EP0174250B1 - Vorrichtung zum Empfang von dual polarisierten Mikrowellensignalen - Google Patents

Vorrichtung zum Empfang von dual polarisierten Mikrowellensignalen Download PDF

Info

Publication number
EP0174250B1
EP0174250B1 EP85401680A EP85401680A EP0174250B1 EP 0174250 B1 EP0174250 B1 EP 0174250B1 EP 85401680 A EP85401680 A EP 85401680A EP 85401680 A EP85401680 A EP 85401680A EP 0174250 B1 EP0174250 B1 EP 0174250B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
substrate
probe
tube
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85401680A
Other languages
English (en)
French (fr)
Other versions
EP0174250A1 (de
Inventor
Zaroche Houchangnia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe dElectronique de la Region Pays de Loire
Original Assignee
Societe dElectronique de la Region Pays de Loire
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe dElectronique de la Region Pays de Loire filed Critical Societe dElectronique de la Region Pays de Loire
Priority to AT85401680T priority Critical patent/ATE59248T1/de
Publication of EP0174250A1 publication Critical patent/EP0174250A1/de
Application granted granted Critical
Publication of EP0174250B1 publication Critical patent/EP0174250B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • H01Q13/0258Orthomode horns

Definitions

  • the invention relates to a device for receiving microwave signals with double polarization, consisting of simple elements which allow rapid and easy mounting without subsequent adjustments, and which confer sufficient overall rigidity.
  • This device is more particularly intended for the reception of microwave signals with double polarization transmitted for television, for example from geostationary satellites. It is intended to be used in reception stations, in combination with the active elements fitted to the microwave heads of said stations.
  • the device can be used for the reception of all microwave signals with double polarization, by adapting some of its elements to the frequency range for which it is intended.
  • a signal or even a wave is said to have double polarization when it does not propagate on a plane, as is the case for a signal with rectilinear polarization (also called plane wave), but around an axis determining the direction. signal propagation. This is the case for waves with circular polarization, or even waves with elliptical polarization.
  • a double polarization wave can be considered as the superposition of two waves with rectilinear polarization.
  • the polarization is circular when the amplitude of the field vector (electric or magnetic) resulting from the superposition of the two waves is constant around the axis of propagation: more precisely, the end of the field vector describes a circle around the axis , in projection on a plane perpendicular to this axis.
  • a wave with circular polarization is the result of two plane waves, orthogonal to each other, and whose maximum amplitudes and frequencies are equal, but between which there is a phase shift of 90 °.
  • the polarization is said to be elliptical when the amplitude of the field vector varies around the axis of propagation. Its end describes an ellipse, projected onto a plane perpendicular to the axis.
  • An elliptically polarized wave is the result of two plane waves, orthogonal, whose maximum amplitudes are different.
  • Circular polarization is mainly used in satellite tracking installations or in space communication installations. The consequences of the Faraday effect which exists in the ionosphere are then lessened, and the reception is better. Circular polarization is also used in terrestrial radars, in order to limit parasitic echoes due to clouds.
  • a device for receiving waves or microwave signals with double polarization must include means for ensuring the reception and processing of two microwave signals with rectilinear polarization.
  • the signal is picked up using a probe which feeds the input of a microwave head.
  • the microwave heads include a preamplifier stage connected to the probe, in order to amplify the signal received in the centimeter wave band.
  • a heterodyne converter consisting of a local oscillator and a mixer, allows the frequency of the signal received by the probe to be transposed to a lower frequency, for example in the HF band; then, an amplifier acts on the signal transposed before its exploitation.
  • These various constituents include elements in microstrips distributed over dielectric substrates of greater or lesser thickness depending on whether they are associated with the decimetric wave circuit or the centimeter wave circuit. Conductive sections are produced by metallization on these substrates and their width varies according to the frequency band for which they are intended.
  • the probe to pick up the signal is, in these different circuits, produced using a metallization placed on one of the substrates, and is located inside a waveguide connected to the antenna. reception.
  • the probes must be arranged to receive signals orthogonal to each other. Then the circuits supplying the microwave heads must not interfere.
  • a device of the type described in European Patent Application EP-A-0 073 511 makes it possible to solve these two problems.
  • the present invention also allows the assembly to be rapid, does not require any subsequent adjustments and has sufficient rigidity.
  • a tube placed between the first and second substrates and having at each end positioning means cooperating with complementary positioning means located on the substrates so as to ensure orthogonality between the two probes, the internal section of said tube being equal to the external section of the second waveguide and said decoupling and adaptation means being integral with said second waveguide fitted inside said tube.
  • the ends of the tube have identical tongues and offset by 90 ° from one end to the other and the substrates on which the probes are placed have slots complementary to the tongues having the same relative locations with respect to to the probes.
  • the device for receiving double polarization waves comprises, as shown in FIG. 1, a reception antenna of the "Cassegrain" type consisting of a paraboloid reflector 1, at the focus of which is a hyperboloid reflector 2 which returns the waves electromagnetic to a receiving horn 3 associated with a waveguide 4 whose role is to direct the waves towards the active elements of the high-frequency circuits which are at the end of the waveguide opposite the antenna.
  • a reception antenna of the "Cassegrain" type consisting of a paraboloid reflector 1, at the focus of which is a hyperboloid reflector 2 which returns the waves electromagnetic to a receiving horn 3 associated with a waveguide 4 whose role is to direct the waves towards the active elements of the high-frequency circuits which are at the end of the waveguide opposite the antenna.
  • the circular polarization wave is decomposed into two plane waves, in known manner, using a depolarizer located at the outlet of the reception horn 3, in the wave guide 4.
  • This depolarizer not shown in the figures, is in dielectric or metal strip.
  • the two waves thus obtained are orthogonal to each other and continue their propagation inside the waveguide 4.
  • the device of which FIG. 2 shows, in exploded view, the constituent elements allows the reception of these two orthogonal waves.
  • the waveguide 4 is in the form of a cylinder open at its two ends. One end is connected to the outlet of the reception horn 3 of FIG. 1. At the other end, intended to be near the reception circuits, there is a recess 41 for the passage of the electrical connection between a probe 51 and the microwave head (not shown) associated therewith.
  • the device also comprises a first set 5 of microwave circuits in microstrips on which the first probe 51 is located for the reception of one of the two waves resulting from the decomposition of the double polarization signal by the depolarizer.
  • this assembly is assembled according to the technology protected by French Patent no. 2,522,885 to the plaintiff.
  • SM 5 intended for the centimeter wave band
  • SE 5 intended for the decimeter wave band
  • the probe 51 intended for reception is produced by metallization of the face of the thin substrate SM 5 not facing the thick substrate SE 5.
  • This probe 51 has an almost triangular shape (axial section of a "core"), the top of which is substantially in the center of a circle, delimited on the assembly of substrates by slots F 52 , F s3 , F 14 in the shape of arcs. These slots pass through the two substrates SM 5 and SE 5 right through.
  • a metallization is located between the two substrates and serves as a ground plane.
  • the thin substrate SM 5 is intended to be located opposite the end of the waveguide 4 which carries the recess 41.
  • This guide 6 also has the same external diameter as the guide 4 connected to the horn.
  • a tube 7 has an internal diameter equal to the external diameter of the guide 6, so that the latter can be fitted inside.
  • the end of the tube 7 intended to be opposite the thick substrate of the assembly 5 has extensions in the form of tongues L 52 , L 53 , L 54 complementary to the slots F 52 , F 53 , F 54 which pass through the two substrates SM 5 and SE 5, so that these tongues can be engaged in the slots, and so that the tube 7 is made integral with the assembly 5.
  • the other end of the tube 7 is also terminated by tabs L 82 , L 83 , L 84 , similar to those of the other end, but offset by 90 ° relative to the latter.
  • the length of the tube 7, without the tabs of each end is equal to the length of the guide 6.
  • a recess 71 is formed between two tabs L 82 and L 83 , so as to be opposite the recess 62 of the guide 6 when that is in place, to allow the passage of an electrical connection between a second probe and a high-frequency head.
  • Two slots, of which only one 72 is visible, are formed in the wall of the tube 7, parallel to its longitudinal axis to allow the metal blade 61 to be placed in the slots 63 of the guide 6.
  • the slots 63 of the guide 6 and 72 of the tube 7 are placed so that the adapter blade 61 of the probe 51 is parallel to the longitudinal axis of this probe when the tabs L 52 , L 53 , L 54 of the tube 7 are in place in the slots F 52 , F 53 , F 54 of the assembly 5 carrying this probe 51.
  • the tongues of the tube 7 and the slots of the corresponding assembly 5 are arranged so that only one positioning of this assembly is possible.
  • a second assembly 8 comprising elements in microstrips is identical to the first and comprises a probe 81 and three slots F 82 , F 83 , F 84 intended to cooperate with the tongues L s2 , L s3 , L 84 of the other end of the tube 8.
  • the guide transition serving as probe 81 is produced using a quasi-triangular metallization formed on the thin substrate SM 8 of the second set 8. This probe is connected to the amplifier stage of the high-frequency head by a connection in microstrips passing through the recesses 71 of the tube 7, and 62 of the guide 6.
  • a thick SE 8 substrate also makes up this set 8 of microstrips, according to the technology described in French Patent no. 2,522,885 already cited.
  • Slots F 82 , F 83 , F 84 are made in the thickness of the two substrates, identical to the slots F S2 , F 53 , F 14 of the first set of circuits, and are intended to cooperate with the tongues L 82 , L 83 , L 84 of tube 7.
  • a cylindrical cup 9, closed by a short-circuit bottom, has an internal diameter equal to the internal diameter of the guide 6 and an external diameter equal to the internal diameter of the tube 7.
  • This cup is designed to be fitted into the tongues L 82 , L 83 , L 84 when the tube 7 is in place on the set 8 of microstrip circuits.
  • Figures 3 and 4 show, in a section passing through the longitudinal axis of the probe 51, the device when the constituent elements are in place.
  • the waveguide 4 intended to be connected to the antenna is in contact with the thin substrate SM 5 of the first set 5 of microwave circuits in microstrips.
  • the recess 41 allows the passage of the probe 51 and its electrical connection with the microwave head with which it is associated.
  • the second guide 6 is placed between the two sets 5 and 8 of microstrip circuits. By its presence, it allows the substrates SM 5, SE 5, SM 8, SE 8 and consequently the probes 51 and 81 which it carries respectively to be on perfectly parallel planes, while being perpendicular to the longitudinal axis of the guides. This is made possible because the ends of the guides are in cross section.
  • the tube 7 thanks to the tongues engaged in the slots of the assemblies 5 and 8 of microstrip circuits allows the probes to be orthogonal to each other, because the tongues are similar from one end to the other but offset by 90 °, and because the sets 5 and 8 of microstrip circuits are identical, and in particular have their slots placed in the same places with respect to the probes.
  • the metal blade 61 is welded, after having been put in place, both in the slots 63 and 72 of the guide 6 and of the tube 7. It is placed parallel to the longitudinal axis of the probe 51 and thus reflects all the waves which are parallel to it. Therefore, the probe 51 is adapted.
  • the distance between the two probes is equal to a guided wavelength.
  • the middle of the metal plate 61 must be located at a distance from the probe 51 equal to a quarter of the guided wavelength.
  • this metal strip returns to the probe 51 the component of the field which is parallel to it, which allows the adaptation of the probe 51 and the establishment of a good decoupling between the two accesses.
  • the termination cup 9 is held on the assembly in a manner similar to the waveguide 4: the tabs L 82 , L 83 , L 84 passing through the slots of the second set 8 of circuits allow this holding.
  • the bottom of this cup is kept parallel to the set 8 of circuits, at a distance from the probe 81 slightly less than a quarter of the guided wavelength. This short-circuit bottom allows the adaptation of the second probe 81.
  • This metal blade 91 is held in the guide 9 bis thanks to diametrically slits opposite and parallel to the longitudinal axis of this guide, as was the case for the metal blade 61 of the guide 6 and of the tube 8.
  • Decoupling can also be improved by placing a resistive strip between the first metal strip 61 and the second probe 81 parallel to the strip 61. This strip will absorb the residue of the component of the field parallel to the first probe 51 which will not have been reflected by the metal plate 61 and which will not have been picked up by the first probe 51.
  • This blade is essential when the decoupling between the two ports must be greater than the values required by the criteria for reception of satellite television programs.
  • FIG. 5 represents a partial view, on the thin substrate side SM 5, of the first set 5 of circuits in microstrips.
  • the second set 8 of microstrip circuits also has the structure shown in this FIG. 5.
  • An annular metallization 10 has an external diameter equal to the internal diameter of the slots and an internal diameter equal to that of the waveguide 4. This metallization is carried out on the thin substrate SM 5 and is connected by a mass transfer rivet R to the ground plane which, as we recall, is located between the two substrates SM 5 and SE 5.
  • the probe Si is connected via a link 11 in microstrips to the rest of the circuits making up the microwave head 12.
  • This metallization allows, when the device is fully assembled, that the waveguide 4 is connected to ground.
  • the similar metallization on the thin substrate SM 8 of the second set of microstrip circuits allows the contact of the waveguide 6 located between the two sets of microstrip circuits with the ground plane between the thin substrates SM 8 and thick SE 8 of the second set of circuits.
  • electrical contact with the ground is ensured by producing a weld bead between the guide 4 and the metallization 10 of the first set of circuits or between the guide 6 and the corresponding metallization of the second set of circuits.
  • weld points are provided between the waveguide 4 and the tongues L 52 , L 53 , L 54 and between the cup 9 or the guide 9 bis and the tabs L 82 , L 83 , L 84 of the tube 7.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Burglar Alarm Systems (AREA)

Claims (13)

1. Vorrichtung für den Empfang eines doppelt polarisierten Mikrowellensignals, das von einer Antenne (1,2,3) geliefert wird und durch einen an die Antenne angeschlossenen Depolarisator in zwei zueinander orthogonale Komponenten mit linearer Polarisation zerlegt wird, wobei die Vorrichtung aufweist:
a) einen ersten Wellenleiter (4), dessen Eingang an den Ausgang des Depolarisators angeschlossen ist,
b) eine erste Sonde (51), die an den Ausgang des ersten Wellenleiters angeschlossen ist und ein erstes dielektrisches Substrat (SM 5) sowie eine erste Metallbeschichtung auf einer ersten Seite des ersten Substrats enthält, wobei dieses Substrat senkrecht zur Längsachse des ersten Wellenleiters angeordnet ist,
c) einen zweiten Wellenleiter (6), dessen Eingang auf der anderen Seite des ersten Substrats liegt und der sich entlang derselben Längsachse wie der erste Wellenleiter erstreckt,
d) eine zweite Sonde (81), die sich am Ausgang des zweiten Wellenleiters befindet und ein zweites dielektrisches Substrat (SM 8) sowie eine zweite Metallbeschichtung auf einer Seite des zweiten Substrats enthält, wobei diese Substrat senkrecht zur Längsachse des zweiten Wellenleiters angeordnet ist,
e) Mittel zur Entkopplung und zur Anpassung der Sonden, dadurch gekennzeichnet, daß sie außerdem aufweist:
f) ein Rohr (7) zwischen den ersten und dem zweiten Substrat, das an jedem Ende Positioniermittel besitzt, die mit komplementären Positioniermitteln auf den Substraten zusammenwirken, derart, daß ein rechter Winkel zwischen den beiden Sonden gewahrt wird, wobei der innere Querschnitt des Rohrs gleich dem äußeren Querschnitt des zweiten Wellenleiters ist und die Mittel zur Entkopplung und Anpassung fest mit dem zweiten Wellenleiter verbunden sind, der in das Rohr hineingesteckt ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Enden des Rohrs (7) einander gleiche Zungen (Ls2, Ls3, L54 und Ls2, L83, L84), die an einem Ende um 90Grad gegen die am anderen Ende verschoben sind, und daß die Substrate, auf denen die Sonden angeordnet sind, zu den Zungen komplementäre Schlitze (Fs2, Fs3, F54 und F82 F83, F84) an gleichen relativen Stellen wie die Sonden (51, 81) aufweisen.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Wellenleiter (4, 6) einen kreisförmigen Querschnitt besitzen.
4. Vorrichtung nach einem beliebigen der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Mittel zur Entkopplung und Anpassung der Sonden einen ersten im Inneren des zweiten Wellenleiters (6) befestigten Metallstreifen (61) aufweisen.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Metallstreifen (61) in Schlitzen (63) des Wellenleiters (6) und in Schlitzen (72) des Rohrs (7) angeordnet ist, die einander diametral gegenüberliegen und sich parallel zur Längsachse der Wellenleiter und des Rohrs erstrecken, und daß dieser Streifen durch Verschweißen am Wellenleiter (6) und dem Rohr (7) befestigt wird und parallel zur ersten Sonde (51) verläuft.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Mitte des ersten Streifens (61) von der ersten Sonde (51) einen Abstand entsprechend einer Viertelwellenlänge der geführten Welle besitzt, so daß die erste Sonde (51) so angepaßt ist, daß die zum Streifen parallele Feldkomponente an die Sonde reflektiert wird.
7. Vorrichtung nach einem der Ansprüche 5 und 6, dadurch gekennzeichnet, daß ein Widerstandsstreifen zwischen der zweiten Sonde (81) und dem ersten Streifen (61) parallel zu diesem angeordnet ist, um die Restenergie der ihm parallelen Feldkomponente zu dämpfen, die durch den Streifen (61) nicht reflektiert wurde, und um die Entkopplung zwischen den beiden Zugängen zu verbessern.
8. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der erste Wellenleiter (4), der an die Antenne (1, 2, 3) angeschlossen ist, mit einer Metallbeschichtung (10) des ersten Substrats (SM 5) in Berührung steht, eine Aussparung (41) für den Durchlaß der ersten Sonde (51) besitzt und in das Rohr (7) so hineingesteckt ist, daß er auf den Schaltkreisen des ersten Substrats festgehalten wird.
9. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine ringförmige Metallbeschichtung auf das zweite Substrat (SM 8) aufgebracht ist und daß eines der Enden des zweiten Wellenleiters (6) mit dieser ringförmigen Metallbeschichtung in Kontakt steht, die andererseits mit der Masseebene des zweiten Substrats (SM 8) über einen Massepotential-Übertragungsniet (R) in Verbindung steht.
10. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Kuppel (9) mit einem Kurzschlußboden in das auf der Seite des zweiten Substrats liegende Ende des Rohrs (7) hineingesteckt ist, um die zweite Sonde (81) anzupassen.
11. Vorrichtung nach einem beliebigen der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß ein zweiter Metallstreifen (91) in einander diametral gegenüberliegende und parallel zur Längsachse des Wellenleiters verlaufende Schlitze eines Wellenleiters (9 bis) gesteckt ist und daß dieser Wellenleiter (9 bis) in das Ende des Rohrs (7) hineingesteckt ist, das das zweite Substrat durchquert, um die zweite Sonde (81) anzupassen und die Entkopplung zwischen den beiden Zugängen zu verbessern.
12. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die beiden Sonden (51), 81) von Schaltkreis-Baueinheiten (5, 8) getragen werden, die je aus der Stapelung eines dünnen Substrats (SM 5, SM 8) und eines dicken Substrats (SE 5, SE 8) gebildet werden, wobei eine Masseebene sich zwischen diesen Substraten befindet.
13. Vorrichtung nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Antenne, der sie zugeordnet ist, einen Paraboloidreflektor (1) aufweist, in dessen Brennpunkt sich ein Hyperboloidreflektor (2) befindet, der die Wellen auf ein Empfangshorn (3) richtet.
EP85401680A 1984-08-31 1985-08-23 Vorrichtung zum Empfang von dual polarisierten Mikrowellensignalen Expired - Lifetime EP0174250B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85401680T ATE59248T1 (de) 1984-08-31 1985-08-23 Vorrichtung zum empfang von dual polarisierten mikrowellensignalen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8413509A FR2569907B1 (fr) 1984-08-31 1984-08-31 Dispositif de reception de signaux hyperfrequences a double polarisation
FR8413509 1984-08-31

Publications (2)

Publication Number Publication Date
EP0174250A1 EP0174250A1 (de) 1986-03-12
EP0174250B1 true EP0174250B1 (de) 1990-12-19

Family

ID=9307353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401680A Expired - Lifetime EP0174250B1 (de) 1984-08-31 1985-08-23 Vorrichtung zum Empfang von dual polarisierten Mikrowellensignalen

Country Status (5)

Country Link
US (1) US4695844A (de)
EP (1) EP0174250B1 (de)
AT (1) ATE59248T1 (de)
DE (1) DE3580956D1 (de)
FR (1) FR2569907B1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872211A (en) * 1988-08-10 1989-10-03 The United States Of America As Represented By The Secretary Of The Navy Dual frequency launcher for circularly polarized antenna
US5218652A (en) * 1991-08-29 1993-06-08 Minnesota Mining And Manufacturing Company Depolarizer for electromagnetic radiation
US5737698A (en) * 1996-03-18 1998-04-07 California Amplifier Company Antenna/amplifier and method for receiving orthogonally-polarized signals
US6072439A (en) * 1998-01-15 2000-06-06 Andrew Corporation Base station antenna for dual polarization
US6034649A (en) * 1998-10-14 2000-03-07 Andrew Corporation Dual polarized based station antenna
US6285336B1 (en) 1999-11-03 2001-09-04 Andrew Corporation Folded dipole antenna
US6317099B1 (en) 2000-01-10 2001-11-13 Andrew Corporation Folded dipole antenna
FR3136764A1 (fr) 2022-06-15 2023-12-22 Compagnie Generale Des Etablissements Michelin Utilisation de fibres en composite polyester-resine pour le renforcement du beton
FR3136763A1 (fr) 2022-06-15 2023-12-22 Compagnie Generale Des Etablissements Michelin Utilisation de fibres en composite mineral-resine pour le renforcement du beton

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2682610A (en) * 1951-12-06 1954-06-29 Bell Telephone Labor Inc Selective mode transducer
US4596047A (en) * 1981-08-31 1986-06-17 Nippon Electric Co., Ltd. Satellite broadcasting receiver including a parabolic antenna with a feed waveguide having a microstrip down converter circuit
FR2523376A1 (fr) * 1982-03-12 1983-09-16 Labo Electronique Physique Element rayonnant ou recepteur de signaux hyperfrequences a polarisations circulaires gauche et droite et antenne plane comprenant un reseau de tels elements juxtaposes
US4626865A (en) * 1982-11-08 1986-12-02 U.S. Philips Corporation Antenna element for orthogonally-polarized high frequency signals
US4529898A (en) * 1983-03-08 1985-07-16 Spetsialnoe Proektno-Konstruktorskoe I Tekhnologiches-Koe Bjuro Electrodynamic generator for generating seismic pulses
FR2544920B1 (fr) * 1983-04-22 1985-06-14 Labo Electronique Physique Antenne plane hyperfrequences a reseau de lignes a substrat completement suspendu

Also Published As

Publication number Publication date
DE3580956D1 (de) 1991-01-31
ATE59248T1 (de) 1991-01-15
FR2569907A1 (fr) 1986-03-07
FR2569907B1 (fr) 1987-10-09
EP0174250A1 (de) 1986-03-12
US4695844A (en) 1987-09-22

Similar Documents

Publication Publication Date Title
EP0403910B1 (de) Strahlendes, diplexes Element
EP0123350B1 (de) Flache Mikrowellenantenne mit einer völlig hängenden Mikrostreifengruppe
EP0013222B1 (de) Diodenphasenschieber für Mikrowellen und elektronisch abtastende Antenne mit einem solchen Schieber
CA1290449C (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
EP0134611B1 (de) Sende- oder Empfangsstrahlergruppe einer Mikrowellenflachantenne und Sende- oder Empfangseinrichtung von Mikrowellensignalen mit einer solchen Flachantenne
EP0064313A1 (de) Mikrowellenstrahlerelement für Zirkularpolarisation und ebene Mikrowellenantenne mit einer Gruppe solcher Elemente
EP2869400B1 (de) Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst
EP0012055B1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
FR2778272A1 (fr) Dispositif de radiocommunication et antenne bifrequence realisee selon la technique des microrubans
EP0174250B1 (de) Vorrichtung zum Empfang von dual polarisierten Mikrowellensignalen
EP0707357B1 (de) Antennensystem mit mehreren Speisesystemen, integriert in einem rauscharmen Umsetzer (LNC)
EP3180816B1 (de) Mehrbandige quelle mit koaxialem horn mit monopulsnachführungsverfahren für eine reflektorantenne
FR2704358A1 (fr) Duplexeur de polarissation à guide d'ondes.
EP0074295B1 (de) Passiver Mikrowellenduplexer mit Halbleitern
EP0022700A1 (de) Vorrichtung mit magnetostatischen Wellen, die eine Struktur zum Auswechseln leitender Streifen enthält
EP0260766B1 (de) Primär-Empfangseinheit für polarisierte Mikrowellen, Parabolantenne und Empfangsstelle mit solcher Einheit
EP0377155B1 (de) Doppelfrequenz strahlende Vorrichtung
WO2012095365A1 (fr) Antenne a resonateur dielectrique
EP0021872B1 (de) Hochfrequenzschaltungsblock zum gleichzeitigen Senden und Empfangen, Sender-Empfänger für Millimeterwellen und Radar mit einem solchen Schaltungsblock
EP0860893A1 (de) Konzentrische Gruppe von Mikrowellenantennen
EP1949496B1 (de) Flachantennensystem mit direktwellenleiterzugang
EP0073165B1 (de) Mikrowellenschalter
EP0335788A1 (de) Mikrowellenphasenschieber
FR2629644A1 (fr) Antenne boucle large bande a alimentation dissymetrique, notamment antenne pour emission, et antenne reseau formee d'une pluralite de telles antennes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860808

17Q First examination report despatched

Effective date: 19880420

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 59248

Country of ref document: AT

Date of ref document: 19910115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3580956

Country of ref document: DE

Date of ref document: 19910131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920713

Year of fee payment: 8

Ref country code: CH

Payment date: 19920713

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920731

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920817

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920828

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920831

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930823

Ref country code: AT

Effective date: 19930823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930824

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930831

Ref country code: CH

Effective date: 19930831

Ref country code: BE

Effective date: 19930831

BERE Be: lapsed

Owner name: SOC. ELECTRONIQUE DE LA REGION PAYS DE LOIRE

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: CH

Ref legal event code: AUV

Free format text: LE BREVET CI-DESSUS EST TOMBE EN DECHEANCE FAUTE DE PAIEMENT, DE LA 9E ANNUITE.

EUG Se: european patent has lapsed

Ref document number: 85401680.5

Effective date: 19940310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970814

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970820

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971030

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19971104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980823

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST