and 2 i correspond to the waveguide at the rear of the bevel 19.

Comme on peut le voir sur les figures 2a à 2d l'effet de la lame 16 sur le vecteur horizontal

Figure imgb0006

est de le séparer en deux vecteurs
Figure imgb0007

de mêmes sens de part et d'autre de la lame 16. Autrement dit la composante de l'onde d'entrée correspondant au vecteur
Figure imgb0008

est divisée en deux ondes à polarisation rectiligne en phase.As can be seen in Figures 2 a to 2 d the effect of the blade 16 on the horizontal vector
Figure imgb0006

is to separate it into two vectors
Figure imgb0007

in the same directions on either side of the blade 16. In other words the component of the input wave corresponding to the vector
Figure imgb0008

is divided into two waves with rectilinear polarization in phase.

Par contre l'effet de la lame 16 sur l'onde à polarisation rectiligne verticale

Figure imgb0009

est de transformer cette dernière en deux ondes à polarisation rectiligne horizontale en sens inverses (figures 2e à 2h). Ainsi, comme le montrent les figures 2h et 2d, à gauche de la lame 16 on obtient une onde à polarisation rectiligne horizontale
Figure imgb0010

en phase avec l'onde
Figure imgb0011

Par contre à droite de la lame 16 l'onde à polarisation rectiligne
Figure imgb0012

est en opposition de phase avec l'onde à polarisation rectiligne
Figure imgb0013

Dans ces conditions l'onde à polarisation circulaire de composantes
Figure imgb0014

est transformée en une onde à polarisation rectiligne
Figure imgb0015

d'un seul côté de la lame 16 (figure 2i), les composantes
Figure imgb0016

s'annulant de l'autre côté.On the other hand, the effect of the blade 16 on the wave with vertical rectilinear polarization
Figure imgb0009

is to transform the latter into two waves with horizontal rectilinear polarization in opposite directions (Figures 2 e to 2 h ). Thus, as shown in FIGS. 2 h and 2 d , to the left of the blade 16 there is obtained a wave with horizontal rectilinear polarization
Figure imgb0010

in tune with the wave
Figure imgb0011

By cons to the right of the blade 16 the wave with rectilinear polarization
Figure imgb0012

is in phase opposition with the wave with rectilinear polarization
Figure imgb0013

Under these conditions the circularly polarized wave of components
Figure imgb0014

is transformed into a wave with rectilinear polarization
Figure imgb0015

on one side of the blade 16 (Figure 2 i ), the components
Figure imgb0016

canceling out on the other side.

On comprendra aisément qu'une onde à polarisation circulaire en sens inverse, c'est-à-dire de composantes

Figure imgb0017

est transformée en une onde à polarisation rectiligne du côté droit de la lame 16.It will be readily understood that a wave with circular polarization in the opposite direction, that is to say of components
Figure imgb0017

is transformed into a wave with rectilinear polarization on the right side of the blade 16.

Des sondes rectilignes 21 et 22 traversent les parois 17 et 18 perpendiculairement à ces dernières, et donc parallèlement au vecteur champ électrique

Figure imgb0018

de chaque côté de la lame métallique 16, à l'arrière du bord en biseau 19. Ces sondes 21 et 22 sont alignées, et donc en positions symétriques l'une de l'autre par rapport à la lame 16.Rectilinear probes 21 and 22 pass through the walls 17 and 18 perpendicularly to the latter, and therefore parallel to the electric field vector
Figure imgb0018

on each side of the metal blade 16, behind the bevel edge 19. These probes 21 and 22 are aligned, and therefore in positions symmetrical to one another with respect to the blade 16.

La sonde 21 est raccordée, par son extrémité 21a à l'extérieur du guide d'onde 15, à un circuit se trouvant sur une plaquette de circuit imprimé 23 (figures 3 et 5) parallèle à la paroi 17 et à faible distance de cette dernière. De même la sonde 22 est associée à une plaquette 24 de circuit imprimé identique à la plaquette 23 et de position symétrique par rapport au plan de la lame 16.The probe 21 is connected with its end 21a to the outside of the waveguide 15, to a circuit on a printed circuit board 23 (Figures 3 and 5) parallel to the wall 17 and at a short distance the latter. Likewise, the probe 22 is associated with a printed circuit board 24 identical to the board 23 and of position symmetrical with respect to the plane of the blade 16.

Sur la figure 4 on a représenté, d'une part, le circuit 23₁ superhétérodyne se trouvant sur la plaquette 23, d'autre part, le circuit 24₁ sur la plaquette 24 et, d'autre part enfin, l'oscillateur local commun 25 à ces deux circuits qui se trouve sur une plaquette de circuit imprimé 26 (figures 3 et 5) perpendiculaire aux plaquettes 23 et 24, c'est-à-dire parallèle à une autre paroi 27 du guide d'onde 15 de section rectangulaire, et à faible distance de cette paroi 27. En variante la plaquette 26 est appliquée contre la face externe de la paroi 27.In Figure 4 there is shown, on the one hand, the circuit 23₁ superheterodyne located on the wafer 23, on the other hand, the circuit 24₁ on the wafer 24 and, on the other hand finally, the common local oscillator 25 to these two circuits which is on a printed circuit board 26 (FIGS. 3 and 5) perpendicular to the boards 23 and 24, that is to say parallel to another wall 27 of the waveguide 15 of rectangular section, and at a short distance from this wall 27. As a variant, the plate 26 is applied against the external face of the wall 27.

Pour la liaison (figure 5) de l'oscillateur local 25 commun aux circuits superhétérodynes 23₁ et 24₁ on prévoit des pontets de liaison, respectivement 30 entre la plaquette 26 et la plaquette 23, et 31 entre la plaquette 26 et la plaquette 24. Ces pontets chevauchent des arêtes en contact des plaquettes 23 et 26 et 24 et 26.For the connection (FIG. 5) of the local oscillator 25 common to the superheterodyne circuits 23₁ and 24₁, bridges are provided for connection, respectively between the plate 26 and the plate 23, and 31 between the plate 26 and the plate 24. These bridges overlap edges in contact with the plates 23 and 26 and 24 and 26.

Le circuit 23₁ comporte un amplificateur 32 à faible bruit recevant le signal de la sonde 21 et qui est connecté à la première entrée 34₁ d'un mélangeur 34 par l'intermédiaire d'un filtre passe-bande 33. La seconde entrée 34₂ du mélangeur 34 est reliée à une première sortie du diviseur de puissance associé à l'oscillateur local 25. La sortie 34₃ du mélangeur est reliée à la sortie du circuit par l'intermédiaire d'un amplificateur à fréquence intermédiaire FI 35.The circuit 23₁ comprises a low noise amplifier 32 receiving the signal from the probe 21 and which is connected to the first input 34₁ of a mixer 34 via a bandpass filter 33. The second input 34₂ of the mixer 34 is connected to a first output of the power divider associated with the local oscillator 25. The output 34₃ of the mixer is connected to the output of the circuit via an intermediate frequency amplifier FI 35.

De même le circuit 24₁ comporte un amplificateur 36 à faible bruit, un filtre passe-bande 37, un mélangeur 38 dont une entrée est connectée à une seconde sortie du diviseur de puissance associé à l'oscillateur local 25 et un amplificateur à fréquence intermédiaire FI 39.Likewise, the circuit 24₁ includes an amplifier 36 with low noise, a bandpass filter 37, a mixer 38, one input of which is connected to a second output of the power divider associated with the local oscillator 25 and an intermediate frequency amplifier FI 39.

Dans l'exemple, et comme on peut le voir sur la figure 3, la plaquette de circuit imprimé 23 repose sur une paroi 40 parallèle à la paroi 17 et à faible distance de cette dernière; à cette paroi 40 est associé un capot 41. De cette manière la plaquette de circuit imprimé 23 est enfermée de façon étanche dans un boîtier constitué par la paroi 40 et le capot 41. De même les plaquettes 24 et 26 sont enfermées dans des boîtiers respectifs à paroi de base et capot. L'ensemble des guides d'onde 13, 14, 15 et des plaquettes de circuits imprimés avec leurs boîtiers est disposé dans un autre boîtier de protection 45 (figure 2) formant une seule pièce avec le cornet 12.In the example, and as can be seen in FIG. 3, the printed circuit board 23 rests on a wall 40 parallel to the wall 17 and at a short distance from the latter; a cover 41 is associated with this wall 40. In this way the printed circuit board 23 is sealed in a box formed by the wall 40 and the cover 41. Similarly, the boards 24 and 26 are enclosed in respective boxes with base wall and cover. The set of waveguides 13, 14, 15 and printed circuit boards with their boxes is placed in another protective box 45 (FIG. 2) forming a single piece with the horn 12.

La disposition de l'invention qui consiste à prévoir un oscillateur local commun 25 aux circuits 23₁ et 24₁ évite les interférences entre ces deux circuits.The arrangement of the invention which consists in providing a local oscillator common to circuits 23₁ and 24₁ avoids interference between these two circuits.

En outre la disposition qui consiste à prévoir des sondes 21, 22 perpendiculaires aux parois 17, 18 et raccordées à des circuits sur des plaquettes 23, 24 parallèles et à faible distance desdites parois 17, 18, ou appliquées contre ces dernières, permet une réalisation compacte du dispositif de réception, c'est-à-dire de minimiser le volume occupé par ce dispositif 11. L'avantage qui en résulte est une diminution de la prise au vent et une diminution de risque d'occultation de l'onde provenant du satellite avant sa réception par le dispositif.In addition, the arrangement which consists in providing probes 21, 22 perpendicular to the walls 17, 18 and connected to circuits on parallel plates 23, 24 and at a short distance from said walls 17, 18, or applied against the latter, allows an embodiment compact receiving device, i.e. to minimize the volume occupied by this device 11. The resulting advantage is a reduction in the wind resistance and a reduction in the risk of obscuring the wave coming from the satellite before it is received by the device.

Dans la variante représentée sur les figures 7 et 8 pour séparer les ondes à polarisation circulaire en sens inverses on ne fait pas appel à un guide d'onde de section rectangulaire ou carrée mais à un guide d'onde 50 de section circulaire qui est séparé, en direction longitudinale, en deux parties par une paroi 51 présentant une fente allongée 52 selon une direction déterminée. En amont de la fente 52 une sonde 53 traverse la paroi du guide d'onde, avec une direction radiale, et est raccordée à une plaquette de circuit imprimé 54 qui est appliquée contre une face extérieure plane 55 du dispositif 15ʹ de séparation des ondes à polarisation circulaire en sens inverses.In the variant shown in FIGS. 7 and 8, to separate the waves with circular polarization in opposite directions, a waveguide of rectangular or square section is not used, but a waveguide 50 of circular section which is separated , in longitudinal direction, in two parts by a wall 51 having an elongated slot 52 in a determined direction. Upstream of the slot 52 a probe 53 passes through the wall of the waveguide, in a radial direction, and is connected to a printed circuit board 54 which is applied against a flat outer face 55 of the device 15 ʹ for separating the waves at circular polarization in opposite directions.

La paroi 51 avec sa fente 52 allongée parallèlement à la direction de la sonde 53, constitue un court-circuit pour les ondes à polarisation rectiligne telles que le champ électrique E soit parallèle à la sonde. Par contre cette paroi 51 laisse le passage aux ondes à polarisation perpendiculaire. Ainsi une sonde 56 traverse radialement la paroi du guide d'onde 50 dans une direction perpendiculaire à celle de la sonde 53, mais à l'aval de la paroi 51. La partie du guide d'onde 50 qui contient l'extrémité de la sonde 56 est fermée par une paroi d'extrémité 57 constituant un court-circuit pour toutes les ondes, quelle que soit leur polarisation.The wall 51 with its slot 52 elongated parallel to the direction of the probe 53, constitutes a short-circuit for waves with rectilinear polarization such as the electric field E is parallel to the probe. On the other hand, this wall 51 leaves the passage to waves with perpendicular polarization. Thus a probe 56 crosses radially the wall of the waveguide 50 in a direction perpendicular to that of the probe 53, but downstream of the wall 51. The part of the waveguide 50 which contains the end of the probe 56 is closed by an end wall 57 constituting a short circuit for all the waves, whatever their polarization.

La sonde 56 est, comme la sonde 53, connectée à un circuit se trouvant sur une plaquette de circuit imprimé 58 appliquée contre une face externe plane 59 perpendiculaire à la face 55.The probe 56 is, like the probe 53, connected to a circuit located on a printed circuit board 58 applied against a flat external face 59 perpendicular to the face 55.

Les circuits sur les plaquettes 54 et 58 sont analogues aux circuits 23₁ et 24₁ décrits en relation avec la figure 4. Comme dans cette réalisation on prévoit un oscillateur local commun 25ʹ. Celui-ci est disposé sur une autre plaquette de circuit imprimé 60 raccordée aux circuits sur les plaquettes 54 et 58 par des pontets 61 et 62 (figure 8). Le pontet 61 chevauche des bords en contact 54a et 60a des plaquettes 54 et 60; de même le pontet 62 chevauche des bords en contact 58b et 60b des plaquettes 58 et 60. Pour recevoir la plaquette 60 le dispositif 15ʹ présente une face oblique 70 de courte longueur par rapport aux faces 55 et 59 (figure 8) formant une interruption de l'arête 71 commune auxdites faces 55 et 59. Dans l'example cette face 70 est inclinée d'environ 45° par rapport aux faces adjacentes 55 et 59. Cette face 70 est à l'intérieur du parallélépipède rectangle que constitue la pièce 15ʹ; la profondeur du retrait est suffisante pour que la plaquette 60 et l'oscillateur 25ʹ ne dépassent pas non plus de ce parallélépipède rectangle, ce qui maintient le caractère compact du dispositif.The circuits on the pads 54 and 58 are analogous to the circuits 23₁ and 24₁ described in relation to FIG. 4. As in this embodiment, a common local oscillator 25ʹ is provided. This is placed on another printed circuit board 60 connected to the circuits on the boards 54 and 58 by bridges 61 and 62 (FIG. 8). The trigger guard 61 overlaps the edges in contact 54 a and 60 has plates 54 and 60; similarly the trigger guard 62 overlaps edges in contact 58 b and 60 b of the plates 58 and 60. To receive the plate 60 the device 15ʹ has an oblique face 70 of short length relative to the faces 55 and 59 (FIG. 8) forming an interruption of the joint edge 71 to said faces 55 and 59. In the example, this face 70 is inclined by about 45 ° relative to the adjacent faces 55 and 59. This face 70 is inside the rectangular parallelepiped that constitutes the part 15ʹ; the depth of the withdrawal is sufficient for the wafer 60 and the oscillator 25 non not to exceed this rectangular parallelepiped either, which maintains the compact nature of the device.

Le guide d'onde 50 est formé de trois pièces en aluminium moulé, la première 63 se terminant par un nez 64 fermé par la paroi 51 et la seconde, 65, présentant un lamage 66 recevant par un ajustage à force le nez 64. La troisième pièce est le bouchon d'extrémité 57.The waveguide 50 is formed of three pieces of cast aluminum, the first 63 ending in a nose 64 closed by the wall 51 and the second, 65, having a countersink 66 receiving by force adjustment the nose 64. The third piece is the end plug 57.

Dans les réalisations décrites, l'oscillateur local 25 commun aux circuits des deux voies est sur une plaquette de circuit imprimé tandis que les autres éléments de circuits sont sur deux plaquettes séparées. D'autres répartitions des éléments de circuits sont cependant possibles. Ainsi dans un exemple l'oscillateur local commun 25 et les amplificateurs FI 35, 39 sont sur une même plaquette de circuits imprimés.In the embodiments described, the local oscillator 25 common to the circuits of the two channels is on a printed circuit board while the other circuit elements are on two separate boards. Other distributions of the circuit elements are however possible. Thus in one example the common local oscillator 25 and the IF amplifiers 35, 39 are on the same printed circuit board.

Claims (11)

  1. Device for simultaneous reception of separate television broadcasts with the aid of waves with circular polarisation in opposite directions comprising a waveguide (15, 15') containing means (16) converting the waves with circular polarisation into waves with plane polarisation or of different directions, and, for each wave with plane polarisation, a superheterodyne-type circuit (23₁, 24₁), the two circuits including a common local oscillator (25, 25'); characterised in that the waves with plane polarisation are of opposite directions; the waveguide (15, 15') has a parallelepipedal general external shape; and two probes (21, 22; 53, 56) pass through the walls of the waveguide perpendicularly to external faces and are connected to the circuits on printed circuit boards applied against the said external faces, or parallel to and at a slight distance from these faces.
  2. Device according to Claim 1, characterised in that the common local oscillator (25, 25') is arranged on a printed circuit board on a third external face of the waveguide (15, 15').
  3. Device according to Claim 1 or 2, characterised in that the waveguide (15, 15') has a parallelepipedal general internal shape with a depolarising blade (16) for carrying out the conversion and the separation of the waveguides with circular polarisation in opposite directions, this plate being parallel to two internal faces of the waveguide and preferably at an equal distance from the latter, the probes (21, 22) being perpendicular to these internal faces.
  4. Device according to Claim 3, characterised in that the probes (21, 22) are in alignment with one another.
  5. Device according to Claims 2 and 3, characterised in that the printed circuit board for the local oscillator (25) which is common to the two circuits is on one face, or parallel to and at a slight distance from one face, perpendicular to the two faces having the boards connected to the probes.
  6. Device according to Claim 5, characterised in that the printed circuit board on which the local oscillator (25, 25') is arranged has edges in contact with corresponding edges of the boards of the circuits to which the probes are connected, the link between a power divider associated with the common local oscillator and the circuit boards connected to the probes being made by link bridges (30, 31) straddling the contacting edges.
  7. Device according to Claim 1, characterised in that each circuit includes a low-noise amplifier (32, 36).
  8. Device according to Claim 2, characterised in that the two probes (53, 56) have perpendicular directions, the printed circuit boards to which these two probes are connected being therefore in perpendicular planes, and in that the common local oscillator (25') is on a printed circuit board oriented at about 45° with respect to the first two boards.
  9. Device according to Claim 8, characterised in that the parallelepiped constituted by the waveguide (15') has, along one of its edges, a recess of niche in the bottom of which the board (60) is arranged including the common local oscillator (25, 25'), this board and this oscillator not projecting from the rectangular parallelepiped.
  10. Device according to Claim 2, characterised in that the common local oscillator (25, 25') is at an equal distance from the probes (21, 22; 53, 56).
  11. Application of the device according to any one of the preceding claims to the reception of television broadcasts transmitted by geostationary satellite.
EP19860402728 1985-12-10 1986-12-09 Superheterodyne receiver for two microwave signals with two opposite circular polarizations Expired - Lifetime EP0228947B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8518255 1985-12-10
FR8518255A FR2591407B1 (en) 1985-12-10 1985-12-10 RECEIVING DEVICE, WITH WAVEGUIDE AND SUPERHETERODYNES CIRCUITS, OF TWO HYPERFREQUENCY SIGNALS WITH POLARIZATION OF REVERSE SENSE

Publications (2)

Publication Number Publication Date
EP0228947A1 EP0228947A1 (en) 1987-07-15
EP0228947B1 true EP0228947B1 (en) 1993-08-11

Family

ID=9325617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860402728 Expired - Lifetime EP0228947B1 (en) 1985-12-10 1986-12-09 Superheterodyne receiver for two microwave signals with two opposite circular polarizations

Country Status (3)

Country Link
EP (1) EP0228947B1 (en)
DE (1) DE3688881T2 (en)
FR (1) FR2591407B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034750A (en) * 1983-10-31 1991-07-23 Raytheon Company Pulse radar and components therefor
DE3619220A1 (en) * 1986-06-07 1988-02-18 Kolbe & Co Hans CONVERTER SYSTEM
JPH0336243U (en) * 1989-08-22 1991-04-09
US5701591A (en) * 1995-04-07 1997-12-23 Telecommunications Equipment Corporation Multi-function interactive communications system with circularly/elliptically polarized signal transmission and reception
US6233435B1 (en) 1997-10-14 2001-05-15 Telecommunications Equipment Corporation Multi-function interactive communications system with circularly/elliptically polarized signal transmission and reception

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3059186A (en) * 1960-11-30 1962-10-16 Philip J Allen Polarization resolver and mixer
US3092828A (en) * 1961-04-28 1963-06-04 Philip J Allen Polarization modulation apparatus
US3955202A (en) * 1975-04-15 1976-05-04 Macrowave Development Laboratories, Inc. Circularly polarized wave launcher
US4126835A (en) * 1977-06-20 1978-11-21 Ford Motor Company Balanced phase septum polarizer
DE3108758A1 (en) * 1981-03-07 1982-09-16 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt MICROWAVE RECEIVER
US4418429A (en) * 1982-05-07 1983-11-29 General Electric Company Mixer for use in a microwave system
JPS5999801A (en) * 1982-11-30 1984-06-08 Toshiba Corp Microwave receiver
DE3474888D1 (en) * 1983-01-20 1988-12-01 Matsushita Electric Ind Co Ltd Frequency converter

Also Published As

Publication number Publication date
DE3688881D1 (en) 1993-09-16
EP0228947A1 (en) 1987-07-15
FR2591407A1 (en) 1987-06-12
DE3688881T2 (en) 1993-11-25
FR2591407B1 (en) 1988-08-05

Similar Documents

Publication Publication Date Title
CA2267536A1 (en) Radiocommunication device and dual frequency antenna produced using microstrip technology
WO1999035711A1 (en) Electromagnetic wave transmitter/receiver
FR2938971A1 (en) CAGE OF FARADAY FOR CAMERA
WO1991006988A1 (en) Multifocal receiving antenna with a single plotting direction for several satellites
FR2704358A1 (en) Waveguide polarisation duplexer
EP0707357B1 (en) Antenna system with multiple feeders integrated in a low noise converter (LNC)
EP0228947B1 (en) Superheterodyne receiver for two microwave signals with two opposite circular polarizations
EP0074295B1 (en) Passive microwave duplexer using semi-conductors
EP0736924A1 (en) Portable receiver with an antenna
FR2677176A1 (en) COAXIAL MODE CONVERTER-WAVEGUIDE MODE.
EP0174250B1 (en) Device for receiving dual polarized microwave signals
FR2591406A1 (en) Device for simultaneous reception of two microwave signals circularly polarised in opposite directions
FR3003700A1 (en) ANTENNA RADAR SIGNATURE REDUCTION DEVICE AND ASSOCIATED ANTENNA SYSTEM
FR2515432A1 (en) MICROWAVE POWER COUPLER WITH REDUCED DIMENSIONS
FR2723801A1 (en) INTERVAL DIPLEXER OF AN OCTAVE BETWEEN BANDS.
CA2342953C (en) Dual-band microwave antenna element
EP3249823B1 (en) Compact bi-polarity, multi-frequency radiofrequency exciter for a primary source of an antenna and primary source of an antenna provided with such a radiofrequency exciter
FR2522883A1 (en) SWIVEL JOINT FOR MICROWAVE WAVEGUIDES
EP0068940B1 (en) Frequency reuse primary active antenna
EP1066741B1 (en) Electronic circuit structure with optimised space requirement according to available volume
EP0329050B1 (en) Electronic micro-circuit
FR2716049A1 (en) Signal converter for geostationary satellite communication
EP3035445B1 (en) Orthogonal mode junction coupler and associated polarization and frequency separator
EP0213040A2 (en) External unit for a microwave feed aerial
FR2577719A1 (en) POLARIZATION DUPLEXER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19870813

17Q First examination report despatched

Effective date: 19890629

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3688881

Country of ref document: DE

Date of ref document: 19930916

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19971104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011109

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020124

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee