EP0216226B1 - Procédé et dispositif pour le pressage en continu de bandes de matière à des températures élevées - Google Patents

Procédé et dispositif pour le pressage en continu de bandes de matière à des températures élevées Download PDF

Info

Publication number
EP0216226B1
EP0216226B1 EP86112280A EP86112280A EP0216226B1 EP 0216226 B1 EP0216226 B1 EP 0216226B1 EP 86112280 A EP86112280 A EP 86112280A EP 86112280 A EP86112280 A EP 86112280A EP 0216226 B1 EP0216226 B1 EP 0216226B1
Authority
EP
European Patent Office
Prior art keywords
pressure plate
press
temperature
press band
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86112280A
Other languages
German (de)
English (en)
Other versions
EP0216226A3 (en
EP0216226A2 (fr
Inventor
Kurt Held
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0216226A2 publication Critical patent/EP0216226A2/fr
Publication of EP0216226A3 publication Critical patent/EP0216226A3/de
Application granted granted Critical
Publication of EP0216226B1 publication Critical patent/EP0216226B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B5/00Presses characterised by the use of pressing means other than those mentioned in the preceding groups
    • B30B5/04Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of an endless band
    • B30B5/06Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of an endless band co-operating with another endless band
    • B30B5/062Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of an endless band co-operating with another endless band urged by directly-acting fluid pressure

Definitions

  • the invention relates to a method for the continuous pressing of material webs according to the preamble of claim 1 and an apparatus for performing this method.
  • Double belt presses are used for the continuous pressing of material webs, which exert a uniform surface pressure on the material to be pressed, while at the same time the material to be pressed is continuously conveyed through the double belt press.
  • material webs can consist, for example, of several layers of paper webs stacked on top of one another, soaked with thermosetting resins, glass fiber fabrics or fiber-binder mixtures, etc. As a rule, these material webs require the action of a certain temperature during the pressing, so that it is necessary to heat the press belts of the double belt press to this temperature.
  • the temperatures to which the press belts of the double belt press can be heated are, however, limited by the heat resistance of the sealing materials of the pressure chambers in which the surface pressure is exerted hydraulically on the press belts.
  • Only a few elastomers are known to be used as a sealing material, which can withstand a maximum temperature of 250 degrees Celsius.
  • a disadvantage of this method is that there is a large heat gradient between the inside and outside of the press belt, in particular at very high temperatures, which in turn entails a high heat flow, which is limited only slightly due to the good metallic thermal conductivity of the press belt material .
  • the temperatures on the outside and inside of the press belt are equalized within a very short time, so that the sliding surface seals on the inside of the press belt are again exposed to impermissibly high temperatures and are therefore destroyed after a short period of operation of the double belt press.
  • This high heat flow occurs particularly without limitation if the belt arrangement is not a multi-layer belt package, but rather a single press belt.
  • the solution given in the cited patent application does not recognize that elevated temperatures on the inside are inevitable if the outside of the press belt is at an elevated temperature. Such high temperatures are actually harmless on the inside of the press belt, apart from the sealing area.
  • the invention is therefore based on the object of specifying a method and a device implementing this method on a double belt press which, when the press belts are heated to the temperature required by the material to be pressed in the reaction zone, is higher than the maximum temperature which is compatible with the sealing material Temperature in the seal area is limited to the temperature tolerable for the material of the seal, so that the seal arrangement in the double belt press is reliably protected against destruction.
  • This method is said to be particularly effective on double belt presses equipped with single-layer press belts.
  • the continuously operating double belt press 15 shown in FIG. 1 has four deflection drums 1, 2, 3, 4 rotatably mounted in bearing bridges 5.
  • a press belt 7, 8 is guided around two of the deflecting drums, which rotate according to the arrows in the deflecting drums 1 and 4.
  • the press belts 7, 8, which usually consist of a high-tensile steel band, are tensioned using known means, for example hydraulic cylinders fastened in the bearing bridges 5, 6.
  • reaction zone 10 Between the lower run of the upper press belt 7 and the upper run of the lower press belt 8 there is the so-called reaction zone 10, in which the material web 9 which runs from right to left in the drawing is pressed under surface pressure and heat.
  • the material web 9 consists of fabrics, laminates, fiber-binder mixtures and the like impregnated with synthetic resin.
  • a material web 9 can be composed of individual glass fiber fabric webs stacked on top of one another which are impregnated with a polyimide resin.
  • the surface pressure exerted on the material web 9 in the reaction zone 10 is applied hydraulically via pressure plates 11, 12 to the inside of the press belt runs 7, 8 and is then transmitted from there to the material web 9.
  • the reaction forces exerted by the material to be pressed are transferred via the pressure plates 11, 12 into the press frame 13, 14, which is only indicated schematically.
  • the bearing bridges 5, 6 are also attached to the press frame 13, 14.
  • a pressurizable fluid pressure medium is brought into the space between the pressure plate 11, 12 and the inside of the press belt run 7, 8.
  • this space the so-called pressure chamber 16, is delimited by a self-contained sealing arrangement 17.
  • a synthetic oil is preferably used as the pressure medium.
  • a gas for example compressed air, can also be used just as well.
  • Such a pressure chamber 16 is shown in plan view in FIG. 2 from the back of the press belt.
  • the pressure plate 11 consists of a steel plate and has a rectangular shape.
  • the sealing arrangement 17, which in the present exemplary embodiment consists of two sliding surface seals 18 and 19, which are adjacent to one another and separated by a space 20.
  • These sliding surface seals 18, 19 are arranged in grooves 21, which are located in the pressure plate 11.
  • the sliding surface seal 18 touches one surface with the pressing belt 7 moving under the sliding surface seal 18.
  • the sliding surface seal 18 is firmly inserted with its side facing away from the press belt into a U-shaped retaining strip 22 which bears against the walls of the groove 21 with little play.
  • a groove seal 23 made of elastic material and designed as an O-ring.
  • a pressure medium acts on this groove seal 23 from the groove bottom of the groove 21, so that the retaining strip 22 and with it the sliding surface seal 18 are pressed against the press belt 7 and thus the pressure chamber 16 is sealed against the atmosphere side 24.
  • Brackets for the U-shaped retaining strip 22 in the pressure plate 11 are known for example from DE-PS 27 22 197, so that there is no need to go into this further.
  • leakage of the pressure medium from the pressure chamber 16 accumulates in the space 20 between the two sliding surface seals 18 and 19 and can be suctioned off from there via bores 45 and a collecting line 46.
  • the sliding surface seal 18, 19 consists of a plastic, preferably an elastomer.
  • T1 Many material webs 9, however, require significantly higher temperatures T2 for curing during pressing.
  • laminates made from glass fiber fabrics that are impregnated with a polyimide resin require temperatures of up to 380 degrees Celsius.
  • T3 the pressure plate insert 25 visible in FIG. 4, which lies within the pressure chamber 16, and the edge area by the remaining pressure plate 11, 12.
  • the pressure plate insert 25 is heated to a temperature T3 which is higher than the pressure plate 11, 12 and which is at least as high as the temperature T2, but preferably higher than this.
  • the pressure plate 11, 12 is kept at a temperature which is at most as large as T1.
  • This pressure plate insert 25 is shown in FIGS. 4 and 7.
  • the pressure plate 11, 12 has a trough-shaped, rectangular recess 28, which is surrounded by a closed, raised edge 26, in which the sealing arrangement 17 is attached.
  • the pressure plate insert 25 is located in this recess 28, floating on the pressure medium 29, so that a gap 37 is created between the pressure plate 11, 12 and the pressure plate insert 25, which is filled with the pressure medium 29.
  • the pressure plate insert 25 is firmly connected to the pressure plate 11, 12 at a few points for absorbing shear forces with connecting means of small cross-section.
  • Such connecting means can be, for example, screws 30 with sleeves 31.
  • the distance between pressure plate 11, 12 and pressure plate insert 25 can be kept small, for example approximately 1 mm. If necessary due to the thermal insulation, it can also be chosen larger.
  • the pressure plate insert 25 has, on its surface facing the press belt, meandering grooves 32 which extend across the width and into which a likewise meandering heating coil 33 is inserted.
  • the heating coil 33 is covered with a copper tube 34 which is fastened to the walls of the grooves 32 with good thermal contact.
  • the heating coil 33 is supplied with electrical energy via supply lines 35. These feed lines 35 are guided from the outside through a bellows 36, which connects the pressure plate 11, 12 to the pressure plate set 25 at one point in a sealing manner against the pressure medium 29 in the gap 37.
  • the metal printing plate insert 25 is heated to a temperature T3, which is preferably higher than the temperature T2 required for the curing of the material web 9.
  • the printing plate insert 25 can also be heated by means of heated thermal oil, which circulates via feed and discharge lines which are guided in the bellows 26 through bores 52 made in the printing plate insert 25, see FIG. 5.
  • the pressure plate 11, 12 itself is heated to a temperature T1, which is at most as high as the maximum permanent temperature that can be borne by the material of the sliding surface seal 18, 19, but preferably a significantly lower temperature.
  • a temperature T1 which is at most as high as the maximum permanent temperature that can be borne by the material of the sliding surface seal 18, 19, but preferably a significantly lower temperature.
  • holes 27 are made in the pressure plate 11, 12, through which a thermal oil with the desired temperature T1 flows.
  • the raised edges 26 of the pressure plate 11, 12 also assume this temperature T1 and the sliding surface seals fitted in these raised edges 26 are loaded with the temperature T1.
  • the pressure plate 11, 12 can also be cooled by a coolant with a suitably selected temperature flowing through the bores 27.
  • the inlet-side deflection drums 1 and 4 are provided with bores 49 which run in the vicinity of the outer surface of the deflection drums 1, 4. Heated thermal oil circulates through these bores 49, which heats the outer surface of this deflecting drum and at the same time also heats by heat conduction the part of the press belts 7, 8 which is in contact with the deflecting drum 1, 4 during the advance of the press belts 7, 8.
  • the heating of the press belts 7, 8 is regulated in such a way that when they leave the deflection drums 1, 4 they have at most the temperature T1, which is harmless to the material of the sliding surface seal 18, 19.
  • the press belts 7, 8 run after they have left the deflection drums 1, 4 in the direction of the reaction zone 10 and pass in the pressure plate 11, 12 the front axial part 50 of the sliding surface seal arrangement 17. This means that part of the sliding surface seals 18, 19 that extends perpendicular to the direction of advance of the press belt over the width of the pressure plate 11, 12 and faces the inlet zone 47. Since the press belts 7, 8 have at most a temperature T1 when passing through the front axial part 50, the sliding surface seals 17, 18 of the front axial part 50 are protected against excessive heat. If heating of the press belts 7, 8 by the inlet-side deflection drums 1, 4 is not desired, this can also be omitted, so that the press belts 1, 4 pass the front axial part at room temperature. However, since the temperature T1 is not yet sufficient for pressing the material web 9, after passing the front axial part 50 of the press belts 7, the same is further heated.
  • heat-conducting elements 38 are arranged in the pressure plate insert 25. As can be seen from FIG. 4, these heat-conducting elements 38 have a circular cross section and are inserted into bores in the pressure plate insert 25 in such a way that they have good thermal contact with the pressure plate insert 25. With the surface facing away from the printing plate insert 25, the heat-conducting elements 38 touch the pressing belt 7, 8 by grinding.
  • the press belt 7, 8 is at most at the temperature T1 when it enters the reaction zone 10, so that there is a heat gradient between the pressure plate insert 25 at the temperature T3 and the press belt 7, 8.
  • a heat flow therefore flows from the pressure plate insert 25 via the heat-conducting elements 38, which are made of a good heat-conducting material, such as copper, while the press belt is moving through the reaction zone 10 and heats it.
  • the number of heat-conducting elements 38 and the temperature T3 of the printing plate insert 25 are selected so that the press belt is applied to the material web 9, increased temperature T2 is heated.
  • the arrangement of the heat-conducting elements 38 is such that, as can be seen from FIG. 2, only that part of the press belt 7, 8 which is located between the two lateral parts 51 of the inner sliding surface seal 19 and is associated with the pressure plate insert 25 is heated to an elevated temperature T2 , but not the lateral edge area of the press belt that is in contact with the sliding surface seals 18, 19.
  • the material web 9, which in this exemplary embodiment consists of several layers of a glass fiber fabric impregnated with polyimide resin, has a width which is at most equal to the width of the printing plate insert 25, so that the material web is just on the part of the press belt 7, 8 located at elevated temperature T2 rests in the reaction zone.
  • the design of the heat-conducting elements 38 is known per se from the published patent application DE-OS 33 25 578, so that there is no need to go into this in more detail.
  • the lateral part 51 means that part of the sealing arrangement 17 which extends in the forward direction of the press belt 7, 8. In order not to allow this heat to act on the sliding surface seal 18, 19, additional cooling of this edge region of the press belt can be provided.
  • FIG. 4 Such a device for cooling the edge region of the press belt 7, 8 can be seen in FIG. 4.
  • a collecting line 40 for the pressure fluid extends in the forward direction of the press belt.
  • bores 41 extend to the manifold 40 at certain intervals. These bores are arranged in the vicinity of the inner sliding surface seal 19 on the side facing the pressure plate insert 25.
  • Part of the pressure medium 29 now flows through these bores 41 into the manifold 40 and is guided from there into the reservoir for the pressure medium, from where it is fed again to the pressure chamber 16.
  • the pressure medium absorbs heat by convection from the edge area of the press belt 7, 8 and thus prevents the edge area from heating up beyond the permissible level for the sliding surface seal.
  • heat-conducting elements 42 which are designed corresponding to those in the pressure plate insert 25, are mounted in the raised edge 26 of the pressure plate 11, 12 in the vicinity of the sliding surface seal 19 on the side facing the gap 37. These heat-conducting elements 42 touch the press belt 7, 8 in the edge region on the one hand and have contact with the raised edge 26 on the other hand. Since the pressure plate has at most temperature T1, but preferably a lower temperature due to cooling, the heat coming from the inner region of the press belt then flows via the heat-conducting elements 42 into the raised edge region 26 and is discharged from there with the cooling liquid for the pressure plate 11, 12. This ensures with certainty that the temperature of the press belt in the edge region does not rise above the temperature T1 to be borne by the sliding surface seals 18, 19.
  • heat-conducting elements 44 are attached in contact with the pressure plate 11, 12 in the area between the gap 37 in the axial direction and the rear axial part 43.
  • These heat-conducting elements 44 in turn touch the press belt and dissipate heat from the press belt into the pressure plate 11, 12, since in this area between the press belt heated to the temperature T2 and the pressure plate, the temperature of which is at most equal to T1, but preferably less There is a heat gradient.
  • the number of heat-conducting elements 44 is selected such that the press belt in turn has reached the temperature T1 which is harmless to the material of the slide surface seal as soon as the press belt has reached the axial part 43 of the slide surface seal. If this cooling distance is not sufficient, the printing plate 11, 12 can be divided into two parts, the part of the printing plate which has the heat-conducting elements 44 being strongly cooled, regardless of the other part of the printing plate in which the printing plate insert is located 25 is located. This ensures that the rear axial part 43 of the sealing arrangement 17 is not overloaded by too high a temperature.
  • the length of the printing plate insert 25 in the forward direction of the press belt and the speed of the press belts 7, 8 are selected such that the material web is within the time , in which they are in the area of the reaction zone 10, the Dimensions of the pressure plate insert 25 are determined, completely cured. If the width of the material web 9 is chosen to be greater than the width of the printing plate insert 25, the edge of the material web 9, which is pressed in the area of the reaction zone 10 which abuts the raised edge 26, is pressed after the material web 9 presses the double belt press 15 on the Has left outlet zone 48, cut off because this is not fully cured due to low temperature.

Claims (20)

1. Procédé de pressage en continu de bandes de matière à haute température dans une zone de réaction entre deux bandes de compression sans fin chauffées d'une presse à double bande, la pression superficielle étant appliquée à l'aide d'une chambre de pression remplie d'agent fluide de pression sur la face interne de la bande de compression, cette chambre de pression étant limitée vers le haut et vers le bas par la surface d'une bande de compression et par une plaque de pression et sur les côtés par un dispositif de joint à surface glissante sur la bande de compression, la température nécessaire à la bande de matière est supérieure à la température supportable par le matériau du dispositif de joint, caractérisé en ce que la plaque de pression est partagée en deux zones séparées l'une de l'autre, à savoir une zone intérieure et une zone de bord, cette zone de bord entoure complètement la zone intérieure et comprend le dispositif de joint, la zone de bord est maintenue à une température qui est au plus égale à la température maximale que peut supporter le matériau du dispositif de joint, la zone intérieure est portée à une température qui est au moins égale à la température nécessaire à la bande de matière, et la chaleur esttransmise par conduction thermique de la zone intérieure à la partie contiguë à la zone intérieure dans la zone de réaction, à la bande de compression.
2. Procédé selon la revendication 1, caractérisé en ce que la zone de bord est portée à une température qui est au plus égale à la température maximale supportable par le matériau du dispositif de joint.
3. Procédé selon la revendication 1, caractérisé en ce que la zone de bord est refroidie à une température qui est inférieure à la température maximale supportable par le matériau du dispositif de joint.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la bande de compression à l'entrée dans la zone de réaction possède au plus la température qui est supportable au maximum par le matériau du dispositif de joint.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la zone intérieure est séparée thermiquement de la zone de bord par un milieu fluide.
6. Procédé selon la revendication 5, caractérisé en ce que le milieu fluide sert en même temps de moyen de pression.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la bande de compression, après avoir quitté la zone intérieure est refroidie de telle façon que lorsqu'elle atteint la partie du dispositif de joint qui s'étend perpendiculairement à la direction de défilement de la bande et qui, vue dans le sens de défilement de la bande de compression, s'étend derrière la zone intérieure, possède, au plus, la température maximale que puisse supporter le dispositif de joint.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la largeur de la bande de matière est au plus la même que celle de la zone intérieure.
9. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la largeur de la bande de matière est supérieure à celle de la zone intérieure et au plus égale à la largeur de la bande de compression et le bord durci sans compression de la bande de matière est éliminé après le pressage.
10. Dispositif pour réaliser le procédé selon l'une des revendications 1 à 9 sur une presse à double bande, la pression superficielle étant appliquée à l'aide d'une chambre de pression remplie d'agent de pression fluide sur la face interne de la bande de compression, cette chambre de pression étant limitée vers le haut et vers le bas par la surface d'une bande de compression et par une plaque de pression et sur les côtés par un dispositif de joint à surface glissante sur la surface de compression, caractérisé en ce que la plaque de pression (11, 12) qui forme la zone de bord possède un évidement rectangulaire (28), entièrement situé à l'intérieur de la plaque de pression, dans cet évidement (28) est placé un insert de plaque de pression (25) formant la zone intérieure, qui est séparé de la plaque de pression par un intervalle (37), une source de chaleur est implantée dans l'insert de plaque de pression (25) pour la chauffer, et, entre l'insert de plaque de pression (25) et la partie de bande de compression (7, 8) qui repose sur la zone intérieure, on a disposé des éléments conducteurs de chaleur, connus, (38), qui reposent par une surface sur l'insert de plaque de pression (25) et sont en contact glissant à l'autre surface de la bande de compression (7, 8).
11. Dispositif selon la revendication 10, caractérisé en ce que l'insert de plaque de pression (25) n'est fixé qu'en peu d'endroits à la plaque de pression (11, 12) par des moyens mécaniques de fixation de faible section.
12. Dispositif selon la revendication 11, caractérisé en ce que les moyens mécaniques de fixation sont constitués de vis (30) et de douilles d'écartement (31) se trouvant dans l'intervalle (37).
13. Dispositif selon les revendications 10,11 ou 12, caractérisé en ce que la source de chaleur est constituée par un serpentin chauffant (33), chauf- fable électriquement.
14. Dispositif selon la revendication 13, caractérisé en ce que le serpentin chauffant (33) est disposé en forme de méandres dans des rainures (32) de l'insert de plaque de pression (25).
15. Dispositif selon les revendications 10, 11 ou 12, caractérisé en ce que la source de chaleur est formée par des alésages (52) présents dans l'insert de plaque de pression (25), qui sont balayés par un moyen caloporteur.
16. Dispositif selon les revendications 13, 14 ou 15, caractérisé en ce que les arrivées pour la source de chaleur dans l'insert de plaque de pression (25) passent dans un soufflet (36) traversant la plaque de pression (11, 12), qui relie de manière étanche vis-à-vis de l'intervalle (37) la plaque de pression (11, 12) et l'insert de plaque de pression (25).
17. Dispositif selon l'une des revendications 10 à 16, caractérisé en ce que le dispositif de joint (17) se trouve dans un bord surélevé (26) de la plaque de pression (11, 12) et la partie de la bande de compression (7, 8) qui repose dans la zone de bord surélevé le long de la partie (51) de joint à surface glissante (18,19) disposée dans le sens de défilement de la bande de compression, est refroidie par convection, par un moyen de pression s'écoulant par des alésages (41) tournés vers la chambre de pression (16) à proximité du joint à surface glissante interne (19), le long de la partie latérale (51), alésages qui débouchent dans une conduite de collecte (40) située dans le bord surélevé (26), et de là, le moyen de pression aspiré est conduit dans un réservoir par un moyen de pression.
18. Dispositif selon l'une des revendications 10 à 16, caractérisé en ce que le dispositif de joint (17) se trouve dans un bord surélevé (26) de la plaque de pression (11, 12) et dans ce bord surélevé (26), le long de la partie latérale (51) disposée dans le sens de défilement de la bande de compression, du joint à surface glissante interne (19), on a disposé des éléments conducteurs de la chaleur (42) dirigés vers la chambre de pression (16), qui reposent par une surface sur le bord surélevé (26) et sont en contact glissant par l'autre face avec la bande de compression (7, 8) sur la partie correspondant à la partie latérale (51) du dispositif de joint, de façon à ce que la chaleur de cette partie de bande de compression soit dissipée dans la plaque de pression (11,12).
19. Dispositif selon l'une des revendications 10 à 18, caractérisé en ce que le dispositif de joint (17) se trouve dans un bord surélevé (26) de la plaque de pression (11, 12) et que la partie de la bande de compression (7, 8) qui correspond à la zone du bord surélevé (26) le long de la partie axiale postérieure (43) du dispositif de joint (17), c'est-à-dire à la partie de joint à surface glissante, perpendiculaire à la direction de défilement de la bande de compression (7, 8) et placée en arrière de l'insert de plaque de pression (25) dans le sens de défilement de la bande de compression (7, 8), est refroidie par convection par un moyen de pression (29) qui s'écoule et qui est aspiré par des alésages (41) à proximité de la pièce axiale arrière (43) du côté de la chambre de pression (16), alésages qui débouchent dans une conduite de collecte (40), placée dans le bord surélevé (26), et de là, il est conduit dans le réservoir par un moyen de pression, de façon à ce que la bande de compression (7, 8) au passage de la partie axiale arrière (43) du dispositif de joint (17) possède une température qui est au plus égale à la température maximale supportable par le matériau de joint.
20. Dispositif selon l'une des revendications 10 à 18, caractérisé en ce que le dispositif de joint (17) se trouve dans un bord surélevé (26) de la plaque de pression (11, 12) et dans ce bord surélevé (26) le long de la partie axiale arrière (43) du dispositif de joint (17), c'est-à-dire de la partie de joint qui est perpendiculaire à la direction de défilement de la bande de compression (7, 8), en arrière de l'insert de plaque de pression (25) dans le sens de défilement de la bande de compression (7, 8), on dispose des éléments conducteurs de la chaleur (44) orientés vers la chambre de pression (16), qui, par une face, reposent sur le bord surélevé (26) et sont en contact glissant par l'autre face par la bande de compression (7, 8) sur la partie comprise entre la partie axiale arrière (43) du dispositif de joint et l'insert de plaque de pression (25), de façon à ce que la chaleur de cette partie de bande de compression soit dissipée dans la plaque de pression (11, 12) et que la bande de compression au passage de la partie axiale arrière (43) possède une température, qui soit au plus égale à la température maximale supportable par le matériau du joint.
EP86112280A 1985-09-27 1986-09-05 Procédé et dispositif pour le pressage en continu de bandes de matière à des températures élevées Expired - Lifetime EP0216226B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3534478 1985-09-27
DE3534478A DE3534478C2 (de) 1985-09-27 1985-09-27 Doppelbandpresse zum kontinuierlichen Verpressen von Werkstoffbahnen bei erhöhten Temperaturen

Publications (3)

Publication Number Publication Date
EP0216226A2 EP0216226A2 (fr) 1987-04-01
EP0216226A3 EP0216226A3 (en) 1988-12-28
EP0216226B1 true EP0216226B1 (fr) 1990-07-04

Family

ID=6282109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86112280A Expired - Lifetime EP0216226B1 (fr) 1985-09-27 1986-09-05 Procédé et dispositif pour le pressage en continu de bandes de matière à des températures élevées

Country Status (6)

Country Link
US (1) US4723484A (fr)
EP (1) EP0216226B1 (fr)
JP (1) JPS6274611A (fr)
CN (1) CN1003356B (fr)
DE (1) DE3534478C2 (fr)
SU (1) SU1612988A3 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE35091E (en) * 1986-08-18 1995-11-21 Mascheninfabrik Andritz Actiengesellschaft Pressure device and seal for filter belt machines
AT385681B (de) * 1986-08-18 1988-05-10 Andritz Ag Maschf Druckeinrichtung fuer maschinen bzw. damit versehene maschine zum entwaessern bzw. filtrieren bzw. fuer pressgut
DE3709958A1 (de) * 1987-03-26 1988-10-13 Santrade Ltd Doppelbandpresse
DE3717308A1 (de) * 1987-05-22 1988-12-15 Held Kurt Doppelbandpresse zur kontinuierlichen herstellung von endlosen werkstoffbahnen
DE3719976A1 (de) * 1987-06-15 1988-12-29 Hymmen Theodor Gmbh Verfahren und vorrichtung zum aufbringen einer flaechenpressung auf pressbandgetriebene werkstuecke
DE3902255A1 (de) * 1989-01-26 1990-08-02 Nokia Unterhaltungselektronik Verfahren und vorrichtung zum herstellen einer fluessigkristallzelle
FR2646579A1 (fr) * 1989-03-20 1990-11-02 Guillemot Gerard Equipement chauffant electriquement a haute temperature par zones regulees pour la mise en oeuvre de produits en materiaux composites
US5352321A (en) * 1989-06-29 1994-10-04 Kurt Held Continuously operating double band press
US5183525A (en) * 1990-05-24 1993-02-02 United Container Machinery Group, Inc. Heater for a double facing corrugating machine
EP0550782B1 (fr) * 1990-12-24 1995-10-18 Kurt Held Presse continue à doubles bandes
DE4128024A1 (de) * 1991-08-23 1993-02-25 Held Kurt Kontinuierlich arbeitende doppelbandpresse
ATA185093A (de) * 1993-09-14 2000-06-15 Danubia Petrochem Polymere Doppelbandpresse mit hydrostatischer bandstütze
DE4335749A1 (de) * 1993-10-20 1995-04-27 Danubia Petrochem Deutschland Doppelbandpresse mit hydrostatischer Bandstütze
DE4442320A1 (de) * 1994-11-29 1996-05-30 Danubia Petrochem Deutschland Verfahren zur Herstellung von faserverstärktem, thermoplastischen Material und Vorrichtung zur Durchführung des Verfahrens
US5885411A (en) * 1995-04-10 1999-03-23 Latter; Melvin R. Modular sealing machine
US5705026A (en) * 1995-04-10 1998-01-06 Latter; Melvin R. Modular sealing machine
US6908295B2 (en) * 2000-06-16 2005-06-21 Avery Dennison Corporation Process and apparatus for embossing precise microstructures and embossing tool for making same
DE102004060492A1 (de) * 2004-12-16 2006-06-29 Sig Technology Ag Vorrichtung zum Transport von flächigen Gütern
CN104129086B (zh) * 2014-07-08 2016-04-13 广东特固力士工业皮带有限公司 一种热塑性弹性体输送带平板塑化机
US10421305B2 (en) * 2015-05-21 2019-09-24 Chums, Inc. Feed-through thermal pressing system and associated components
ITUB20160504A1 (it) 2016-01-15 2017-07-15 System Spa Compensatore di formato per un dispositivo di pressatura
DE102018215939A1 (de) * 2018-09-19 2020-03-19 Profol GmbH Werkzeug zum Aufbringen einer Folie
US20220260050A1 (en) * 2019-07-16 2022-08-18 General Electric Company System and method for manufacturing panels for use in wind turbine rotor blade components
US20230373128A1 (en) * 2019-10-18 2023-11-23 Välinge Innovation AB Methods and arrangements for continuous manufacture of building panels
CN114585503A (zh) * 2019-10-18 2022-06-03 瓦林格创新股份有限公司 用于制造建筑镶板的连续压制装置
JP7058852B1 (ja) * 2021-12-28 2022-04-25 株式会社Sgic ダブルベルトプレス

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2364597A (en) * 1942-03-09 1944-12-12 Penokee Veneer Company Press
US3185073A (en) * 1963-02-12 1965-05-25 Hoover Ball & Bearing Co Apparatus for preventing belt distortion
US3386503A (en) * 1966-02-24 1968-06-04 Continental Can Co Differential heating plate
FI67509C (fi) * 1971-05-24 1985-04-10 Into Kerttula Kontinuerligt arbetande skivpress
DE2248810A1 (de) * 1972-10-05 1974-04-11 Wagener & Co Plattenpresse
DE2722197C2 (de) * 1977-05-17 1979-06-07 Kurt 7218 Trossingen Held Gleitflächendichtung an kontinuierlichen Laminiermaschinen
DE3046431A1 (de) * 1980-12-10 1982-09-09 Santrade Ltd., 6002 Luzern Doppelbandpresse
DE3135031C2 (de) * 1981-09-04 1983-07-21 Held, Kurt, 7218 Trossingen Doppelbandpresse zur Ausübung einer Flächenpressung
EP0087651B2 (fr) * 1982-02-27 1994-06-08 Kurt Held Dispositif pour soutenir les bandes de pressage par des rouleaux dans des presses à double bande
JPS5933312A (ja) * 1982-08-16 1984-02-23 Mitsubishi Chem Ind Ltd N−ビニルカルボン酸アミドの重合方法
DE3325578C2 (de) * 1983-07-15 1985-11-14 Held, Kurt, 7218 Trossingen Doppelbandpresse zur kontinuierlichen Herstellung von Laminaten
DE3416985A1 (de) * 1984-05-08 1985-11-14 Held, Kurt, 7218 Trossingen Verfahren und vorrichtung zum kontinuierlichen verpressen von werkstoffbahnen

Also Published As

Publication number Publication date
CN1003356B (zh) 1989-02-22
CN86106003A (zh) 1987-04-15
US4723484A (en) 1988-02-09
JPH0339811B2 (fr) 1991-06-17
DE3534478C2 (de) 1995-01-26
DE3534478A1 (de) 1987-04-02
JPS6274611A (ja) 1987-04-06
EP0216226A3 (en) 1988-12-28
SU1612988A3 (ru) 1990-12-07
EP0216226A2 (fr) 1987-04-01

Similar Documents

Publication Publication Date Title
EP0216226B1 (fr) Procédé et dispositif pour le pressage en continu de bandes de matière à des températures élevées
EP0405184B1 (fr) Elements de transfert de chaleur dans une presse à doubles bandes
EP0052359B1 (fr) Presse fonctionnant en continu
EP0295427B1 (fr) Procédé et dispositif pour appliquer une pression superficielle contre des pièces d'ouvrage entraînées par les bandes d'une presse à bandes
EP0292738B1 (fr) Presse à double bande à parties pouvant être chauffées ou refroidies et procédé pour leur fabrication
DE2925088A1 (de) Abgabevorrichtung fuer thermoplastisches material
DE3717308A1 (de) Doppelbandpresse zur kontinuierlichen herstellung von endlosen werkstoffbahnen
DE2503051C3 (de) Walze fur ein Walzwerk
DE2421296A1 (de) Verfahren und vorrichtung zum herstellen von endloslaminaten
DE4041850A1 (de) Kontinuierlich arbeitende doppelbandpresse
DE10023325A1 (de) Vorrichtung zum Abdichten von Seitenrandbereichen eines endlos umlaufenden Förderbandes
DE3445636C2 (fr)
DE2309121B2 (de) Oberflächenkühler für einen von Luft umströmten Körper
DE102012013726B4 (de) Vorrichtung zum Kühlen bandförmiger Substrate
DE2753625C2 (de) Fixiereinrichtung für ein elektrofotografisches Kopiergerät
EP0491972B1 (fr) Presse à ruban à travail en continu
DE3709958C2 (fr)
DE1575799A1 (de) Bremsbelagmittel und Kuehlmittel
DE2036911B2 (de) Heizplattenpresse
DE3138011A1 (de) Doppelbandpresse
DE2119872A1 (de) Leitplatte für Mantel und Rohr wärmeaustauscher
DE10203239A1 (de) Kühlbaustein
EP0550782B1 (fr) Presse continue à doubles bandes
DE1717458U (de) Einrichtung zum kontinuierlichen pressen.
DE19954754A1 (de) Heizvorrichtung für eine Wellpappemaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): FR GB IT SE

17P Request for examination filed

Effective date: 19881123

17Q First examination report despatched

Effective date: 19891127

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86112280.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950731

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950901

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950929

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960905

EUG Se: european patent has lapsed

Ref document number: 86112280.2

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050905