EP0215972B1 - Matrice de commutation - Google Patents

Matrice de commutation Download PDF

Info

Publication number
EP0215972B1
EP0215972B1 EP85112072A EP85112072A EP0215972B1 EP 0215972 B1 EP0215972 B1 EP 0215972B1 EP 85112072 A EP85112072 A EP 85112072A EP 85112072 A EP85112072 A EP 85112072A EP 0215972 B1 EP0215972 B1 EP 0215972B1
Authority
EP
European Patent Office
Prior art keywords
transducer elements
switches
control
group
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP85112072A
Other languages
German (de)
English (en)
Other versions
EP0215972A1 (fr
Inventor
Arno Dipl.-Ing. Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard GmbH Germany
Original Assignee
Hewlett Packard GmbH Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8193787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0215972(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hewlett Packard GmbH Germany filed Critical Hewlett Packard GmbH Germany
Priority to DE8585112072T priority Critical patent/DE3580848D1/de
Priority to EP85112072A priority patent/EP0215972B1/fr
Priority to US06/910,697 priority patent/US4890267A/en
Publication of EP0215972A1 publication Critical patent/EP0215972A1/fr
Application granted granted Critical
Publication of EP0215972B1 publication Critical patent/EP0215972B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/345Circuits therefor using energy switching from one active element to another

Definitions

  • the invention relates to a switching matrix for a transceiver for ultrasonic waves for establishing electrical connections between the electroacoustic transducer elements of a respectively activated group within an arrangement of transducer elements and delay elements for delaying the output signals of the transducer elements derived from received ultrasonic signals or the transducer elements for exciting ultrasonic vibrations supplied oscillator signals.
  • Such a switching matrix is preferably used in those transceivers in which a focusing point can be generated by appropriate electronic control of the converter elements arranged in a row.
  • the individual transducer elements are controlled during transmission or reception via differently set delay elements in such a way that the different distances of the transducer elements from the focusing point are compensated for.
  • the ultrasound waves When transmitting, the ultrasound waves thus overlap in phase at the focal point, while they essentially cancel each other out in the rest of the sound field.
  • a switching matrix of the type mentioned is known from DE-PS 2 424 582.
  • the known switching matrix is used in a transceiver for ultrasonic waves, in which six transducer elements are activated simultaneously.
  • the delay times for the first and the sixth transducer element of a group, for the second and the fifth element and for the third and the fourth element are each of the same size, so that the resulting focal point lies on the perpendicular to the respectively activated transducer element group.
  • a selection circuit is connected to the converter element arrangement, which has on the input side a multiplicity of selection switches each connected to a converter element and on the output side six output lines connected to the switching matrix.
  • the known switching matrix has 18 switches, three of which are connected on the input side to one of the six output lines of the selection circuit and six on the output side are each connected to one of three different delay elements.
  • the control circuit for actuating the individual switches has a large number of logic circuits, such as NAND gates, and a large number of further electronic components, for example transistors, so that there is a high overall circuit complexity.
  • the circuit complexity would also increase significantly if the number of converter elements in a group were increased to achieve a higher resolution.
  • a switching matrix according to features a) to e) of claim 1 is known from US-A 3 846 745.
  • the known switching matrix has a control circuit for
  • Activate the switch on which contains a 1-out-of-16 decoder and several modulo-16 counters.
  • the invention has for its object to provide a switching matrix of the type mentioned, the control circuit is simple.
  • control circuit is constructed in a simple manner as a shift register and in particular does not require any logic gates or other electronic components for linking control signals.
  • An essential advantage of the switching matrix according to the invention is its simple structure, which enables the principle to be transferred to any number m of converter elements in a group without problems. Because of its clear, symmetrical structure, the switching matrix can be arranged particularly easily as an integrated circuit on a semiconductor chip.
  • the switches can be arranged in rows and columns as a square matrix be, so that there is a compact and space-saving switching matrix.
  • the number of output lines of the switching matrix can be reduced by half if the focal point lies on the central perpendicular of the respectively activated converter element group.
  • control circuit can be adapted to any number of converter elements of a group by adding an additional flip-flop for each additional converter element.
  • the switching matrix can be used not only in the processing of received ultrasound pulses, but also in the transmission of pulses to generate a focused output beam.
  • the switching matrix must be operated with the signal direction reversed in such a way that delayed oscillator signals for exciting the converter elements are present on the output lines. If necessary, the order in which the various control signals are applied to the control lines must be reversed in relation to reception mode.
  • the principle of electronic focusing is explained in FIG. 1 using the example of a group of four transducer elements which are activated at the same time.
  • the group of simultaneously activated transducer elements is referred to below as the aperture. It is understood that the aperture can consist of any number of transducer elements, the greater the number of transducer elements of the aperture, the greater the lateral resolution of the ultrasound image obtained.
  • the transducer elements 1, 2, 3, 4, 5,..., N arranged in a row according to FIG. 1 are excited by excitation signals on the lines A1, A2, A3 and A4 respectively connected to the transducer elements in order to emit ultrasound pulses.
  • the excitation signals are delayed with respect to one another by means of delay circuits 11, 12, 13 and 14 in such a way that the waves emitted by the converter elements 1, 2, 3 and 4 in a first transmission / reception period overlap in phase in a focussing point F1.
  • focusing can be achieved by delaying the electrical output signals of the transducer elements in such a way that time differences between the ultrasound signals emanating from a focusing point F1 and received by various transducer elements are compensated for.
  • the depth of the focusing point that is to say the vertical distance of the focusing point F1 from the linear arrangement of transducer elements, can be varied continuously if the delay times coincide with the echo during the reception. In this way one obtains a "dynamic focusing", i. H. a focus point that spans the entire examined depth range.
  • the aperture is switched on by one transducer element, so that elements 2 to 5 are activated while element 1 is no longer activated.
  • elements 2 to 5 are now controlled with the delays with which elements 1 to 4 were controlled in the previous transmission / reception period, so that there is a new focusing point shifted to the right by one converter element results.
  • FIG. 2 shows a transceiver for ultrasonic waves, in which the switching matrix according to the invention is used.
  • a number n of transducer elements 1, 2, 3,..., N arranged in a row is connected to a selection circuit 20, which connects the respectively activated transducer elements to output lines L1,..., L24 in different transmission / reception periods.
  • the selection circuit 20 contains a number n, corresponding to the total number of converter elements, of selection switches each connected to a converter element.
  • 128 transducer elements are provided, of which 24 transducer elements lying next to one another are activated simultaneously in a transmission / reception period. Accordingly, in this example 24 output lines L1, ..., L24 are connected to the selection circuit.
  • a transmit / receive switch 22 makes it possible either to supply transmit pulses from a transmit branch 24, 26, 28, 30 to the transducer elements or to feed the output signals of the transducer elements derived from received echo signals to a receive branch for further signal processing.
  • the receiving branch comprises the following assemblies:
  • a circuit 32 connected to the transmitting / receiving switch 22 serves for preamplification and for time-dependent amplification of the echo signals depending on the elapsed time after an ultrasound pulse has been emitted Time.
  • the signals amplified in this way are then fed to the switching matrix 34 and switched by the latter to a number of outputs corresponding to the number of input lines.
  • the 24 output lines R1,..., R24 are connected to one another in pairs, specifically the first line R1 is connected to the last line R24, the second line R2 to the penultimate R23, etc.
  • Delay elements V1, V2, ..., V12 are connected to the resulting twelve outputs, the delay times of which are matched to one another in order to achieve electronic focusing. In order to enable dynamic focusing, the delay times of the individual delay elements can also be adjusted continuously or in small steps by a control device (not shown).
  • the delay elements V1, ..., V12 are connected to a summing circuit 40 for deriving a sum signal corresponding to the sum of the delayed signals.
  • the sum signal is then further processed in a circuit 42 and converted into a digital signal, which is processed in further circuits, so that a pictorial representation of the examined object, for example the inside of a patient's body, can finally be generated from the received echo signals.
  • the transmission branch already mentioned comprises a pulse generator 28, which is excited by a transmission controller 30 at prescribed times to emit transmission pulses.
  • the transmit pulses are supplied to delay circuits 26 in which they are delayed in the manner prescribed for generating a focus point.
  • the delayed transmission signals are then fed to a switching matrix 24, which in each case establishes connections between its inputs and its outputs, so that the converter elements of a respectively activated converter element group are activated with the required delay.
  • the switching matrix 24 in the transmitting branch has essentially the same structure as the switching matrix 34 in the receiving branch.
  • FIGS. 3a to 3e explain the group-wise switching of the aperture elements and the connections established in each case by the switching matrix 34 for an aperture with four transducer elements on the basis of five successive steps.
  • the converter elements 1, 2, 3 and 4 are each connected to one of four channels K1, K2, K3, K4.
  • the connections between the converter elements and the channels K1 to K4 are each established by the selection circuit 20, which has been omitted here for the sake of clarity.
  • the switching matrix 34 contains sixteen switches T11, T12, ..., T44, which are connected to one another on the output side in accordance with a diagram explained below, and four control lines (not shown) connected to the control inputs of the switches, which are connected to a control circuit for actuating the switches are.
  • the switches are arranged in four switch groups of four switches each, the switch groups being connected to a different channel on the input side.
  • those switches of the switching matrix which each have the same numbering in different switch groups are connected to one another on the output side and each form a common output line.
  • the switches T11, T21, T31 and T41 that occur first in the switch groups are connected to one another and form a common output line R1.
  • the switches occurring at the second, third and fourth positions are connected to one another and each form output lines R2, R3 and R4.
  • the numbering of the switches in a switch group could also run from right to left. It is only important that the same numbering is selected for each switch group.
  • the output lines R1 and R4 and the output lines R2 and R3 are each connected to one another and the connected lines are each connected to delay elements V1 and V2.
  • the delay times for the transducer elements 1 and 4 and for the transducer elements 2 and 3 are in each case of the same size, so that there is a focal point lying on the perpendicular to the transducer element group.
  • the described connections of the outputs of the switching matrix with the delay elements also apply to the steps according to FIGS. 3b to 3e, but are not shown for the sake of clarity.
  • the switching matrix according to the invention has a number m of switch groups corresponding to this number, each with the same number m of switches.
  • Each of the m switch groups is connected via a channel via the selection circuit to one of the respectively activated m converter elements.
  • the m switches of different switch groups, each with the same numbering, are connected to one another on the output side and each form one of m output lines, which in turn are connected to corresponding delay elements.
  • the selection circuit connects the converter element 5 to the channel K1 instead of the element 1, while the other connections are retained.
  • the corresponding focusing point moves to the right by one transducer element.
  • the group of activated transducer elements is shifted to the right by one element in each case by establishing a connection between the transducer element to be newly activated and that channel which in the previous step has the leftmost transducer element was connected.
  • This type of switching has the advantage, among other things, that with each new step there is only one existing connection between a transducer element and a channel disconnected and only a single new connection has to be established.
  • FIG. 4 shows the switching matrix according to FIGS. 3a to 3e as a square matrix with the associated control lines and with a control circuit 50.
  • the four switch groups connected to one of the input channels K1, K2, K3, K4 are arranged in columns.
  • the switches of the same numbering within the individual switch groups form the rows of the matrix, which are each connected to one of the four output lines R1, R2, R3, R4.
  • Each of the four control lines L1, L2, L3, L4 is connected to the control inputs of four switches, switches from each row and from each column being assigned to one control line.
  • the control line L1 is connected to the control inputs of the four switches T11, T22, T33, T44 arranged in the main diagonal of the switching matrix
  • the control line L2 is connected to the control inputs of the three switches T21, T32, T43 arranged in the first secondary diagonal and to the control input the switch T14 of the last secondary diagonal below the main diagonal
  • the control line L3 is connected to the control inputs of the two switches T31 and T42 of the second secondary diagonal above the main diagonal and to the control inputs of the two switches T13 and T24 of the penultimate diagonal below the main diagonal
  • the control line L4 is connected to the control input of the switch T41 of the third secondary diagonal above and to the control inputs of the three switches T12, T23, T34 of the third last diagonal below the main diagonal.
  • the control circuit 50 successively emits a control signal at a new step on the control lines L1, L2, L3 and L4 and then again at L1, which causes the switches connected to the respective control line to be closed while the other switches are open . This results in the switch states shown in FIGS. 3a to 3e.
  • the switching matrix according to the invention has a number of m 2 switches, the m input channels K1, K2, ..., Km each having the inputs of the switches in one column and the m output lines R1, R2, .. ., Rm are each connected to the outputs of the switches on one line.
  • the control input of each switch is connected to one of m control lines L1, L2, L3, ..., Lm in such a way that for each column all switches in this column are connected to a different control line and that for each line all switches in this line are connected to one each other control line are connected. This can be achieved, for example, as in the switching matrix according to FIG.
  • the switches are geometrically arranged in rows and columns.
  • the only important thing is the type of electrical connections between the switches and the control lines.
  • An arrangement in rows and columns allows a simple circuit structure and enables a clear description of the large number of electrical connections in the switching matrix according to the invention.
  • the control circuit 50 for an aperture of m transducer elements is explained below with reference to FIG. 5.
  • the control circuit essentially contains a number of cascaded flip-flops F1, F2,... Fm corresponding to the number of converter elements in a group, the clock inputs CLK of which receive a clock signal on a line CLOCK and the reset inputs RST of which receive a reset signal on a line RESET.
  • the inverted output of the first flip-flop F1 is connected to the D input of the second flip-flop F2 and to the control line L1.
  • the non-inverted output of the second flip-flop F2 is connected to the D input of the third flip-flop F3 and to the control line L2.
  • the non-inverted output of each following flip-flop is connected to the D input of the following flip-flop and to a control line.
  • the inverted output of the last flip-flop Fm is connected to the D input of the first flip-flop F1 and the non-inverted output is connected to the control line Lm.
  • control circuit can thus be easily expanded for larger apertures by adding a further flip-flop for each additional aperture element.
  • the control signals on the control lines L1, L2, L3, L4, ... are generated as follows: Zu Next, all flip-flops are reset so that a signal with the logic state "0" (low level) is present at the non-inverted output (Q) of each flip-flop. As a result, a signal with the logic state "1" (high level) is emitted at the inverted output (Q) of the flip-flop F1 and thus on the control line L1, which causes the switches associated with this control line to be closed while all the other switches are closed . At the next clock pulse, the first flip-flop F1 receives a signal with the state "1" because it is fed by the inverted output of the last flip-flop Fm.
  • a signal with the state "0" then appears at the inverted output of the first flip-flop F1, a signal with the state “1” at the non-inverted output of the second flip-flop F2 and a signal with the signal at the non-inverted outputs of the other flip-flops State “0".
  • a signal with the state "1” is fed to the next flip-flop in the row, so that a signal with the state "1” is present on different control lines in different clock cycles. If the last flip-flop Fm in the row has received a signal with the state "1", in the next step the first flip-flop F1 is again supplied with a signal with the state "1" so that the above process begins again.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Claims (6)

1. Matrice de commutation pour un appareil d'émission/réception d'ondes ultrasonores possédant les composantes suivantes:
- un système d'éléments-transducteurs électroacoustiques (1, 2, ..., n) pouvant être activés pour l'émission et/ou pour la réception d'impulsions ultrasonores,
- des moyens pour piloter les éléments-transducteurs de manière qu'un groupe d'éléments-transducteurs puisse être activé successivement et de façon qu'il avance dans le système,
- un nombre d'organes de retard (V1, V2) pour retarder les signaux de sortie des éléments-transducteurs, dérivés de signaux d'ultrasons reçus, de manière que soient compensées les différences de temps de propagation entre les signaux d'ultrasons renvoyés par un point de focalisation (F1) commun et reçus par différents éléments-transducteurs du groupe activé à chaque instant, et ayant les particularités suivantes:
a) la matrice de commutation contient un grand nombre d'interrupteurs (T11, T12, ..., T44) présentant chacun une entrée, une sortie et une entrée de commande pour changer l'état de commutation de l'interrupteur,
b) chaque élément-transducteur du groupe activé à chaque instant est relié par une ligne d'entrée (K1; K2; K3; K4) à un groupe d'interrupteurs (T11, T12, T13, T14; T21, T22, T23, T24; T31, T32, T33, T34; T41, T42, T43, T44) formé d'un nombre (m) d'interrupteurs numérotés de façon continue, correspondant au nombre des éléments-transducteurs d'un groupe, la numérotation recommençant au départ pour chaque groupe d'interrupteurs,
c) les sorties d'un nombre (m) d'interrupteurs (T11, T21, T31, T41 ;T12, T22, T32, T42;T13, T23, T33, T43; T14, T24, T34, T44), correspondant au nombre d'éléments-transducteurs par groupe, ayant le même numéro d'ordre dans les différents groupes d'interrupteurs, sont reliées entre elles pour former chaque fois une ligne de sortie (R1; R2; R3; R4) commune,
d) on a prévu un nombre (m) de lignes de commande (L1; L2; L3; L4) correspondant au nombre d'éléments-transducteurs par groupe, qui relient chacune les entrées de commande d'un nombre (m) d'interrupteurs des différents groupes, correspondant au nombre d'éléments-transducteurs par groupe, ayant chaque fois un numéro d'ordre différent et
e) à l'activation de chaque fois un autre groupe d'éléments-transducteurs, un circuit de commande (50), relié aux lignes de commande (L1 ; L2; L3; L4), délivre chaque fois à une autre ligne de commande, un signal pour le changement de l'état de commutation des interrupteurs reliés à cette ligne de commande, de sorte que les éléments-transducteurs dont les numéros d'ordre à l'intérieur des groupes correspondent, sont reliés à travers la matrice de commutation aux mêmes organes de retard, caractérisée en ce que
f) le circuit de commande (50) comprend un registre à décalage dont les sorties parallèles sont reliées chacune à une ligne de commande (L1; L2; L3; L4).
2. Matrice de commutation selon la revendication 1, caractérisée en ce que
- les interrupteurs (T11, T12; ... , T44) sont disposés en rangées et colonnes,
- les lignes d'entrée K1; K2; K3; K4) sont reliées chacune aux entrées des interrupteurs (T11, T12, T13, T14; et ainsi de suite) d'une colonne,
- les lignes de sortie (R1 ; R2; R3; R4) sont reliées chacune aux sorties des interrupteurs (T11, T21, T31, T41; et ainsi de suite) d'une rangée, et
- les lignes de commande (L1; L2; L3; L4) sont reliées chacune aux entrées de commande des interrupteurs de manière que des interrupteurs (T11, T22, T33, T44; T14, T21, T32, T43; T13, T24, T31, T42; T12, T23, T34, T41) de chaque rangée et de chaque colonne soient coordonnés à chaque ligne de commande L1; L2; L3; L4).
3. Matrice de commutation selon la revendication 1 ou 2, caractérisée en ce que les lignes de sortie (R1; R2; R3; R4) de la matrice sont interconnectées par paires (R1 avec R4; R2 avec R3), suivant la position symétrique du point de focalisation instantané par rapport aux éléments-transducteurs activés à ce moment.
4. Matrice de commutation selon une des revendications précédentes, caractérisée en ce que
- le circuit de commande (50) contient un nombre (m) de bascules bistables (F1; F2; ...; Fm), connectées en série, correspondant au nombre d'éléments interrupteurs par groupe et présentant chacune une entrée D, une sortie non inversée (Q) et une sortie inversée (Q),
- la sortie inversée (Q) de la première bascule (F1) est reliée à la première ligne de commande (L1) et à l'entrée D de la deuxième bascule (F2),
- les sorties non inversées Q des autres bascules (F2, ..., Fm) sont réliées chacune à une ligne de commande (L2, ..., Lm) et
- la sortie inversée (Q) de la dernière bascule (Fm) est reliée à l'entrée D de la première bascule (F1).
5. Matrice de commutation selon une des revendications précédentes, caractérisée en ce que les interrupteurs (T11, T12, ..., T44) comprennent des transistors à effet de champ MOS avec une entrée- source, une sortie-drain et avec une entrée-grille reliée à l'une des lignes de commande.
6. Utilisation de la matrice de commutation selon une des revendications précédentes dans la partie émission d'un appareil d'émission/réception d'ondes ultrasonores pour transmettre aux différents éléments-transducteurs d'un groupe d'éléments-transducteurs, des signaux d'oscillateur retardés les uns par rapport aux autres, de manière que les ondes ultrasonores émises par les éléments-transducteurs s'amplifient dans un point de focalisation commun.
EP85112072A 1985-09-24 1985-09-24 Matrice de commutation Revoked EP0215972B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8585112072T DE3580848D1 (de) 1985-09-24 1985-09-24 Schaltmatrix.
EP85112072A EP0215972B1 (fr) 1985-09-24 1985-09-24 Matrice de commutation
US06/910,697 US4890267A (en) 1985-09-24 1986-09-23 Switch matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85112072A EP0215972B1 (fr) 1985-09-24 1985-09-24 Matrice de commutation

Publications (2)

Publication Number Publication Date
EP0215972A1 EP0215972A1 (fr) 1987-04-01
EP0215972B1 true EP0215972B1 (fr) 1990-12-05

Family

ID=8193787

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85112072A Revoked EP0215972B1 (fr) 1985-09-24 1985-09-24 Matrice de commutation

Country Status (3)

Country Link
US (1) US4890267A (fr)
EP (1) EP0215972B1 (fr)
DE (1) DE3580848D1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092337A (en) * 1989-02-22 1992-03-03 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus
JP2772045B2 (ja) * 1989-07-06 1998-07-02 株式会社東芝 超音波診断装置
US5673698A (en) * 1994-04-21 1997-10-07 Hitachi Medical Corporation Multichannel ultrasonic diagnosis apparatus
JP3799724B2 (ja) * 1997-03-27 2006-07-19 株式会社デンソー 開口面アンテナ及びレーダ装置
US6128958A (en) * 1997-09-11 2000-10-10 The Regents Of The University Of Michigan Phased array system architecture
WO2003053043A1 (fr) * 2000-12-14 2003-06-26 California Institute Of Technology Imageur cmos pour applications de pointage et de poursuite
US7030356B2 (en) 2001-12-14 2006-04-18 California Institute Of Technology CMOS imager for pointing and tracking applications
US7353056B2 (en) * 2003-03-06 2008-04-01 General Electric Company Optimized switching configurations for reconfigurable arrays of sensor elements
US7280435B2 (en) 2003-03-06 2007-10-09 General Electric Company Switching circuitry for reconfigurable arrays of sensor elements
US20040190377A1 (en) * 2003-03-06 2004-09-30 Lewandowski Robert Stephen Method and means for isolating elements of a sensor array
US7443765B2 (en) * 2003-03-06 2008-10-28 General Electric Company Reconfigurable linear sensor arrays for reduced channel count
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US8057408B2 (en) 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US9061131B2 (en) 2009-08-17 2015-06-23 Histosonics, Inc. Disposable acoustic coupling medium container
AU2010289769B2 (en) 2009-08-26 2016-06-30 Histosonics, Inc. Micromanipulator control arm for therapeutic and imaging ultrasound transducers
EP2470087B1 (fr) 2009-08-26 2015-03-25 The Regents Of The University Of Michigan Dispositifs d'utilisation de cavitation commandée à nuage de bulles dans le fractionnement de calculs urinaires
CN102573651B (zh) * 2009-09-04 2015-05-27 南加利福尼亚大学 用于超声波阵列的基于菲涅耳的波束形成
US8539813B2 (en) 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
US8891334B2 (en) * 2011-03-04 2014-11-18 Georgia Tech Research Corporation Compact, energy-efficient ultrasound imaging probes using CMUT arrays with integrated electronics
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
JP2015516233A (ja) 2012-04-30 2015-06-11 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン ラピッドプロトタイピング方法を使用した超音波トランスデューサー製造
US20140100459A1 (en) 2012-10-05 2014-04-10 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
EP4166194A1 (fr) 2013-07-03 2023-04-19 Histosonics, Inc. Séquences d'excitation d'histotripsie optimisées pour la formation de nuage de bulles à l'aide de la diffusion de choc
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
WO2016210133A1 (fr) 2015-06-24 2016-12-29 The Regents Of The Universtiy Of Michigan Systèmes et procédés de thérapie par histotripsie pour le traitement de tissu cérébral
US11813484B2 (en) 2018-11-28 2023-11-14 Histosonics, Inc. Histotripsy systems and methods
EP4096782A4 (fr) 2020-01-28 2024-02-14 Univ Michigan Regents Systèmes et procédés d'immunosensibilisation par histotripsie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2424582C3 (de) * 1973-05-21 1981-12-24 Tokyo Shibaura Electric Co., Ltd., Kawasaki, Kanagawa Ultraschallwellensende- und Empfangsgerät

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546698A (en) * 1967-11-03 1970-12-08 Bolkow Gmbh Device for angular adjustment of the directional characteristic of an antenna installation
US3846745A (en) * 1970-12-18 1974-11-05 E Hill Electronic scanning switch
JPS5652265B2 (fr) * 1975-01-30 1981-12-10
JPS51124915A (en) * 1975-04-25 1976-10-30 Toshiba Corp Ultrasonic wave transmit-receive wave device
JPS5332987A (en) * 1976-09-08 1978-03-28 Hitachi Medical Corp Method of controlling ultrasonic vibrator
US4159462A (en) * 1977-08-18 1979-06-26 General Electric Company Ultrasonic multi-sector scanner
JPS56161799A (en) * 1980-05-15 1981-12-12 Matsushita Electric Ind Co Ltd Ultrasonic wave probe
JPS5711648A (en) * 1980-06-27 1982-01-21 Matsushita Electric Ind Co Ltd Ultrasonic probe
FR2525781B1 (fr) * 1982-04-27 1987-06-26 Alais Pierre Dispositif de sondage ultrasonore a balayage electronique
US4550606A (en) * 1982-09-28 1985-11-05 Cornell Research Foundation, Inc. Ultrasonic transducer array with controlled excitation pattern
US4505156A (en) * 1983-06-21 1985-03-19 Sound Products Company L.P. Method and apparatus for switching multi-element transducer arrays
DE3481087D1 (de) * 1984-01-30 1990-02-22 Kontron Instr Holding Sender-empfaenger-vorrichtung fuer ein ultraschall-bildgeraet.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2424582C3 (de) * 1973-05-21 1981-12-24 Tokyo Shibaura Electric Co., Ltd., Kawasaki, Kanagawa Ultraschallwellensende- und Empfangsgerät

Also Published As

Publication number Publication date
DE3580848D1 (de) 1991-01-17
US4890267A (en) 1989-12-26
EP0215972A1 (fr) 1987-04-01

Similar Documents

Publication Publication Date Title
EP0215972B1 (fr) Matrice de commutation
DE2643918C3 (de) Gerät zur Ultraschallabtastung
DE2424582C3 (de) Ultraschallwellensende- und Empfangsgerät
DE3025628C2 (fr)
DE2727256A1 (de) Vorrichtung zur ultraschallortung
EP0176038B1 (fr) Affichage en temps réel d'une image ultrasondre à balayage composite
DE2618178A1 (de) Ultraschallsende- und empfangsgeraet
DE2834761C2 (de) Steuerschaltung für eine Bildaufnahmeeinrichtung
DE2920826A1 (de) Ultraschall-abbildungssystem
DE2435666A1 (de) Ultraschall-abbildungsanordnung
DE2920828A1 (de) Ultraschall-abbildungssystem
DE2543678B2 (de) Ultraschallsende- und -empfangsvorrichtung
DE3440853A1 (de) Ultraschall-abbildungsvorrichtung
DE2841694C2 (de) Verfahren und Anordnung zum Abtasten und Abbilden mittels Ultraschallwellen
EP0031510B1 (fr) Appareillage à balayage ultrasonore
DE2727551C2 (de) Empfangseinrichtung bestehend aus einer Gruppe von elektromagnetischen Wandlern
DE2908747A1 (de) Ultraschall-abbildungsgeraet mit sektorabtastung
DE2920852A1 (de) Ultraschall-abbildungsanordnung
DE2749442A1 (de) Verfahren und vorrichtung zur untersuchung einer probe mit ultraschall
DE1791098C3 (de) Impulsradargerät mit Nahecho/Fernecho-Unterscheidung durch Impulsintervallwechsel
DE19753508A1 (de) Ultraschallbildgebungssystemarchitektur unter Anwendung geschalteter Transducerelemente
DE2551138A1 (de) Verfahren und vorrichtung zur ultraschallortung
DE2752070B2 (fr)
DE2654785C2 (de) Schaltungsanordnung zum Reduzieren der Bandbreite eines Eingangssignales begrenzter Dauer
EP0150452B1 (fr) Montage émetteur-récepteur pour un appareil d'imagerie à ultrasons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19870912

17Q First examination report despatched

Effective date: 19881128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3580848

Country of ref document: DE

Date of ref document: 19910117

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19910903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920730

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920911

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921016

Year of fee payment: 8

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19920929

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 920929