EP0209387B1 - Dispositif laser à semi-conducteur - Google Patents

Dispositif laser à semi-conducteur Download PDF

Info

Publication number
EP0209387B1
EP0209387B1 EP86305504A EP86305504A EP0209387B1 EP 0209387 B1 EP0209387 B1 EP 0209387B1 EP 86305504 A EP86305504 A EP 86305504A EP 86305504 A EP86305504 A EP 86305504A EP 0209387 B1 EP0209387 B1 EP 0209387B1
Authority
EP
European Patent Office
Prior art keywords
layer
striped
cladding
etching
burying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86305504A
Other languages
German (de)
English (en)
Other versions
EP0209387A2 (fr
EP0209387A3 (en
Inventor
Saburo Yamamoto
Toshiro Hayakawa
Takahiro Suyama
Kohsei Takahashi
Masafumi Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of EP0209387A2 publication Critical patent/EP0209387A2/fr
Priority to US07/023,413 priority Critical patent/US4744929A/en
Publication of EP0209387A3 publication Critical patent/EP0209387A3/en
Application granted granted Critical
Publication of EP0209387B1 publication Critical patent/EP0209387B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32316Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm comprising only (Al)GaAs

Definitions

  • This invention relates to a semiconductor laser device. More particularly, it relates to a semiconductor laser device having a structure which is effective to control a transverse mode of laser oscillation, to lower the threshold current level and to increase the life span, and which is produced by the use of a crystal growth technique for the formation of ultra-thin films such as molecular beam epitaxy (MBE) or metal-organic chemical vapor deposition (MO-CVD).
  • MBE molecular beam epitaxy
  • MO-CVD metal-organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • MO-CVD metal-organic chemical vapor deposition
  • LPE liquid phase epitaxy
  • a typical example of these new laser devices is a quantum well (QW) laser, which is produced based on the fact that quantization levels are established in its active layer by reducing the thickness of the active layer from several hundred ⁇ to approximately 0.01 ⁇ m (100 ⁇ ) or less and which is advantageous over conventional double heterostructure lasers in that the threshold current level is low and the temperature and transient characteristics are superior.
  • QW quantum well
  • the single crystal growth technique such as molecular beam epitaxy or metal-organic chemical vapor deposition
  • the semiconductor laser is deficient in that a stabilized transverse mode of laser oscillation cannot be attained due to its multiple-layered structure.
  • a contact stripe geometric laser which was produced in the early stage of laser development, has a striped electrode to prevent injected current from transversely expanding, and attains laser oscillation in a zero order mode (i.e., a fundamental transverse mode) upon exceeding the threshold current level due to the fact that gain required for laser oscillation is greater than losses within the active region underneath the stripe region, while the said contact stripe geometric laser produces laser oscillation in an expanded transverse mode or a higher-order transverse mode with an increase in the injection of current beyond the threshold current level, because carriers which are injected into the active layer spread to the outside of the striped region resulting in expanding the high gain region.
  • a zero order mode i.e., a fundamental transverse mode
  • CSP lasers channeled substrate planar structure injection lasers
  • CDH lasers constricted double heterojunction lasers
  • TS lasers terraced substrate lasers
  • Figure 3 of the accompanying drawings shows a conventional GaAlAs semiconductor laser operating in a stabilised transverse mode, which is produced as follows: On an n-GaAs substrate 1 , an n-GaAs buffer layer 1' , an n-Ga 0.7 Al 0.3 As cladding layer 2 , an n-GaAs active layer 3, a p-Ga 0.7 Al 0.3 As cladding layer 4 , and a p-GaAs cap layer 5 are successively formed by molecular beam epitaxy, followed by subjecting to a vapor deposition treatment with metal materials of Al/Zn/Au in this order to form an electrode layer 25, which is then formed into a striped shape by photolithography.
  • the semiconductor layer positioned outside of the striped electrode layer 25 is then eliminated by an Ar+ ion-beam etching technique using the striped electrode layer 25 as a masking material in such a manner that the thickness of the cladding layer 4 becomes approximately 0.3 ⁇ m, resulting in an optical waveguide within the active layer 3 corresponding to the striped region 10.
  • the electrode layer 25 is subjected to a heating treatment to be alloyed.
  • a SiO2 film 6 and a p-sided Gr/Au electrode 8 are then formed on the cladding layer 4 outside of the striped region 10 .
  • An n-sided AuGe/Ni electrode 7 is formed on the back face of the substrate 1, resulting in a laser device having relatively stabilized characteristics.
  • this laser device is disadvantageous in that since the built-in refraction index difference of the optical waveguide depends upon precision of the depth of the semiconductor lasers to be etched by an Ar+ ion-beam etching technique, it is difficult to control the built-in refractive index difference, causing difficulty in obtaining a fundamental transverse mode oscillation with reproducibility, and/or that since a decrease in the refractive index difference is difficult, high output power cannot be created.
  • this laser device has the significant drawback that it is mounted on a radiation plate of Cu, etc., by means of a soldering material such as In, etc., in order to improve heat-radiation of the laser device.
  • the distance from the portions of the active layer 3 corresponding to the regions other than the striped region 10 to the mounting face of the radiation plate is as extremely small as 1 ⁇ m or less, so that the active layer undergoes great stress due to thermal shrinkage based on a decrease in temperature after solidification of the soldering material. This makes the life span of the device short (T.Hayakawa et al., Appl. Phys. Lett., vol. 42, pp.23 (1983)).
  • the distance between the active layer and the mounting face corresponding to the striped region 10 is different from the distance therebetween corresponding to the regions other than the striped region 10, so that the active layer further undergoes great stress at the interface between these regions at the different distances, which accelerates deterioration of the device.
  • a semiconductor laser device in accordance with the present invention comprises a double-heterostructure multi-layered crystal containing an active layer for laser oscillation, a striped etching-protective thin layer formed on said double-heterostructure multi-layered crystal, a striped mesa multi-layered crystal formed on said striped etching-protective thin layer and including a cladding layer containing aluminium and a burying layer containing aluminium and formed on said double-heterostructure multi-layered crystal outside of both the striped thin layer and the striped-mesa multi-layered crystal, characterised in that (a) said striped etching-protective thin layer is made of GaAs, (b) the thickness of said striped etching-protective thin layer is 0.02 ⁇ m (200 ⁇ ) or less and (c) the aluminium mole fraction of said burying layer is greater than the aluminium mole fraction of said cladding layer, thereby providing refractive index distributions within said active layer corresponding to the inside and outside of said striped-mes
  • the invention described herein makes possible (1) a semiconductor laser device which is produced by a layer-thickness control technique attained by molecular beam epitaxy and/or metal-organic chemical vapour deposition; (2) a semiconductor laser device which operates at a low threshold current level in a stabilized transverse mode; and (3) a semiconductor laser device which operates with high reliability for a long period of time.
  • a semiconductor laser device of this invention attains stabilization of a transverse mode by utilizing an etching-protective layer as a surface-protective thin layer. Moreover, crystal growth of burying layers is selectively carried out in the regions other than the striped mesa region, resulting in the wafer having a flat surface, and thus the distance between the active layer and the mounting face of a radiation plate, on which the laser device is mounted, can be equal to 1 ⁇ m or more in the whole region containing the striped region, thereby attaining a lowering of stress to be imposed on the active layer.
  • Figures 1(A), 1(B) and 1(C) show a production process for a semiconductor laser device of this invention, which is produced as follows: On an n-GaAs substrate 11 , an n-GaAs buffer layer 11' having a thickness of 0.5 ⁇ m, an n-Al 0.5 Ga 0.5 As cladding layer 12 having a thickness of 1.0 ⁇ m, a non-doped GaAs active layer 13 having a thickness of 0.07 ⁇ m, a p-Al 0.5 Ga 0.5 As cladding layer 14 having a thickness of 0.2 ⁇ m, a p-GaAs etching-protective layer 15 having a thickness of 0.005 ⁇ m, a p-Al 0.5 Ga 0.5 As cladding layer 16 having a thickness of 1.5 ⁇ m, and a p-GaAs cap layer 17 having a thickness of 0.5 ⁇ m are successively formed by molecular beam epitaxy, as shown in Figure 1(A)
  • a Si3N4 film 18 is formed on the cap layer 17 by plasma assisted chemical vapor deposition.
  • a photoresist 19 is formed into a stripe on the Si3N4 film 18 by photolithography as shown in Figure 1(B) , followed by subjection to an HCl treatment to form the Si3N4 film 18 into a stripe.
  • the remaining p-Al 0.5 Ga 0.5 As layer outside of the striped portion is etched in a manner to reach the GaAs etching-protective layer 15.
  • the GaAs etching-protective layer 15 exposed to the outside is melted back into the Ga-fused solution at the beginning of the crystal growth of the burying layer 20 by liquid phase epitaxy and functions as a surface-protective layer for protecting the Al 0.5 Ga 0.5 As cladding layer 14 positioned below the etching-protective layer 15 , so that the Al 0.8 Ga 0.2 As burying layer 20 to be epitaxially grown on the Al 0.5 Ga 0.5 As cladding layer 14 can be of a good quality. Then, the Si3N4 film 18 at the striped portion is removed.
  • a p-sided Au/Zn electrode 21 is formed on the whole upper faces of both the cap layer 17 and the burying layer 20 and an n-sided AuGe/Ni electrode 22 is formed on the back face of the GaAs substrate 11, followed by cleaving at both facets, resulting in a semiconductor laser device.
  • Figure 2 shows another semiconductor laser device of this invention, functioning as a GRIN-SCH (graded index separate confinement) laser, in which the active layer is composed of a non-doped GaAs quantum well 32 having a thickness of 0.006 ⁇ m(60 ⁇ ) and sandwiched between GRIN (graded index) layers 31 and 33 , each of which is composed of a non-doped Al x Ga 1-x As (wherein the mole fraction x in said mixed crystal is linearly changed from 0.2 to 0.5 as the distance of a portion of said mixed crystal from the quantum well becomes larger).
  • This GRIN-SCH laser operates at a low threshold current, 10 mA or less.
  • This laser device is further provided with an optical-guide layer containing an etching-protective layer 15 therein in the vicinity of the active region.
  • This laser device can also be provided with multi-quantum wells as an active layer.
  • Examples 1 and 2 disclose only liquid phase epitaxy for the growth of the burying layer, they are not limited thereto.
  • Molecular beam epitaxy can be used, provided that the GaAs etching-protective layer 15 has been selectively removed by thermal etching under As molecular beams upon the GaAs etching-protective layer 15 prior to the growth of the burying layer.
  • Metal-organic chemical vapor deposition can also be used for the growth of the burying layer if a vapor phase etching technique is used together therewith.
  • the multi-layered crystal for laser oscillation can be formed not only by molecular beam epitaxy, but also by metal-organic chemical vapor deposition.
  • the etching-protective layer 15 is used to control the thickness of the p-cladding layer 14 , so that the distribution of the equivalent refractive index parallel to the junction direction can be controlled and a fundamental transverse mode can be attained.
  • the thickness of crystal growth layers can be controlled with precision of as thin as 0.001 ⁇ m (10 ⁇ ) or less by the use of a crystal growth technique such as molecular beam epitaxy or metal-organic chemical vapor deposition.
  • the etching-protective layer 15 is formed with a thickness of about 0.02 ⁇ m (200 ⁇ ) or less, optical losses of the laser device can be suppressed to a low level.
  • the liquid phase epitaxial growth of said burying layer 20 will be impossible. Even though molecular beam epitaxy or metal-organic chemical vapor deposition is applied to the growth of said burying layer 20 , instead of liquid phase epitaxy, the crystallinity of the resulting burying layer 20 will be extremely poor. In particular, a high amount of distortion occurs in the burying layer near the interface between the burying layer and the underlying AlGaAs layer because an oxide film has been naturally formed on the AlGaAs underlying layer, resulting in deterioration of the laser device.
  • the surface of the underlying layer is protected by the etching-protective layer 15 prior to the growth of the burying layer 20 , and thus deterioration of the surface of the underlying layer on which the burying layer is grown does not arise.
  • the GaAs crystal which is not as readily oxidized in an atmosphere as the AlGaAs crystal, is used as an etching-protective layer, so that deterioration of the surface of the underlying layer can more effectively prevented.

Claims (4)

  1. Un dispositif laser semi-conducteur, comprenant un cristal à couches multiples à hétérostructure double contenant une couche active (13; 32) pour l'oscillation de une mince couche (15) de protection de gravure en bande formée sur ledit cristal à couches multiples à hétérostructure double, un cristal à couches multiples en bandes mésa formé sur ladite mince couche de protection de gravure en bande et comportant une couche de revêtement (16) à teneur en aluminium et une couche ensevelissante (20) à teneur en aluminium et formée sur ledit cristal à couches multiples à hétérostructure double, à l'extérieur de la mince couche en bande (15) et du cristal à couches multiples en bandes mésa, dans lequel (a) ladite mince couche de protection de gravure en bande (15) est en GaAs, (b) l'épaisseur de ladite mince couche de protection de gravure en bande est de 0,02 µm (200 Å) ou moins et (c) la fraction de mole d'aluminium de ladite couche ensevelissante (20) est supérieure à la fraction de mole d'aluminium de ladite couche de revêtement (16), créant ainsi des répartitions de l'indice de réfraction dans ladite couche active (13) correspondant à l'intérieur et à l'extérieur dudit cristal à couches multiples en bandes mésa et créant une structure en bandes fonctionnant comme trajectoire de courant dudit cristal à couches multiples en bandes mésa.
  2. Un dispositif laser semi-conducteur suivant la revendication 1, comprenant:
       un substrat (11),
       une couche tampon (11') formée sur ledit substrat (11),
       une première couche de revêtement (12) formée sur ladite couche tampon (11'),
       ladite couche active (13) étant formée sur ladite première couche de revêtement (12),
       une seconde couche de revêtement (14) formée sur ladite couche active (13),
       ladite couche de protection de gravure (15) étant formée sur ladite seconde couche de revêtement (14),
       ladite couche de revêtement (16) citée la première étant formée sur ladite couche de protection de gravure (15),
       une couche de recouvrement (17) formée sur ladite couche de revêtement (16) citée la première,
       dans lequel lesdits substrat (11), couche tampon (11'), première couche de revêtement (12), couche active (13) et seconde couche de revêtement (14) sont de largeurs sensiblement égales comprenant une première largeur et lesdites couche de protection de gravure (15), couche de revêtement (16) citée la première et couche de recouvrement (17) sont de largeurs sensiblement égales comprenant une seconde largeur qui est inférieure à ladite première largeur, et dans lequel
       ladite couche ensevelissante (20) est formée sur ladite seconde couche de revêtement (14),
       une première électrode (21) est formée sur ladite couche de recouvrement (17) et ladite couche ensevelissante (20), et
       une seconde électrode (22) est formée sur ledit substrat (11),
       lesdites couche ensevelissante (20), première électrode (21) et seconde électrode (22) ayant des largeurs sensiblement égales à ladite première largeur.
  3. Un dispositif laser semi-conducteur suivant la revendication 1, comprenant:
       un substrat (11),
       une couche tampon (11') formée sur ledit substrat (11),
       une première couche de revêtement (12) formée sur ladite couche tampon (11'),
       une première couche à gradient d'indice (31) formée sur ladite première couche de revêtement (12),
       la couche active (32) étant formée sur ladite première couche à gradient d'indice (31),
       une seconde couche à gradient d'indice (33) formée sur ladite couche active (32),
       ladite couche de protection de gravure (15) étant formée sur ladite seconde couche à gradient d'indice (33),
       ladite couche de revêtement (16) citée la première étant formée sur ladite couche de protection de gravure (15),
       une couche de recouvrement (17) formée sur ladite couche de revêtement (16) citée la première,
       dans lequel lesdits substrat (11), couche tampon (11'), première couche de revêtement (12), première couche à gradient d'indice (31), couche active (32) et seconde couche à gradient d'indice (33) sont de largeurs sensiblement égales comprenant une première largeur, et lesdites couche de protection de gravure (15), couche de revêtement (16) citée la première et une couche de recouvrement (17) sont de largeurs sensiblement égales comprenant une seconde largeur qui est inférieure à ladite première largeur, et dans lequel
       ladite couche ensevelissante (20) est formée sur ladite seconde couche à gradient d'indice (33),
       une première électrode (21) est formée sur ladite couche de recouvrement (17) et ladite couche ensevelissante (20), et
       une seconde électrode (22) est formée sur ledit substrat (11),
       lesdites couche ensevelissante (20), première électrode (21) et seconde électrode (22) ayant des largeurs sensiblement égales à ladite première largeur.
  4. Un dispositif laser semi-conducteur suivant la revendication 1, dans laquelle le rapport entre la fraction de mole d'aluminium de ladite couche ensevelissante (20) et la fraction de mole d'aluminium de ladite couche de revêtement (16) est d'environ 1,6.
EP86305504A 1985-07-18 1986-07-17 Dispositif laser à semi-conducteur Expired - Lifetime EP0209387B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/023,413 US4744929A (en) 1986-07-17 1987-03-09 Support device for a packed column

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP160941/85 1985-07-18
JP60160941A JPH0722214B2 (ja) 1985-07-18 1985-07-18 半導体レーザ素子の製造方法

Publications (3)

Publication Number Publication Date
EP0209387A2 EP0209387A2 (fr) 1987-01-21
EP0209387A3 EP0209387A3 (en) 1988-04-20
EP0209387B1 true EP0209387B1 (fr) 1993-03-17

Family

ID=15725532

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86305504A Expired - Lifetime EP0209387B1 (fr) 1985-07-18 1986-07-17 Dispositif laser à semi-conducteur

Country Status (4)

Country Link
US (1) US4899349A (fr)
EP (1) EP0209387B1 (fr)
JP (1) JPH0722214B2 (fr)
DE (1) DE3688017T2 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147792A (ja) * 1985-12-23 1987-07-01 Hitachi Ltd 半導体レ−ザの作製方法
FR2596529B1 (fr) * 1986-03-28 1988-05-13 Thomson Csf Guide d'onde optique en materiau semiconducteur, laser appliquant ce guide d'onde et procede de realisation
JPS63287082A (ja) * 1987-05-19 1988-11-24 Sharp Corp 半導体レ−ザ素子
JPH0243791A (ja) * 1988-08-04 1990-02-14 Fuji Electric Co Ltd 埋め込み型半導体レーザ素子
JPH02114690A (ja) * 1988-10-25 1990-04-26 Fuji Electric Co Ltd 半導体レーザ素子
JPH02174178A (ja) * 1988-12-26 1990-07-05 Sharp Corp 半導体レーザ素子
US5022036A (en) * 1988-12-29 1991-06-04 Sharp Kabushiki Kaisha Semiconductor laser device
JPH02228089A (ja) * 1989-02-28 1990-09-11 Omron Tateisi Electron Co リッジ導波路型半導体レーザ
JPH07112093B2 (ja) * 1990-01-12 1995-11-29 松下電器産業株式会社 半導体レーザおよびその製造方法
JP2814124B2 (ja) * 1990-01-27 1998-10-22 日本電信電話株式会社 埋込み形半導体発光素子
US5210767A (en) * 1990-09-20 1993-05-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
EP0589727B1 (fr) * 1992-09-25 1997-03-19 The Furukawa Electric Co., Ltd. Dispositif laser à semiconducteur
US5811839A (en) * 1994-09-01 1998-09-22 Mitsubishi Chemical Corporation Semiconductor light-emitting devices
JPH08222815A (ja) * 1994-12-13 1996-08-30 Mitsubishi Electric Corp 半導体レーザ装置の製造方法、及び半導体レーザ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190813A (en) * 1977-12-28 1980-02-26 Bell Telephone Laboratories, Incorporated Strip buried heterostructure laser
JPS55111191A (en) * 1979-02-20 1980-08-27 Sharp Corp Method of manufacturing semiconductor laser device
JPS5698889A (en) * 1980-01-10 1981-08-08 Kokusai Denshin Denwa Co Ltd <Kdd> Ingaasp semiconductor laser
GB2139422B (en) * 1983-03-24 1987-06-03 Hitachi Ltd Semiconductor laser and method of fabricating the same
US4706254A (en) * 1983-05-12 1987-11-10 Canon Kabushiki Kaisha Semiconductor device and its fabrication
JPS6045086A (ja) * 1983-08-22 1985-03-11 Rohm Co Ltd 半導体レ−ザおよびその製造方法
JPS6064489A (ja) * 1983-09-19 1985-04-13 Rohm Co Ltd 半導体レ−ザおよびその製造方法
JPS6085585A (ja) * 1983-10-17 1985-05-15 Nec Corp 埋め込み型半導体レ−ザ
JPS60107881A (ja) * 1983-11-16 1985-06-13 Hitachi Ltd 半導体レ−ザ装置の製造方法
JPS60182181A (ja) * 1984-02-28 1985-09-17 Sharp Corp 半導体レ−ザアレイ
JPS60229389A (ja) * 1984-04-26 1985-11-14 Sharp Corp 半導体レ−ザ素子
JPS60236274A (ja) * 1984-05-10 1985-11-25 Sharp Corp 半導体レ−ザ素子

Also Published As

Publication number Publication date
DE3688017T2 (de) 1993-06-24
JPH0722214B2 (ja) 1995-03-08
DE3688017D1 (de) 1993-04-22
EP0209387A2 (fr) 1987-01-21
EP0209387A3 (en) 1988-04-20
JPS6220392A (ja) 1987-01-28
US4899349A (en) 1990-02-06

Similar Documents

Publication Publication Date Title
EP0142845B1 (fr) Procédé de fabrication d&#39;un dispositif laser à semi-conducteur
EP0552888B1 (fr) Lasers à hétérostructure enterrée utilisant la croissance OMCVD sur substrates structurés
EP0136097B1 (fr) Méthode de fabrication de lasers à semi-conducteurs
EP0209387B1 (fr) Dispositif laser à semi-conducteur
EP0160515B1 (fr) Laser à semi-conducteur
EP0272096B1 (fr) Laser à semi-conducteur
EP0440471B1 (fr) Diode laser à mode transversal stabilisé
EP0301826A2 (fr) Laser semi-conducteur du type guidé par indice de réfraction et procédé pour fabriquer celui-ci
US4905246A (en) Semiconductor laser device
EP0264225B1 (fr) Dispositif laser à semi-conducteur et sa méthode de fabrication
EP0473443A2 (fr) Laser à semi-conducteur à ruban enterré
JPH05259574A (ja) 半導体レーザ装置及びその製造方法
EP0657977B1 (fr) Laser à diode du type ruban et méthode de fabrication
EP0192451B1 (fr) Dispositif laser à semi-conducteur
US5805628A (en) Semiconductor laser
US5304507A (en) Process for manufacturing semiconductor laser having low oscillation threshold current
EP0205338B1 (fr) Dispositif laser à semi-conducteur
EP0298778B1 (fr) Dispositifs de laser semi-conducteur et leur procédé de fabrication
JPH0560275B2 (fr)
JPH0669589A (ja) 半導体レーザ素子
JP3022351B2 (ja) 光半導体装置及びその製造方法
JPH0677588A (ja) 半導体レーザ及びその製造方法
JPH0437598B2 (fr)
JPH0766992B2 (ja) AlGaInP系半導体レーザとその製造方法
JPH11284276A (ja) 半導体レーザ装置及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860722

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE GB NL

17Q First examination report despatched

Effective date: 19910704

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3688017

Country of ref document: DE

Date of ref document: 19930422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040704

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040714

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040729

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050717

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060201