EP0213113A1 - Verfahren zum Herstellen von Sinterformkörpern aus einer Aluminium-Sintermischung - Google Patents

Verfahren zum Herstellen von Sinterformkörpern aus einer Aluminium-Sintermischung Download PDF

Info

Publication number
EP0213113A1
EP0213113A1 EP86890217A EP86890217A EP0213113A1 EP 0213113 A1 EP0213113 A1 EP 0213113A1 EP 86890217 A EP86890217 A EP 86890217A EP 86890217 A EP86890217 A EP 86890217A EP 0213113 A1 EP0213113 A1 EP 0213113A1
Authority
EP
European Patent Office
Prior art keywords
aluminum
sintered
wear
mixture
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86890217A
Other languages
English (en)
French (fr)
Other versions
EP0213113B1 (de
Inventor
Gerhard Dr. Jangg
Klaus Dr. Schröder
Friedrich Dr. Franek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miba Sintermetall GmbH
Original Assignee
Miba Sintermetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miba Sintermetall GmbH filed Critical Miba Sintermetall GmbH
Publication of EP0213113A1 publication Critical patent/EP0213113A1/de
Application granted granted Critical
Publication of EP0213113B1 publication Critical patent/EP0213113B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass

Definitions

  • the invention relates to a process for producing sintered shaped bodies from an aluminum sintered mixture with an addition of wear-resistant powder particles, the sintered mixture being pressed to form a shaped body, heated to a sintering temperature below the melting point of aluminum and sintered under a protective gas atmosphere, and to a sintered shaped body made of an aluminum sinter mixture.
  • Sintered moldings made of an aluminum-sinter mixture can not only be produced in large quantities with high manufacturing accuracy, but also have a comparatively low specific weight and good corrosion resistance.
  • these advantages are offset by the disadvantage of low wear resistance.
  • Hard coating by chemical deposition of, for example, titanium carbide, titanium nitride or a boride from the gas phase is, however, not expedient in the case of aluminum materials because the coating processes require reaction temperatures above the melting point of the aluminum.
  • wear-resistant layers such as evaporation, ion implantation and. Like., Applied, so generally only thin, quickly removable layers are obtained.
  • these methods are too expensive for coating cheap mass parts.
  • at least when applying thicker layers the very good dimensional stability of the sintered shaped body is impaired.
  • Another way of improving the wear resistance of sintered aluminum moldings is to incorporate more wear-resistant particles into the aluminum matrix.
  • an additive made of more wear-resistant, intermetallic compounds for example a Mo-Co-Si alloy, which is pulverized by atomization, to the aluminum sintered mixture, but these proposals have not been successful in practice because the metallic additives react with the matrix material during sintering and brittle intermediate layers form under a comparatively strong sintering swelling. It is practically impossible to control the dimensional change during sintering. In addition, these brittle interlayers break when subjected to wear and the embedded particles crumble out. If you try to store particles in the aluminum matrix that do not react with the matrix and consist, for example, of aluminum oxide, they do not alloy, but they are only poorly integrated and can easily be torn out of the material in the event of wear.
  • the invention is therefore based on the object of avoiding these deficiencies and of specifying a method by means of which dimensionally stable sintered shaped bodies can be obtained from an aluminum-sintered mixture with a comparatively high wear resistance.
  • the invention achieves the object in that as a powdery additive, oxides, carbides, nitrides, borides or silicates of elements with a melting point above of aluminum are used which are less noble than the corresponding aluminum compound or aluminum with regard to the free enthalpy of reaction and form mixed crystals with the aluminum in the region of the sintering temperature.
  • the aluminum of the matrix reduces the surface of the embedded particles.
  • this reaction would cease very quickly if mixed crystals could not form which change the activities, so that even with a positive difference in the free enthalpy, such substances with the Aluminum can react.
  • this reaction stops after reaching a comparatively low concentration of mixed crystals in the area of the phase interfaces because no more particles can be reduced due to the activity compensation.
  • the adhesive layer formed consequently remains very thin because of the small amount converted and, moreover, acts as a diffusion barrier due to the high melting point, as a result of which a further reaction is effectively inhibited by diffusion.
  • silicates predominates in the formation of mixed crystals between the aluminum and the silicate component of the silicate.
  • silicates of metals which are less noble than aluminum in terms of their free enthalpy the silicate content is reduced, with thin adhesive layers being formed.
  • the implementation is coming, however after reaching a certain layer thickness and after the incorporation of some formed aluminum oxide in the surface of the particles practically to a standstill, a further implementation is only possible through a diffusion of aluminum or silicon through the intermediate layer, which however strongly inhibits such diffusion.
  • the very low reaction of the non-metallic additive particles with the aluminum matrix practically does not change the sintering behavior of the aluminum sintered mixture compared to the additive-free sintered mixtures. Consequently, the sintering conditions which are advantageous for the production of shaped sintered bodies without wear-reducing additives can also be used for the sintering of the aluminum sintered mixtures with such wear-reducing, non-metallic additives.
  • the particles of the powdery additive should have a spherical shape with a grain diameter between 30 and 100 ⁇ m. If the grain diameter is below the specified range, there is no noticeable improvement in wear resistance because the wear-resistant additional particles can be pressed into the matrix structure during wear. In addition, too small a grain size leads to a loss of strength of the shaped bodies. A large number of very fine additional particles hinder the formation of the sinter bridges that determine the strength of the material. If the grain size exceeds a certain dimension, there is a risk that the additional particles will be torn out of the structure. In addition, difficulties can arise with regard to the different thermal expansion coefficients of the non-metallic inclusions and the aluminum matrix.
  • the grain diameter of the powdery non-metallic additive is between 50 and 200 ⁇ m lies. Additional particles with a spherical shape ensure better mechanical properties of the sintered molding, in particular a better elongation at break can be achieved. In addition, the green bodies are more compressible and the tool wear when pressing the green bodies is less.
  • the content of additional particles should make up at least 0.5% by volume of the sintered mixture. If the powdery additive content rises above 50% by volume, the strength of the sintered materials is impaired. In general, an addition of 1 to 30% by volume of non-metallic substances to the aluminum sintering mixture will ensure the best results.
  • the hardness of the non-metallic additives only plays a subordinate role for the wear properties of the sintered molded body, because all the non-metallic substances in question have a sufficiently high hardness.
  • the advantages of conventional aluminum sintered shaped bodies can be combined with the advantage of a considerable improvement in wear behavior.
  • the adhesive layers that form between the embedded, wear-resistant particles and the matrix are limited in terms of the layer thickness to 0.01 to 1.0 pm, so that, despite the brittle intermetallic phases, ductile behavior is achieved which allows the wear-resistant particles to be incorporated well into the matrix ensures that the material is also subjected to greater wear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Um die Verschleißfestigkeit von Sinterformkörpern aus einer Aluminium-Sintermischung zu erhöhen, wird der Aluminium-Sintermischung ein pulveriger Zusatz aus Oxiden, Karbiden, Nitriden, Boriden bzw. Silikaten von Elementen zugemischt, die hinsichtlich der freien Reaktionsenthalpie unedler als die entsprechende Aluminiumverbindung bzw. das Aluminium sind und mit dem Aluminium im Bereich der Sintertemperatur Mischkristalle bilden.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Herstellen von Sinterformkörpern aus einer Aluminium-Sintermischung mit einem Zusatz aus verschleißfesten Pulverteilchen, wobei die Sintermischung zu einem Formkörper gepreßt, auf eine Sintertemperatur unterhalb des Schmelzpunktes von Aluminium erwärmt und unter Schutzgasatmosphäre gesintert wird, sowie auf einen Sinterformkörper aus einer Aluminium-Sintermischung.
  • Sinterformkörper aus einer Aluminium-Sintermischung lassen sich nicht nur in großen Stückzahlen mit hoher Fertigungsgenauigkeit herstellen, sondern weisen auch ein vergleichsweise niedriges spezifisches Gewicht und eine gute Korrosionsbeständigkeit auf. Diesen Vorteilen steht allerdings der Nachteil einer geringen Verschleißbeständigkeit gegenüber. Um die Verschleißbeständigkeit zu verbessern, bietet sich die Möglichkeit an, die Sinterformkörper mit einer verschleißfesten Schutzschicht zu überziehen. Eine Hartbeschichtung durch eine chemische Abscheidung beispielsweise von Titankarbid, Titannitrid oder eines Borids aus der Gasphase ist allerdings bei Aluminiumwerkstoffen nicht zielführend, weil die Beschichtungsverfahren Reaktionstemperaturen über dem Schmelzpunkt des Aluminiums erfordern. Werden physikalische Verfahren zum Aufbringen verschleißfester Schichten, wie Aufdampfen, Ionenimplantieren u. dgl., angewandt, so werden im allgemeinen nur dünne, rasch abtragbare Schichten erhalten. Außerdem sind diese Verfahren für eine Beschichtung von billigen Massenteilen zu teuer. Dasselbe gilt auch für die versuchte Aufbringung von galvanischen Schichten. Dazu kommt, daß zumindest beim Aufbringen dickerer Schichten die sehr gute Maßhaltigkeit der Sinterformkörper beeinträchtigt wird.
  • Eine andere Möglichkeit, die Verschleißbeständigkeit von Sinterformkörpern aus Aluminium zu verbessern, besteht darin, in die Aluminiummatrix verschleißfestere Teilchen einzulagern. Zu diesem Zweck wurde bereits vorgeschlagen, der Aluminium-Sintermischung einen Zusatz aus verschleißfesteren, intermetallischen Verbindungen, beispielsweise eine Mo-Co-Si-Legierung, die durch ein Verdüsen pulverisiert wird, zuzumischen, doch konnten sich diese Vorschläge in der Praxis nicht durchsetzen, weil die metallischen Zusätze während des Sinterns mit dem Matrixwerkstoff reagieren und sich unter einer vergleichsweise starken Sinterschwellung spröde Zwischenschichten bilden. Es gelingt praktisch nicht, die Maßänderung während des Sinterns zu steuern. Außerdem brechen diese spröden Zwischenschichten bei einer Verschleißbeanspruchung und es kommt zu einem Herausbröckeln der eingelagerten Teilchen. Versucht man, Teilchen in die Aluminiummatrix einzulagern, die mit der Matrix nicht reagieren und beispielsweise aus Aluminiumoxid bestehen, so legieren diese zwar nicht, doch werden sie auch nur schlecht eingebunden und können bei einer Verschleißbeanspruchung leicht aus dem Werkstoff herausgerissen werden.
  • Der Erfindung liegt somit die Aufgabe zugrunde, diese Mängel zu vermeiden und ein Verfahren anzugeben, mit dessen Hilfe maßhaltige Sinterformkörper aus einer Aluminium-Sintermischung mit einem vergleichsweise hohen Verschleißwiderstand erhalten werden können.
  • Ausgehend von einem Verfahren der eingangs geschilderten Art löst die Erfindung die gestellte Aufgabe dadurch, daß als pulveriger Zusatz Oxide, Karbide, Nitride, Boride bzw. Silikate von Elementen mit einem Schmelzpunkt über dem des Aluminiums verwendet werden, die hinsichtlich der freien Reaktionsenthalpie unedler als die entsprechende Aluminiumverbindung bzw. das Aluminium sind und mit dem Aluminium im Bereich der Sintertemperatur Mischkristalle bilden.
  • Durch das Aluminium der Matrix wird die Oberfläche der eingelagerten Teilchen anreduziert. Wegen der gegenüber der entsprechenden Aluminiumverbindung bzw. dem Aluminium negativeren freien Reaktionsenthalpie der Zusätze würde diese Reaktion jedoch sehr rasch wieder aufhören, wenn sich nicht Mischkristalle bilden könnten, die die Aktivitäten ändern, so daß auch bei einer positiven Differenz der freien Enthalpie solche Stoffe mit dem Aluminium reagieren können. Diese Reaktion bleibt jedoch schon nach Erreichen einer vergleichsweise geringen Konzentration an Mischkristallen im Bereich der Phasengrenzflächen stehen, weil wegen des Aktivitätsausgleiches keine weiteren Teilchen mehr anreduziert werden können. Die gebildete Haftschicht bleibt folglich wegen der geringen umgesetzten Menge sehr dünn und wirkt darüber hinaus aufgrund des hohen Schmelzpunktes als Diffusionssperre, wodurch eine weitergehende Reaktion durch ein Abdiffundieren wirksam gehemmt wird. Auch wenn intermetallische Phasen von sich aus spröde sind, bleiben die gebildeten Haftschichten zufolge ihrer geringen Dicke verformbar und verhalten sich duktil, so daß die verschleißfesteren Teilchen gut eingebunden und nicht losgerissen werden, was den Verschleißwiderstand solcher Sinterformkörper erheblich vergrößert.
  • Im Gegensatz zu den anderen nichtmetallischen Zusätzen überwiegt bei der Verwendung von Silikaten die Mischkristallbildung zwischen dem Aluminium und dem silikatischen Anteil des Silikates. Bei Silikaten von Metallen, die hinsichtlich der freien Enthalpie unedler als Aluminium sind, wird nämlich der silikatische Anteil anreduziert, wobei sich dünne Haftschichten bilden. Die Umsetzung kommt allerdings nach Erreichen einer bestimmten Schichtstärke und nach dem Einbau von etwas gebildetem Aluminiumoxid in die Oberfläche der Teilchen praktisch zum Stillstand, wobei eine weitere Umsetzung nur durch eine Diffusion von Aluminium bzw. Silizium durch die Zwischenschicht möglich ist, die ein solches Diffundieren jedoch stark hemmt.
  • Die sehr geringe Reaktion der nichtmetallischen Zusatzteilchen mit der Aluminiummatrix verändert im Gegensatz von metallischen Zusatzstoffen das Sinterverhalten der Aluminium-Sintermischung gegenüber den zusatzmittelfreien Sintermischungen praktisch nicht. Es können folglich die für die Herstellung von Sinterformkörpern ohne verschleißmindernde Zusätze vorteilhaften Sinterbedingungen auch für das Sintern der Aluminium-Sintermischungen mit solchen verschleißmindernden, nichtmetallischen Zusätzen angewendet werden.
  • Zur Erzielung einer guten Verschleißbeständigkeit sollen die Teilchen des pulverigen Zusatzes kugelige Gestalt mit einem Korndurchmesser zwischen 30 und 100 um aufweisen. Liegt der Korndurchmesser unter dem angegebenen Bereich, ergibt sich keine merkbare Verbesserung der Verschleißbeständigkeit, weil die verschleißfesten Zusatzteilchen während der Verschleißbeanspruchung in das Matrixgrundgefüge eingedrückt werden können. Außerdem führt eine zu geringe Korngröße zu einem Festigkeitsverlust der Formkörper. Eine große Anzahl sehr feiner Zusatzteilchen behindert nämlich die Ausbildung der die Festigkeit des Werkstoffes bestimmenden Sinterbrücken. Übersteigt die Korngröße ein bestimmtes Maß, so besteht die Gefahr, daß die Zusatzteilchen aus dem Gefüge herausgerissen werden. Darüber hinaus können sich bereits Schwierigkeiten hinsichtlich der unterschiedlichen Wärmedehnungskoeffizienten der nichtmetallischen Einlagerungen und der Aluminiummatrix ergeben. Besonders vorteilhafte Bedingungen werden erhalten, wenn der Korndurchmesser des pulverigen nichtmetallischen Zusatzes zwischen 50 und 200 pm liegt. Zusatzteilchen mit kugeliger Gestalt stellen bessere mechanische Eigenschaften des Sinterformkörpers sicher, wobei insbesondere eine bessere Bruchdehnung erreicht werden kann. Außerdem ist die Verpreßbarkeit der Grünlinge größer und der Werkzeugverschleiß beim Verpressen der Grünlinge geringer.
  • Um eine wirksame Verbesserung des Verschleißverhaltens des Sinterwerkstoffes zu erhalten, soll der Gehalt an Zusatzteilchen wenigstens 0,5 Vol % der Sintermischung ausmachen. Steigt der Gehalt an pulverigem Zusatz über 50 Vol % an, wird die Festigkeit der Sinterwerkstoffe beeinträchtigt. Im allgemeinen wird daher ein Zusatz an nichtmetallischen Stoffen von 1 bis 30 Vol % zur Aluminium-Sintermischung die besten Ergebnisse sicherstellen.
  • Die Härte der nichtmetallischen Zusatzstoffe spielt für die Verschleißeigenschaften des Sinterformkörpers nur eine untergeordnete Rolle, weil alle in Frage kommenden, nichtmetallischen Stoffe eine ausreichend hohe Härte aufweisen.
  • Bei einem Sinterforakörper, bei dem in der Aluminiummatrix Oxide, Karbide, Nitride, Boride und/oder Silikate von Elementen mit einen Schmelzpunkt über dem des Aluminiums eingebaut sind, die hinsichtlich der freien Reaktionsenthalpie unedler als die entsprechende Aluminiumverbindung bzw. das Aluminium sind und mit dem Aluminium im Bereich der Sintertemperatur Mischkristalle bilden, können somit die Vorteile herkömmlicher Aluminium-Sinterformkörper mit dem Vorteil einer erheblichen Verbesserung im Verschleißverhalten verbunden werden. Die sich bildenden Haftschichten zwischen den eingelagerten, verschleißfesten Teilchen und der Matrix ist hinsichtlich der Schichtdicke auf 0,01 bis 1,0 pm beschränkt, so daß trotz der spröden intermetallischen Phasen ein duktiles Verhalten erzielt wird, das eine gute Einbindung der verschleißfesten Teilchen in die Matrix auch bei größeren Verschleißbeanspruchungen des Werkstoffes sicherstellt.
  • Ausführungsbeispiele:
    • 1. Eine handelsübliche Aluminium-Sintermischung, die 1,5 Gew % eines Preßhilfsmittels enthält, wird in einem Taumelmischer mit 10 Gew % (= ca. 10 Vol %) handelsüblicher Glasperlen mit einer Korngröße von 50 bis 150 pm während zweier Stunden gemischt. Diese Aluminium-Sintermischung wird in herkömmlicher Weise mit entsprechenden Werkzeugen unter einem Druck von 3,5 t/cm2 zu Formteilen gepreßt, die eine hohe Grünfestigkeit und eine hohe Preßdichte aufweisen. Bei dem gewählten Preßdruck und der Zusatzmenge an Glaskugeln ist kein Bruch der Glaskugeln während der Verpressung zu befürchten. Die so hergestellten Grünlinge werden nach einem Entwachsen während 20 Minuten bei 590° C gesintert. Bei einer Sinterschwindung von weniger als 0,1 % werden Formkörper mit einer Zugfestigkeit von 140 N/mm2 (T1-Zustand) bzw. 240 N/mm2 (T6-Zustand) erhalten. Der auf einem Verschleißprüfstand gegenüber einer kunststoffgebundenen Siliziumkarbidscheibe gemessene Verschleiß konnte durch die Silikateinlagerung gegenüber Aluminium-Sinterkörpern ohne diesen Zusatz auf ca. 45 % herabgesetzt werden.
    • 2. Zu einer handelsüblichen Aluminium-Sintermischung werden entsprechend dem Beispiel 1 ein handelsübliches Zirkoniumsilikat von 20 Gew % (= ca. 15 Vol %) mit einem Korndurchmesser von 80 bis 100 pm zugemischt. Nach einem Verpressen dieser Sintermischung zu Grünlingen mit einem Druck von 3,5 t/cm2 wurden die Grünlinge bei einer Sintertemperatur von 595° C und einer Sinterzeit von 20 Minuten gesintert. Die Festigkeit der so erhaltenen Sinterformkörper betrug 145 N/mm2 (T1) und 250 N/mm2 (T6). Die Maßänderung beim Sintern wurde mit ± 0,1 % bestimmt. Die Vergrößerung des Verschleißwiderstandes gegenüber zusatzfreien Sinterformkörpern wurde mit 35 % gemessen.
    • 3. Bei einem Zusatz von 20 Gew % an handelsüblichem Elektrokorundpulver mit geringem Fe-Gehalt, Korndurchmesser 100 bis 150 µm konnten aus einer handelsüblichen Aluminium-Sintermischung nach einer Vorbereitung entsprechend dem Beispiel 1 nach einer Sinterzeit von 30 Minuten und einer Sintertemperatur von 595° C Sinterformkörper erhalten werden, die eine sehr geringe Sinterschwellung von 0,1 bis 0,2 % aufwiesen. Die Verschleißbeständigkeit konnte gegenüber zusatzmittelfreier Vergleichsproben um ca. 10 % verbessert werden. Die Festigkeit betrug 120 N/mm2 (T1) und 220 N/mmz (T6).
    • 4. Mit einer Zugabe von 20 Gew % eines handelsüblichen Siliziumkarbidpulvers mit einer Korngröße von ca. 100 um zu einer üblichen Aluminium-Sintermischung wurden unter den üblichen Preß- und Sinterbedigungen (Preßdruck: 3,5 t/cm2, Sinterzeit: 20 Minuten, Sintertemperatur: 590° C) bei einem geringen Sinterschwund von 0,2 % Sinterformkörper hergestellt, deren Festigkeit 155 N/mm2 (T1) und 265 N/mm2 (T6) betrug. Gegenüber zusatzmittelfreien Vergleichsproben konnte eine Verbesserung des Verschleißverhaltens um 5 % festgestellt werden.

Claims (6)

1. Verfahren zum Herstellen von Sinterformkörpern aus einer Aluminium-Sintermischung mit einem Zusatz aus verschleißfesten Pulverteilchen, wobei die Sintermischung zu einem Formkörper gepreßt, auf eine Sintertemperatur unterhalb des Schmelzpunktes von Aluminium erwärmt und unter Schutzgasatmosphäre gesintert wird, dadurch gekennzeichnet, daß als pulveriger Zusatz Oxide, Karbide, Nitride, Boride bzw. Silikate von Elementen mit einem Schmelzpunkt über dem des Aluminiums verwendet werden, die hinsichtlich der freien Reaktionsenthalpie unedler als die entsprechende Aluminiumverbindung bzw. das Aluminium sind und mit dem Aluminium im Bereich der Sintertemperatur Mischkristalle bilden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Teilchen des pulverigen Zusatzes kugelige Gestalt mit einem Korndurchmesser zwischen 30 und 300 um aufweisen.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Korndurchmesser des pulverigen Zusatzes zwischen 50 und 200 um liegt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der pulverige Zusatz 0,5 bis 50 Vol % der Sintermischung ausmacht.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Sintermischung 1 bis 30 Vol % an pulverigem Zusatz enthält.
6. Sinterformkörper aus einer Aluminium-Sintermischung mit einem Zusatz aus verschleißfesten Pulverteilchen,dadurch gekennzeichnet, daß in der Matrix Oxide, Karbide, Nitride, Boride bzw. Silikate von Elementen mit einem Schmelzpunkt über dem des Aluminiums eingebaut sind, die hinsichtlich der freien Reaktionsenthalpie unedler als die entsprechende Aluminiumverbindung bzw. das Aluminium sind und mit dem Aluminium im Bereich der Sintertemperatur Mischkristalle bilden.
EP86890217A 1985-07-25 1986-07-24 Verfahren zum Herstellen von Sinterformkörpern aus einer Aluminium-Sintermischung Expired - Lifetime EP0213113B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT2204/85 1985-07-25
AT220485 1985-07-25

Publications (2)

Publication Number Publication Date
EP0213113A1 true EP0213113A1 (de) 1987-03-04
EP0213113B1 EP0213113B1 (de) 1990-12-12

Family

ID=3529932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86890217A Expired - Lifetime EP0213113B1 (de) 1985-07-25 1986-07-24 Verfahren zum Herstellen von Sinterformkörpern aus einer Aluminium-Sintermischung

Country Status (3)

Country Link
EP (1) EP0213113B1 (de)
AT (1) ATE59064T1 (de)
DE (1) DE3676131D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588439A1 (de) * 1992-09-17 1994-03-23 Mifa Aluminium B.V. Verfahren zur Herstellung von Formkörpern auf Aluminiumbasis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB721821A (en) * 1948-09-06 1955-01-12 British Aluminium Co Ltd Improvements in the manufacture of aluminium alloys
DE2253282B1 (de) * 1972-10-31 1973-08-16 Mahle Gmbh, 7000 Stuttgart Warmfeste Aluminium Sinterlegierung
US3885959A (en) * 1968-03-25 1975-05-27 Int Nickel Co Composite metal bodies
EP0178046A1 (de) * 1984-08-13 1986-04-16 Ae Plc Mit Zirkondioxyd verstärktes Aluminium oder Aluminiumlegierung und Verfahren zur Herstellung dieses Werkstoffes
EP0191707A1 (de) * 1985-02-01 1986-08-20 Cegedur Societe De Transformation De L'aluminium Pechiney Verfahren zur pulvermetallurgischen Herstellung eines Materials auf Aluminiumbasis mit mindestens einem Keramikmaterial für die Anfertigung von Reibkörpern

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557893A (en) * 1983-06-24 1985-12-10 Inco Selective Surfaces, Inc. Process for producing composite material by milling the metal to 50% saturation hardness then co-milling with the hard phase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB721821A (en) * 1948-09-06 1955-01-12 British Aluminium Co Ltd Improvements in the manufacture of aluminium alloys
US3885959A (en) * 1968-03-25 1975-05-27 Int Nickel Co Composite metal bodies
DE2253282B1 (de) * 1972-10-31 1973-08-16 Mahle Gmbh, 7000 Stuttgart Warmfeste Aluminium Sinterlegierung
EP0178046A1 (de) * 1984-08-13 1986-04-16 Ae Plc Mit Zirkondioxyd verstärktes Aluminium oder Aluminiumlegierung und Verfahren zur Herstellung dieses Werkstoffes
EP0191707A1 (de) * 1985-02-01 1986-08-20 Cegedur Societe De Transformation De L'aluminium Pechiney Verfahren zur pulvermetallurgischen Herstellung eines Materials auf Aluminiumbasis mit mindestens einem Keramikmaterial für die Anfertigung von Reibkörpern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588439A1 (de) * 1992-09-17 1994-03-23 Mifa Aluminium B.V. Verfahren zur Herstellung von Formkörpern auf Aluminiumbasis

Also Published As

Publication number Publication date
EP0213113B1 (de) 1990-12-12
DE3676131D1 (de) 1991-01-24
ATE59064T1 (de) 1990-12-15

Similar Documents

Publication Publication Date Title
DE3344050C2 (de)
DE69223476T2 (de) Cermets, ihre Herstellung und Verwendung
DE3346873C2 (de)
DE69904715T2 (de) Kompaktierter diamanthaltiger körper
DE3010545C2 (de) Gesinterte Keramik, insbesondere für Zerspanungswerkzeuge, und Verfahren zur Herstellung derselben
DE3932992A1 (de) Hartmetallische verbundstoffe mittels dispersionslegierung
DE3027401C2 (de)
DE4126738A1 (de) Zr0(pfeil abwaerts)2(pfeil abwaerts)-haltiger keramikformkoerper
EP0228141B1 (de) Verfahren zur Herstellung eines Sputter-Targets
DE19757681C2 (de) Auf kubischem Bornitrid basierendes Sintermaterial und Verfahren zu seiner Herstellung
DE2149944A1 (de) Verfahren zur Herstellung von Formkoerpern aus Borkohlenstoffverbindungen
DE2947336A1 (de) Verfahren zur herstellung eines produktes aus gesintertem aluminiumoxid
DE69903242T2 (de) Sinterkörper hoher Festigkeit
DE3221629A1 (de) Keramikwerkstoff fuer zerspanungswerkzeuge und verfahren zu dessen herstellung
DE69710461T2 (de) Sinterverfahren
DE2631906A1 (de) Metallpulvermischung fuer die herstellung von in der zahnheilkunde verwendbaren zahnamalgamen durch mischen mit quecksilber
DE2549298C2 (de) Verfahren zur Herstellung einer gesinterten Silber-Cadmiumoxyd-Legierung
EP0213113B1 (de) Verfahren zum Herstellen von Sinterformkörpern aus einer Aluminium-Sintermischung
EP0150841A2 (de) Neutronenabsorberplatten mit keramischer Bindung auf Basis Borcarbid und freiem Kohlenstoff
DE69023802T2 (de) Metallbasis-Verbundkörper und Verfahren zu dessen Herstellung.
DE2937740C2 (de)
DE2461741C2 (de) Verfahren zum Herstellen eines keramischen Materials aus einphasigem Siliciumaluminiumoxynitrid
DE69109707T2 (de) Metallpulver auf Nickelbasis zur Herstellung von porösen Anoden für Brennstoffzellen, Herstellung dieses Pulvers und der Anode und Brennstoffzelle, die diese Anode enthält.
DE19935271C2 (de) Matrixmaterial für Brennstoffzellen sowie Verfahren zu seiner Herstellung und seine Verwendung
DE69102892T2 (de) Sintermaterial auf Basis von Siliziumnitrid und Verfahren zur Herstellung desselben.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870817

17Q First examination report despatched

Effective date: 19880915

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 59064

Country of ref document: AT

Date of ref document: 19901215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3676131

Country of ref document: DE

Date of ref document: 19910124

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920507

EAL Se: european patent in force in sweden

Ref document number: 86890217.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010709

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010730

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010810

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020711

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020725

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020730

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

BERE Be: lapsed

Owner name: *MIBA SINTERMETALL A.G.

Effective date: 20020731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030724

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030724

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20050725

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050726

Year of fee payment: 20