EP0206873B2 - Procédé de traitement thermique, hotte pour la mise en oeuvre de ce procédé et son utilisation dans les fours de traitement thermique - Google Patents

Procédé de traitement thermique, hotte pour la mise en oeuvre de ce procédé et son utilisation dans les fours de traitement thermique Download PDF

Info

Publication number
EP0206873B2
EP0206873B2 EP86401150A EP86401150A EP0206873B2 EP 0206873 B2 EP0206873 B2 EP 0206873B2 EP 86401150 A EP86401150 A EP 86401150A EP 86401150 A EP86401150 A EP 86401150A EP 0206873 B2 EP0206873 B2 EP 0206873B2
Authority
EP
European Patent Office
Prior art keywords
gas
oven
inert
intake chamber
hood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86401150A
Other languages
German (de)
English (en)
Other versions
EP0206873A1 (fr
EP0206873B1 (fr
Inventor
Vincent Guillaume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9319890&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0206873(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority to AT86401150T priority Critical patent/ATE39501T1/de
Publication of EP0206873A1 publication Critical patent/EP0206873A1/fr
Application granted granted Critical
Publication of EP0206873B1 publication Critical patent/EP0206873B1/fr
Publication of EP0206873B2 publication Critical patent/EP0206873B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0073Seals
    • F27D99/0075Gas curtain seals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
    • F27B9/243Endless-strand conveyor

Definitions

  • the present invention relates to a method of heat treatment of objects in a continuous oven comprising at least one heat treatment zone, method in which an atmosphere of non-reactive gas is created under the treatment conditions, at at least one of the ends of said treatment area.
  • the ovens are generally continuous and open at their ends. They include an entry zone for the objects to be heat treated, a heat treatment zone as well as generally a cooling zone, and an exit zone for the objects.
  • the oven has a system for advancing objects to the heat treatment zone, the temperature of the objects gradually increasing as they advance into the oven.
  • the object When the treatment is finished, the object generally crosses a cooling zone in which it is cooled to a temperature such that no oxidation of this object will occur in the ambient air.
  • the required heat treatment atmosphere is supplied to the furnace via endothermic or exothermic generators or by direct injection of suitable liquid-gas mixtures.
  • the injection of this atmosphere is generally carried out in or near the heat treatment zone. It is necessary to carry out an overpressure of the atmosphere-generating gas at its injection point in order to try to avoid the return in the furnace of the oxidizing species contained in the air.
  • the system described in this patent also makes it possible to avoid the gaseous atmosphere of the oven from being ejected from the oven and to mix with the ambient air, which leads, of course, to reducing the amount of gas injected into the treatment oven for a specified time interval.
  • the injection of inert gas through a perforated tube creates a vortex current in the chamber: for the perforations located on the same circumference of the tube, the geometry tends to create a first vortex zone around the tube. Furthermore, the supply of inert gas being carried out at one end of the perforated tube, the other end of which is closed, the gas will tend, with equal perforation diameter, to escape through the end situated at near the closed part and on the contrary create a suction through the perforations located near the arrival of the inert gas, thus creating a second vortex current in the chamber.
  • the suction system allows the air-inert gas mixture to be evacuated before it can enter the heat treatment zone of the oven.
  • the document EP-A-75 438 describes a method of heat treatment of objects in a continuous oven, in which the objects to be treated are successively introduced by a mobile support in the oven comprising at least one heat treatment zone into which is injected a atmosphere of determined composition, the inlet and / or outlet zones of the oven comprising means generating a substantially laminar flow of inert or non-reactive gas under the treatment conditions so as to prevent the entry of air into the oven.
  • the inlet and outlet zones of the furnace comprise a plurality of inclined curtains arranged parallel to each other defining a plurality of chambers into which an inert gas such as nitrogen is injected.
  • This injection is carried out through a perforated wall located above and / or below said chambers.
  • the injection of gas through these perforated walls is carried out using a conduit in front of which a deflector is placed, the gas bypassing the latter before entering through the perforations in said chambers.
  • the object of the invention is to propose a method making it possible to avoid these drawbacks.
  • the method according to the invention is characterized in that the flow of inert or non-reactive gas at the end of the furnace is in the form of a single curtain, homogeneous, with vertical flow in a transverse plane of a horizontal end portion of the furnace and traversed by the direction of advance of the parts to be treated, the injection of inert or non-reactive gas being effected, after homogenization of its speed and pressure, under conditions such as substantially laminar flow regime is maintained over the entire height of the gas curtain.
  • the substantially homogeneous gas curtain is generated at each end of the furnace, the pressure losses induced by these being different from each other, so as to modify the relative value of the incoming gas flows and out of the oven.
  • the use of the method according to the invention allows in particular the zoning of heat treatment furnaces.
  • the presence of the homogeneous curtain of inert gas at one and / or the other end of the furnace makes it possible, depending on the modulation of the flows of neutral gas injected into each curtain, to modify in a separate manner the conditions of exit of the gases at each end of the furnace, and this in a significant way compared to the pressure losses imposed on the moving gas inside the furnace.
  • this injection point When there is a gas injection point at a higher pressure than that of the gases injected at the other points, this injection point will make it possible to orient the gas flow rates in the furnace. If it is located towards the entrance of the oven, the gas flow will be the same as the direction of advance of the parts. Conversely, if it is located near the outlet of the oven, the gas flow will be in the opposite direction to the direction of advance of the parts in the oven.
  • the zone at maximum pressure of the furnace can be better located in the desired location, in the case of a plurality of injections at different points without thereby increasing the flow rates of the active gases.
  • non-reactive gas used in the present application naturally means an inert or non-reactive gas with respect to the other constituents of the atmosphere of the oven as well as the parts which must be treated in it. Generally, nitrogen will be used as the non-reactive gas, although in some cases it is preferable to use argon or possibly helium.
  • active gas designates the gas or gases from the heat treatment atmosphere.
  • heat treatment includes all the heat treatments that are usually subjected to metals, ceramics, etc., but is particularly intended for the annealing of metal parts such as stainless steel.
  • heat treatment zone means one or more parts of the oven in which heating means are optionally arranged, in which identical or different atmospheres are created, each atmosphere preferably being homogeneous. It also includes the case where the heat present in this zone comes from the part itself which enters the heat treatment zone to undergo a transformation therein such as hot rolling, etc.
  • the method according to the invention can be used in all continuous ovens of the horizontal or vertical type.
  • the conditions of homogeneity imposed on the inert gas curtains are such that the entry and / or exit zones provided with the homogeneous gas curtains according to the invention must be located in parts not vertical from the oven.
  • the non-reactive gases as well as the reactive gases intended for the heat treatment of the parts are injected directly into the heat treatment zone of the furnace, or in the vicinity thereof. It is however possible to introduce these gases into part of the cooling zone or possibly into or near the zone of entry into the furnace. In all cases, the use of the method according to the invention will make it possible to direct the flow of these gases towards the interior of the furnace and achieve zoning thereof.
  • the method according to the invention is characterized in that said atmosphere of inert or non-reactive gas is created by a stream of inert gas injected vertically at the inlet of the substantially homogeneous furnace, according to a laminar flow regime with a flow rate equal to the air flow entering the oven in the absence of injection of inert gas.
  • the air enters the oven, by natural convection phenomena, through the lower part of the inlet zone, because this air is much colder than the out of the oven.
  • the curtain of inert or non-reactive gas is injected from top to bottom, the presence of curtains, preferably refractory, on either side of the gas curtain, is necessary, these curtains are 'extend substantially to the conveyor belt of objects in the oven.
  • the use of the process according to the invention proves to be particularly effective when the continuous ovens have a short inlet zone and / or a significant temperature difference between the gases leaving the oven and the ambient temperature (for example, a difference above 300 ° C).
  • the homogeneous curtain of inert gas will be created using a hood making it possible to maintain the flow of non-reactive gas in laminar mode and substantially homogeneous at all points of the gas curtain.
  • the curtains used in this hood will preferably take the form of those described in the American patent cited above, this form of curtains made up of a plurality of elements of different lengths being better suited in particular to ovens in which objects of different forms are treated.
  • the material constituting said curtains must be on the one hand without action on the flow of non-reactive gas from the hood and on the other hand must resist the temperatures to which it is subjected.
  • sintered materials such as materials of the rock wool, quartz wool, or glass wool type, having a thickness of at least two centimeters , were particularly suitable in this application.
  • the inlet chamber of the inert or non-reactive gas generally has a rectangular shape, the base of which is formed by the perforated plate. It has been found that the best results of continuity and uniformity of the gas curtain were obtained when the height of this intake chamber was at least twice the thickness of the material permeable to neutral gas. In this way, the pressure gradients and therefore the turbulence inside this intake chamber are practically avoided.
  • the means for injecting the inert gas into the intake chamber will generally be in communication with the latter on the face opposite to its perforated face. It was found that it was preferable to have the arrival of neutral gas substantially in the center of this plate, so as to create symmetry in the injection of said neutral gas.
  • the inert gas supply channel is connected to the intake chamber by means of a pre-admission chamber which is substantially symmetrical about the axis of arrival of the inert gas.
  • the connection zone between this pre-admission chamber and the intake chamber will be constituted by means permeable to neutral gas identical in their nature and structure to those described above.
  • the invention also relates to the use of the method in a heat treatment oven, comprising a hood as defined above, at least at the inlet and / or the outlet thereof.
  • This hood will preferably be arranged with its intake chamber placed above the parts to be treated. it is also possible to place this hood in the lower part of the oven.
  • the perforated plate of the intake chamber will be opposite the passage of the objects to be treated, while the curtains which allow the confinement of the flow of homogeneous laminar gas will be suspended from the upper part of the oven.
  • a hood placed in the upper part of the oven and provided with its curtains, while a second intake chamber is placed in the lower part of the oven so as to that the flow of inert gas leaving the perforated plate of this second chamber is located between the curtains of the upper hood.
  • a hood at each end of the oven, the pressure of inert gas injected into each of the hoods being different, the pressure losses induced by each curtain of gas being different from each other, so as to modify the relative value of the gas flows entering and leaving the furnace. It is thus possible to orient the flow of said heat treatment gases in the desired direction relative to the direction of advance of the parts to be treated. In particular, it is possible to direct the flow of gases against the current in the direction of advance of the parts, according to the type of heat treatment to which said parts are subjected. In some cases, this pressure difference may result in the absence of injection of inert gas into one of the hoods.
  • a heat treatment furnace is shown diagrammatically comprising successively an inlet zone H 1 followed by the hot heat treatment zone HZ, followed by a cooling zone CZ at the end of which is the zone H 2 outlet.
  • the injection of heat treatment gas takes place at the point GI substantially in the zone of separation of the hot zone HZ and the cooling zone CZ.
  • the curves shown above the schematic view of this furnace show the pressure on the ordinate and the distance from the point considered with respect to the inlet zone of the furnace on the abscissa.
  • the curve Ci represents the pressure variations of the heat treatment gas injected at point GI for a conventional open oven according to the prior art.
  • the maximum pressure of the heat treatment gas is located in GI, point of injection of this gas, the pressure of the gas, which moves away on the one hand towards the hot zone and on the other hand in the direction of the cooling zone, being equal in the zones H 1 and H 2 to atmospheric pressure.
  • Curve C 3 shows the profile of the pressures in the oven after having placed a homogeneous gas curtain according to the invention at the ends thereof. The pressure is then maintained at a maximum at the gas injection points to decrease to a value which remains above atmospheric pressure in the vicinity of the inlet and / or outlet zones of the furnace.
  • Pt Pf max or max is in the order of 10- 1 to 10- 2 Pascal above atmospheric pressure.
  • FIG. 2 represents a schematic view of an open furnace with a stainless steel annealing mat, according to the invention.
  • this oven successively comprises an inlet hood H 1 described in more detail below, a zone for introducing IZ of the parts to be treated, of length L l , a heat treatment zone HZ, of length L 2 , then a zone cooling unit CZ, of length L 3 which ends with a Hz hood identical to the hood H 1 .
  • Different gas injection points are provided in particular substantially in the middle of the cooling zone CZ, the injection point Gl 1 , at the limit of the cooling zones CZ and of the heat treatment HZ the injection point G1 2 , at the entrance to the heat treatment zone HZ the injection point G1 3 and at the entrance to the zone IZ the injection point G1 4 .
  • Figure 3 shows on its part 3A a front view and on its part 3B a sectional view of a hood according to the invention. It consists of a supply channel 100 of inert gas connected to the inlet of the preadmission chamber 103.
  • the latter of substantially cylindrical shape, of diameter substantially equal to that of the height of the zone 107 of the chamber intake (see below) comprises two zones having substantially the same volume, a first zone 120, followed for a second zone delimited by two perforated plates 101, 102 between which is disposed a rock wool mattress 104.
  • the wall perforated 102 opens into the intake chamber 105 of substantially parallelepiped shape.
  • the intake chamber 105 is bordered laterally by walls 111 and 112 as well as 121 and 122. Towards the lower part of said walls 111 and 112 are located two fixing strips 115, 116 parallel to said walls to which are hung two refractory curtains 113, 114. The height of these curtains is such that those these come into contact with the advance conveyor of objects in the oven.
  • FIG. 4 represents different possibilities of fixing the hoods in an oven, the same elements as those of the preceding figures bearing the same references.
  • FIG. 4A schematically represents a hood fixed in the upper part of the oven
  • FIG. 48 represents a hood fixed in the lower part of the oven
  • FIG. 4C represents a variant with two diffusion chambers and a single pair of curtains.
  • 150 and 151 respectively represent the upper and lower walls of the furnace.
  • the refractory curtains 113 and 114 extend substantially to the bottom wall 151 of the oven.
  • the refractory curtains 113, 114 are fixed by their fixing strips 115, 116 to the wall upper 150 of the oven, while the expansion chamber 205 (identical to the chamber 105 previously described) is fixed to the lower wall 151 of the oven, the perforated plate of said chamber 105 being well oriented towards the upper wall 150 of the oven.
  • the gas is injected into the chamber 205 via the pipe 203, the ends of the curtains 113 and 114 arriving substantially at the level of the perforated wall of the chamber 205.
  • FIG. 4C shows a variant with a single pair of curtains and two intake chambers 105 and 205 respectively.
  • the relative arrangements of the two chambers 105 and 205, substantially identical to each other, are such that the refractory curtains 113 and 114 in a vertical position surround the intake chamber 205, so as to maintain the gas injected through the pipes 103 and 203 between said curtains 113 and 114.
  • the example below relates to a continuous open furnace for annealing steel pipe.
  • the atmosphere used in this annealing furnace has substantially the following composition: 10% of H 2 , 8% of CO, 4% of CO 2 , 78 of N 1 (by volume), dew point: approximately 0 ° C.
  • This oven has a P.H.Z. 3.50 meters in length followed by a heat treatment area at around 900 ° C. In the preheating zone, the steel tubes are gradually brought to the temperature of the hot zone.
  • FIG. 5 illustrates, using the curves J 1 and J 2 respectively , the ratio of the concentrations of carbon dioxide and carbon monoxide as a function of the distance in the furnace relative to the inlet zone.
  • a hood having the structure shown in FIG. 3 with the dimensions given below had been installed at the inlet of the oven, the outlet of the latter taking place directly on the ambient atmosphere.
  • Curve J 1 represents the ratio of CO / CO 2 concentrations in the absence of a homogeneous laminar flow of nitrogen in the hood, while curve J 2 represents the same concentration ratio with a homogeneous and laminar flow of nitrogen between the refractory curtains of said hood.
  • the nitrogen flow in the hood was 10 N M 3 per hour.
  • This example was carried out using the furnace shown in FIG. 2.
  • the oven is an open oven with stainless steel annealing mat.
  • the different atmospheres injected at points GI 1 , G1 2 , G1 3 , G1 4 of the oven are shown in the table below:
  • Figure 6 shows the hydrogen concentrations in the furnace.
  • Curve D 1 represents the hydrogen concentration in the furnace in the absence of a hood
  • curve D 2 represents the hydrogen concentration in the furnace using the method according to the invention, summarized in the table above.
  • the injection point G1 2 is located at the limit of the heat treatment heating zone and the furnace cooling zone. According to the invention, the hydrogen is almost exclusively directed to the cooling zone of the furnace. The parts taken out of the oven show no trace of oxidation.
  • Curve D 1 (oven without hood) shows that, practically over the entire length of the hot zone HZ of the treatment oven, (4 meters in this example), there is a significant concentration of hydrogen. This varies from approximately 25% at the injection point (7 meters from the inlet area) to approximately 1% at 3 meters from the oven inlet area. In the middle of this hot zone, there is a concentration of about 10% in hydrogen.
  • Curve D 2 (oven with hoods according to the invention) shows that the hydrogen concentration is of the order of 1% at about 6 meters from the inlet of the oven, 3/4 of the hot zone not having d 'hydrogen.
  • the hydrogen concentration profile with or without a hood in the CZ cooling zone is substantially identical.
  • This example shows the possibilities of precise zoning of heat treatment furnaces using the method according to the invention.
  • This example was carried out in the furnace of FIG. 1.
  • the heat treatment zone HZ was at a temperature of 800 ° C., with an injection of gas at the point GI at the limit between the hot zone HZ and the cooling zone CZ .
  • a hood was placed only at the inlet H 1 of the hot zone, no hood being arranged at the outlet.
  • the atmosphere injected is identical to that of Example 1, an atmosphere well known to those skilled in the art for the annealing of steel strips.
  • FIG. 7A represents the concentration of carbon dioxide in the atmosphere of the furnace respectively without hood (E1) and with hood (E2), as a function of the abscissa of the measurement point in the furnace relative to the inlet thereof. this.
  • the concentration of C0 2 is the same in both cases, while there is a decrease of half the concentration of C0 2 at 1 meter from the inlet, in the case of an oven provided with an inlet hood according to the invention.
  • the concentration of C0 2 at the inlet of the oven is substantially identical to that of the atmosphere injected into the oven, which shows the absence of entry of oxidizing species into the oven using the process according to the invention.
  • the curves F 1 and F 2 of FIG. 7B represent the variations of the dew point in ° C in an oven respectively without hood and with hood relative to the abscissa of the measurement point thereof relative to the input .
  • the dew point is significantly lowered, with a hood (curve F 2 ) which is substantially identical in both cases 8 meters from the entrance to the oven. Consequently, the concentration of H 2 0, oxidizing species, in the oven using the method according to the invention is also kept constant until the inlet of the oven.
  • the flow rate of neutral gas in the hoods was 2.5 m 3 / hour.
  • Figures 9A and 9B show a preferred variant of the invention in which a gas curtain inert or inactive (N 2 in the figure) is used at the entrance of the oven only.
  • the oven is shown diagrammatically, seen in section, only at its inlet 303 and its outlet 304.
  • a hood 305 provided with refractory curtains 306 and 307, such as 'illustrated in Figures 3 and 4, this hood being integral with the upper part 301 of the oven.
  • the refractory curtains have their lower end located near the lower part 302 of the oven, generally provided with a conveyor belt for advancing objects such as 308.
  • a distance of the order of a few centimeters between the lower end of the curtains 306 and 307 and the lower part 302 of the oven is well suited in practice. No particular device is placed at the outlet 304 of the oven.
  • inert or inactive gas generally nitrogen
  • measurements are made at the curtains 306 and 307, in the absence nitrogen injection, the air flow that enters the oven by natural convection phenomena. This measurement is carried out using a hot wire, in a manner known per se.
  • FIG. 9B the same elements as those in FIG. 9Aa have the same references.
  • the hood 305 is placed, in this variant, in the lower part of the oven, without refractory curtains.
  • the nitrogen flow is adjusted as described above. It is noted as above that the air arriving near the inlet of the oven does not penetrate into it but is entrained upwards by the atmosphere current leaving the upper part of the inlet of the oven.
  • the use of the method illustrated in FIG. 9 makes it possible to reduce the flow rates of atmosphere used in the heat treatment furnaces, whatever the number and the nature of the gas injection points therein, for its rate of oxygen determined in the hot zone of the oven.
  • a continuous oven having an inlet area of 2m, a hot area at 800 ° C of 5m and a water cooling area of 10m, as well as an inlet section of approximately 0.2 m 2 , consumed when its two ends were open 100 Nm 3 / h of nitrogen to achieve a protective atmosphere intended for the annealing of copper parts.
  • the air speed is measured at l entry of the oven, in the absence of nitrogen in the hood. This is 37 cm / s. Nitrogen is then injected at 37 cm / s into said hood, which corresponds to a flow rate of 30 Nm 3 / h of nitrogen. The nitrogen flow rate in the oven can then be reduced to 20 Nm 3 / h, for an identical quantity of the products leaving the oven. There is therefore an overall reduction of 50% in the nitrogen flow rates in this furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Details (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Tunnel Furnaces (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Drying Of Solid Materials (AREA)

Description

  • La présente invention concerne un procédé de traitement thermique d'objets dans un four continu comportant au moins une zone de traitement thermique, procédé dans lequel on crée une atmosphère de gaz non réactif dans les conditions de traitement, à l'une au moins des extrémités de ladite zone de traitement.
  • Dans les procédés de traitement thermique tels que la cémentation, la nitruration, le frittage, le recuit, etc, il est généralement souhaitable de maintenir une atmosphère réductrice ou non oxydante dans le four de traitement. Pour de grandes séries de pièces, les fours sont généralement continus et ouverts à leurs extrémités. Ils cmportent une zone d'entrée des objets à traiter thermiquement, une zone de traitement thermique ainsi que généralement une zone de refroidissement, et une zone de sortie des objets. Le four comporte un système d'avance des objets vers la zone de traitement thermique, la température des objets s'élevant progressivement au fur et à mesure de leur avance dans le four. Lorsque le traitement est terminé, l'objet traverse généralement une zone de refroidissement dans laquelle il est refroidi à une température telle qu'aucune oxydation de cet objet ne se produira à l'air ambiant.
  • L'atmosphère de traitement thermique requise, généralement réductrice ou neutre, est fournie au four par l'intermédiaire de générateurs endothermiques ou exothermiques ou par l'injection directe de mélanges liquide-gaz appropriés. L'injection de cette atmosphère s'effectue généralement dans la zone de traitement thermique ou à proximité de celle-ci. Il est nécessaire de réaliser une surpression du gaz générateur d'atmosphère en son point d'injection pour tenter d'éviter les remontées dans le four des espèces oxydantes contenues dans l'air.
  • Une première solution à ce problème de remontée dans le four des espèces oxydantes a été décrite dans le brevet américain US 3 467 366. Il est prévu à l'entrée et à la sortie du four, une zone confiné constituée d'une pluralité de rideaux définissant une pluralité de chambres. Dans la chambre centrale est injectée une atmosphère de gaz inerte, à l'aide d'un tube perforé placé à la base de celle-ci, de manière à créer un bouchon empêchant l'air ambiant de remonter dans l'atmosphère du four et d'oxyder ainsi les pièces en cours de traitement. Dans la chambre adjacente au four et à la chambre centrale, sont prévus des moyens d'aspiration qui coopèrent avec ceux disposés dans la chambre centrale, de manière à aspirer l'atmosphère de cette chambre, éventuellement polluée par les espèces oxydantes venant de la chambre centrale. L'air aspiré est rejeté dans l'atmosphère extérieure.
  • Le système décrit dans ce brevet permet en outre d'éviter à l'atmosphère gazeuse du four d'être éjectée du four et se mélanger à l'air ambiant, ce qui conduit, bien entendu, à réduire la quantité de gaz injectée dans le four de traitement pendant un intervalle de temps déterminé.
  • La Demanderesse a constaté qu'un tel système comportait de nombreux inconvénients. En premier lieu, l'injection de gaz inerte à travers un tube perforé crée un courant tourbillonnaire dans la chambre : pour les perforations situées sur une même circonférence du tube, la géométrie tend à créer une première zone tourbillonnaire autour du tube. Par ailleurs, l'amenée du gaz inerte étant effectuée à l'une des extrémités du tube perforé, dont l'autre extrémité est fermée, le gaz aura tendance, à diamètre égal de perforation, à s'échapper par l'extrémité située à proximité de la partie fermée et à créer au contraire une aspiration par les perforations situées à proximité de l'arrivée du gaz inerte, créant ainsi un deuxième courant tourbillonnaire dans la chambre.
  • Ceci explique la nécessité d'un système d'aspiration situé en aval de cette chambre, compte tenu du fait que les tourbillons engendrés dans ladite chambre créent nécessairement une aspiration d'air dans le four. Le système d'aspiration permet d'évacuer le mélange air-gaz inerte avant que celui-ci ne puisse pénétrer dans la zone de traitement thermique du four.
  • Le système décrit dans ce brevet nécessite donc à la fois l'utilisation d'une chambre de confinement munie de rideaux et remplie d'une atmosphère inerte et d'un système d'aspiration combiné à celle-ci.
  • Le document EP-A-75.438 décrit un procédé de traitement thermique d'objets dans un four continu, dans lequel les objets à traiter sont introduits successivement par un support mobile dans le four comportant au moins une zone de traitement thermique dans laquelle est injectée une atmosphère de composition déterminée, les zones d'entrée et/ou de sortie du four comportant des moyens engendrant un flux sensiblement laminaire de gaz inerte ou non réactif dans les conditions du traitement de manière à prévenir l'entrée d'air dans le four.
  • Dans ce document, les zones d'entrée et de sortie du four comportent une pluralité de rideaux inclinés disposés parallèlement entre eux définissant une pluralité de chambres dans lesquelles est injecté un gaz inerte tel que l'azote. Cette injection s'effectue à travers une paroi perforée située au dessus et/ou au dessous desdites chambres. L'injection de gaz à travers ces parois perforées s'effectue à l'aide d'un conduit devant lequel est placé un déflecteur, le gaz contournant celui-ci avant de pénétrer par les perforations dans lesdites chambres.
  • On réalise ainsi une surpression dans lesdites chambres, par rapport à la pression de l'atmosphère de la zone de refroidissement du four dont la pression est elle-même supérieure à la pression de la zone de traitement thermique du four, cette dernière étant supérieure à la pression atmosphérique.
  • Un tel dispositif présente un certain nombre d'inconvénients. En premier lieu, la surpression imposée aux chambres par rapport à l'ensemble des différentes parties du four nécessite l'utilisation d'un important volume d'azote. Par ailleurs, on constate également qu'il existe des courants tourbillonnaires entre les différentes chambres. En effet, le courant d'azote qui contourne le déflecteur, arrive sur la partie extérieure de la zone perforée avec une vitesse plus importante que sur la zone centrale. La perte de charge infligée au gaz lors de la traversée des ouvertures est donc plus faible dans cette zone centrale que dans les parties extérieures de la plaque perforée. Dans ces conditions, l'azote a tendance à pénétrer dans les chambres centrales créant une aspiration à travers lesdites ouvertures au niveau des parties extérieures de la plaque perforée, induisant ainsi un tourbillon d'azote à l'intérieur dudit système. Ceci est particulièrement gênant dans la première chambre qui se trouve située directement en contact avec l'air extérieur. L'air est ainsi aspiré dans le système puis redistribué avec l'azote dans les diffétentes chambres. Ce courant d'azote et d'air est ensuite entraîné vers l'intérieur du four, dans la zone de traitement thermique. Il s'ensuit que l'atmosphère de traitement comporte une partie non négligéable d'espèces oxydantes provenant de l'airaspiré à l'extérieur du four, Il est donc nécessaire d'associer à ce système une répartition de pressions des gaz allant en décroissant de la sortie du four vers la partie centrale de celui-ci.
  • Dans les deux systèmes analysés ci-dessus, on constate donc les mêmes inconvénients à savoir essentiellement l'aspiration d'air vers la zone de traitement thermique dudit four.
  • Bien que ces systèmes présentent des améliorations par rapport au système antérieur, dans lequel les extrémités du four étaient ouvertes, on constate que le problème des entrées d'air dans le four n'est pas complètement résolu par ceux-ci. Ceci signifie en particulier que les solutions exposées dans les deux brevets précédents ne peuvent pas s'appliquer à certains traitements thermiques tels que le recuit d'acier inoxydable, car il est nécessaire pour ce type d'applications, d'avoir une quantité d'oxygène extrêmement faible dans le four ainsi qu'au début de la zone de refroidissement, compte tenu de l'avidité du chrome pour l'oxygène.
  • L'invention a pour objet de proposer un procédé permettant d'éviter ces inconvénients. A cet effet, le procédé selon l'invention est caractérisé en ce que le flux de gaz inerte ou non réactif d'extrémité de four se présente sous forme d'un seul rideau, homogène, à écoulement vertical dans un plan transversal d'une partie d'extrémité horizontale de four et traversé par la direction d'avancée des pièces à traiter, l'injection du gaz inerte ou non réactif s'effectuant, après homogénéisation de sa vitesse et de sa pression, dans des conditions telles qu'un régime d'écoulement sensiblement laminaire est maintenu sur toute la hauteur du rideau de gaz.
  • La Demanderesse a en effet mis en évidence que l'utilisation d'un rideau de gaz homogène et laminaire sur toute sa hauteur, évitait les phénomènes d'aspiration de l'air. On constate ainsi que le procédé selon l'invention permet de simplifier notablement les dispositifs de mise en oeuvre de celui-ci, puisqu'il n'est alors ni nécessaire d'adjoindre à l'ensemble un système d'aspiration ni nécessaire de prévoir une pluralité de rideaux de gaz inerte.
  • De préférence, le rideau de gaz sensiblement homogène est engendré à chacune des extrémités du four, les pertes de charge induites par ceux-ci étant différentes l'une de l'autre, de manière à modifier la valeur relative des flux de gaz en entrée et en sortie du four.
  • L'utilisation du procédé selon l'invention permet en particulier le zonage des fours de traitement thermique. Dans le cas où le four compte plusieurs points d'injection d'atmosphères différentes, la présence du rideau homogène de gaz inerte à l'une et/ou l'autre extrémité du four permet, suivant la modulation des débits de gaz neutre injecté dans chaque rideau, de modifier de manière distincte les conditions de sortie des gaz à chaque extrémité du four, et ceci d'une manière importante comparée aux pertes de charge imposées au gaz en mouvement à l'intérieur du four. Ceci entraîne une modification des écoulements gazeux de part et d'autre des points d'injection de gaz et permet, en particulier, de créer entre deux points d'injection une zone où la vitesse moyenne de circulation des gaz est nulle, résultant d'une pression sensiblement identique en ces deux points. Dans ce cas, on constate que les atmosphères injectées en ces deux points divergent l'une par rapport à l'autre.
  • Lorsqu'il existe un point d'injection de gaz à pression plus élevée que celle des gaz injectées aux autres points, ce point d'injection permettra d'orienter les débits de gaz dans le four. S'il se trouve situé vers l'entrée du four, le flux de gaz sera le même que le sens d'avance des pièces. Inversement, s'il est situé à proximité de la sortie du four, le flux de gaz sera de sens contraire au sens d'avance des pièces dans le four.
  • On constate en particulier que l'on peut mieux localiser la zone à pression maximum du four à l'endroit voulu, dans le cas d'une pluralité d'injections en des points différents sans pour cela augmenter les débits des gaz actifs.
  • Le terme «gaz non réactif» utilisé dans la présente demande signifie bien entendu un gaz inerte ou non réactif à l'égard des autres constituants de l'atmosphère du four ainsi que des pièces qui doivent être traitées dans celui-ci. D'une manière générale, on utilisera comme gaz non réactif l'azote, bien que dans certains cas il soit préférable d'utiliser l'argon ou éventuellement l'hélium.
  • Le terme «gaz actif» désigne le ou les gaz de l'atmosphère de traitement thermique.
  • Le terme «traitement thermique» englobe tous les traitements thermiques que l'on fait subir habituellement aux métaux, céramiques, etc, mais s'adresse particulièrement au recuit des pièces métalliques telles que l'acier inox.
  • Le terme «zone de traitement thermique» signifie une ou plusieurs parties du four dans lesquelles sont éventuellement disposés des moyens de chauffage, dans lesquelles sont créées des atmosphères identiques ou différentes, chaque atmosphère étant de préférence homogène. Il englobe également le cas où la chaleur présente dans cette zone est issue de la pièce elle-même qui entre dans la zone de traitement thermique pour y subir une transformation telle que le laminage à chaud, etc....
  • Bien entendu, le procédé selon l'invention est utilisable dans tous les fours continus du type horizontal ou vertical. Toutefois, dans le cas de fours verticaux, les conditions d'homogénéité imposées aux rideaux de gaz inerte sont telles que les zones d'entrée et/ou de sortie munies des rideaux de gaz homogène selon l'invention devront être situées dans des parties non verticales du four.
  • Habituellement, les gaz non réactifs ainsi que les gaz réactifs destinés au traitement thermique des pièces sont injectés directement dans la zone de traitement thermique du four, ou à proximité de celle-ci. Il est toutefois possible d'introduire ces gaz dans une partie de la zone de refroidissement ou éventuellement dans ou à proximité de la zone d'entrée dans le four. Dans tous les cas, l'utilisation du procédé selon l'invention permettra de diriger le flux de ces gaz vers l'intérieur du four et réaliser un zonage de celui-ci.
  • Selon un autre aspect, le procédé selon l'invention est caractérisé en ce que ladite atmosphère de gaz inerte ou non réactif est créée par un courant de gaz inerte injecté verticalement à l'entrée du four sensiblement homogène, selon un régime d'écoulement laminaire avec un débit égal au débit d'air entrant dans le four en l'absence d'injection de gaz inerte.
  • Bien entendu, l'injection d'un flux homogène et laminaire de gaz inerte sur toute la largeur du four et en particulier dans la zone située à proximité du tapis d'entrée des objets dans le four nécessite des appareils particulièrement adaptés, tels que la hotte qui sera décrite plus loin.
  • En l'absence de mesures particulières selon le procédé de l'invention, l'air pénètre dans le four, par des phénomènes de convection naturelle, par la partie inférieure de la zone d'entrée, car cet air est beaucoup plus froid que l'atmosphère sortant du four. Dans ces conditions, on a constaté que lorsque le rideau de gaz inerte ou non réactif est injecté de haut en bas, la présence de rideaux, de préférence réfractaires, de part et d'autre du rideau de gaz, est nécessaire, ces rideaux s'étendent sensiblement jusqu'au tapis de transport des objets dans le four.
  • Inversement, lorsque le gaz est injecté de bas en haut, on a constaté que la présence desdits rideaux réfractaires n'était pas nécessaire. Par contre, la présence de ces rideaux réfractaires peut s'avérer nécessaire pour permettre la création d'un zonage dans le four, c'est-à-dire des zones successives d'atmosphères déterminées. Ces rideaux réfractaires engendrent en effet une perte de charge suffisante à l'entrée et/ou la sortie du four pour contrôler les courants gazeux d'atmosphère, de leurs points d'injection jusqu'à l'entrée ou la sortie du four.
  • L'utilisation du procédé selon l'invention s'avère particulièrement efficace lorsque les fours continus comportent une zone d'entrée de faible longueuret/ou une différence importante de température entre les gaz sortant du four et la température ambiante (par exemple, une différence de température supérieure à 300°C).
  • Selon un mode préférentiel de réalisation, le rideau homogène de gaz inerte sera créé à l'aide d'une hotte permettant de maintenir le flux de gaz non réactif en régime laminaire et sensiblement homogène en tout point du rideau de gaz.
  • Pour parvenir à ce résultat, la hotte selon l'invention comporte:
    • -des moyens d'injection de gaz inerte dans une chambre d'admission dont le fond est perforé,
    • -des moyens perméables au gaz inerte, disposés sur le fond perforé de la chambre d'admission, permettant de donner une vitesse très faible au flux de gaz inerte à la sortie de la plaque perforée sans provoquer de perte de charge sensible au niveau du flux de gaz,
    • -au moins un rideau de part et d'autre du flux de gaz, mobile autourd'un axe situé dans le plan du rideau, et disposé dans le passage des pièces à traiter.
  • De préférence, la chambre d'admission comportera un fond perforé sensiblement rectangulaire, dont la longueur est égale à la largeur du fond sur lequel la hotte est destinée à être montée, la vitesse du gaz non réactif devant être sensiblement identique en tout point de traversée de la plaque perforée et inférieure à:
    Figure imgb0001
    avec
    • n = viscosité du gaz non réactif utilisé dans la hotte à température ambiante;
    • p = masse volumique dudit gaz non réactif dans les conditions normales;
    • a = largeur du four et longueur de la plaque perfo rée rectangulaire;
    • b = profondeur de la plaque rectangulaire perforée (distance entre les deux rideaux).
  • Les rideaux utilisés dans cette hotte prendront de préférence la forme de ceux décrits dans le brevet américain cité plus haut, cette forme de rideaux constitués d'une pluralité d'éléments de longueurs différentes étant mieux adaptée en particulier aux fours dans lesquels des objets de différentes formes sont traités. Bien entendu le matériau constituant lesdits rideaux doit être d'une part sans action sur le flux de gaz non réactif de la hotte et d'autre part doit résister aux températures auquel il est soumis.
  • Comme moyen perméable au gaz inerte et comportant les propriétés mentionnées plus haut, on a trouvé que des matériaux frittés, tels que les matériaux du type laine de roche, laine de quartz, ou laine de verre, ayant une épaisseur d'au moins deux centimètres, convenaient particulièrement bien dans cette application.
  • La chambre d'admission du gaz inerte ou non réactif, a généralement une forme parallélépipédique, dont la base est constituée par la plaque perforée. On a constaté que les meilleurs résultats de continuité et d'homogénéité du rideau de gaz étaient obtenus lorsque la hauteur de cette chambre d'admission était égale à au moins deux fois l'épaisseur du matériau perméable au gaz neutre. De cette manière, on évite pratiquement les gradients de pression et donc les turbulences à l'intérieur de cette chambre d'admission.
  • Les moyens d'injection du gaz inerte dans la chambre d'admission seront généralement en communication avec celle-ci sur la face opposée à sa face perforée. On a constaté qu'il était préférable de disposer l'arrivée de gaz neutre sensiblement au centre de cette plaque, de manière à créer une symétrie dans l'injection dudit gaz neutre.
  • Toutefois, il n'est pas toujours possible, compte tenue de la géométrie du four de traitement thermique, d'injecter le gaz dans la partie supérieure de la chambre d'admission. Dans ce cas, on est donc contraint de réaliser cette injection sur l'une des faces latérales de la chambre d'admission. Il est alors préférable que le canal d'amenée de gaz inerte soit relié à la chambre d'admission par l'intermédiaire d'une chambre de préadmission sensiblement symétrique autour de l'axe d'arrivée du gaz inerte. De préférence, la zone de liaison entre cette chambre de préadmission et la chambre d'admission sera constituée par des moyens perméables au gaz neutre identique dans leur nature et leur structure à ceux décrites ci-dessus. Ceci permet en particulier une arrivée de gaz, bien que non symétrique, à des vitesses particulièrement faibles, sans turbulence, ainsi qu'une homogénéité de pression et de vitesse du gaz inerte dans la chambre d'admission, ce qui se traduit, compte tenu de la symétrie de l'ensemble, par une homogénéité du rideau de gaz inerte injecté à l'entrée et/ou la sortie du four de traitement thermique.
  • L'invention concerne également l'utilisation du procédé dans un four de traitement thermique, comportant une hotte telle que définie ci-dessus, au moins à l'entrée et/ou la sortie de celui-ci. Cette hotte sera de préférence disposée avec sa chambre d'admission placéee au-dessus des pièces à traiter. il est également possible de placer cette hotte dans la partie inférieure du four. Bien entendu, dans ce cas, la plaque perforée de la chambre d'admission sera en regard du passage des objets à traiter, tandis que les rideaux qui permettent le confinement du flux de gaz homogène laminaire seront suspendus à la partie supérieure du four. Dans d'autres cas, il est possible ou souhaitable d'utiliser une hotte placée dans la partie supérieure du four et munie de ses rideaux, tandis que l'on place une seconde chambre d'admission dans la partie inférieure du four de manière à ce que le flux de gaz inerte qui sort de la plaque perforée de cette seconde chambre soit situé entre les rideaux de la hotte supérieure.
  • Selon un mode préférentiel de réalisation, on disposera une hotte à chaque extrémité du four, la pression de gaz inerte injecté dans chacune des hottes étant différente, les pertes de charges induites par chaque rideau de gaz étant différentes l'une de l'autre, de manière à modifier la valeur relative des flux de gaz en entrée et en sortie du four. On peut ainsi orienter le flux desdits gaz de traitement thermique dans la direction voulue par rapport à la direction d'avance des pièces à traiter. En particulier, on peut orienter le flux des gaz à contre-courant du sens d'avance des pièces, suivant le type de traitement thermique auquel sont soumises lesdites pièces. Dans certains cas, cette différence de pression pourra se traduire par l'absence d'injection de gaz inerte dans l'une des hottes.
  • L'invention sera mieux comprise à l'aide des exemples de réalisation suivants, donnés à titre non limitatif, conjointement avec les figures qui représentent:
    • la figure 1, les variations de pression dans un four de traitement thermique avec et sans hotte,
    • la figure 2, une disposition schématique d'un four ouvert,
    • la figure 3, une vue de face et une vue de coupe d'une hotte utilisée dans le procédé suivant l'invention,
    • la figure 4, les différentes dispositions possibles des hottes dans un four selon l'invention,
    • la figure 5, une courbe montrant l'influence d'une hotte sur la concentration en espèces oxydantes à l'entrée d'un four ouvert continu de recuit de tubes en acier,
    • la figure 6, une courbe montrant l'influence d'une hotte sur la répartition des gaz à l'intérieur d'un four,
    • la figure 7, une courbe montrant des profils de concentration en gas carbonique et en eau à l'entrée d'un four de recuit en continu de feuillards,
    • la figure 8 illustre un exemple de réalisation du procédé selon l'invention, avec zonage du four,
    • la figure 9 représente une variante préférentielle de réalisation de l'invention.
  • Sur la figure 1, est représenté schématiquement un four de traitement thermique comportant successivement une zone d'entrée H1 suivie de la zone chaude de traitement thermique HZ, suivie d'une zone de refroidissement CZ à l'extrémité de laquelle se trouve la zone de sortie H2. Dans cet exemple, l'injection de gaz de traitement thermique, se fait au point GI sensiblement dans la zone de séparation de la zone chaude HZ et de la zone de refroidissement CZ. Les courbes représentées au-dessus de la vue schématique de ce four montrent en ordonnées la pression et en abscisses la distance du point considéré par rapport à la zone d'entrée du four. La courbe Ci représente les variations de pression du gaz de traitement thermique injecté au point GI pour un four ouvert classique selon l'art antérieur. Dans ce cas, le maximum de pression du gaz de traitement thermique est situé en GI, point d'injection de ce gaz, la pression du gaz, qui s'éloigne d'une part en direction de la zone chaude et d'autre part en direction de la zone de refroidissement, étant égale dans les zones H1 et H2 à la pression atmosphérique. La courbe C3 montre le profil des pressions dans le four après avoir placé aux extrémités de celui-ci un rideau de gaz homogène selon l'invention. La pression est alors maintenue maximale aux points d'injection du gaz pour décroître jusqu'à une valeur qui reste supérieure à la pression atmosphérique au voisinage des zones d'entrée et/ou de sortie du four. Si l'on désigne par Pa la pression atmosphérique, Phmaxi la pression maximale dans la hotte, Ptmaxi la pression maximale dans la zone du traitement thermique et Pfmaxi la pression maximale dans la zone de refroidissement du four le procédé selon l'invention, dans un mode préférentiel, se caractérise par l'une des relations suivantes:
    Figure imgb0002
    ou
    Figure imgb0003
  • En pratique, Pt maxi ou Pf maxi sont de l'ordre de 10-1 à 10-2 Pascal au-dessus de la pression atmosphérique.
  • La figure 2 représente une vue schématique d'un four ouvert à tapis de recuit d'inox, selon l'invention. ce four comporte successivement une hotte d'entrée H1 décrite plus en détails ci-après, une zone d'introduction IZ des pièces à traiter, de longueur Ll, une zone de traitement thermique HZ, de longueur L2, puis une zone de refroidissement CZ, de longueur L3 qui se termine par une hotte Hz identique à la hotte H1. Différents points d'injection des gaz sont prévus notamment sensiblement au milieu de la zone de refroidissement CZ, le point d'injection Gl1, à la limite des zones de refroidissement CZ et de traitement thermique HZ le point d'injection G12, à l'entrée de la zone de traitement thermique HZ le point d'injection G13 et à l'entrée de la zone IZ le point d'injection G14.
  • La figure 3 représente sur sa partie 3A une vue de face et sur sa partie 3B une vue en coupe d'une hotte selon l'invention. Elle est constituée par un canal d'amenée 100 de gaz inerte relié à l'entrée de la chambre de préadmission 103. Celle-ci, de forme sensiblement cylindrique, de diamètre sensiblement égal à celui de la hauteur de la zone 107 de la chambre d'admission (voir ci-après) comporte deux zones ayant sensiblement le même volume, une première zone 120, suivie pour une seconde zone délimitée par deux plaques perforées 101, 102 entre lesquelles est disposé un matelas de laine de roche 104. La paroi perforée 102 débouche dans la chambre d'admission 105 de forme sensiblement parallélépipédique. Elle comporte une paroi supérieure 106 et une paroi inférieure 109 perforées, cette paroi étant revêtue d'un matelas de laine de roche 110, lui- même recouvert par une seconde paroi perforée 108. Entre la paroi 108 et la paroi supérieure 106 de cette chambre d'admission, se trouve une chambre d'expansion du gaz 107. La hauteur de cette chambre d'expansion est au moins égale à la hauteur du tapis de laine de roche 110. La chambre d'admission 105 est bordée latéralement par des parois 111 et 112 ainsi que 121 et 122. Vers la partie inférieure desdites parois 111 et 112 sont situées deux réglettes de fixation 115, 116 parallèles auxdites parois auxquelles sont accrochés deux rideaux réfractaires 113, 114. La hauteur de ces rideaux est telle que ceux-ci arrivent au contact du tapis d'avance des objets dans le four.
  • La figure 4 représente différentes possibilités de fixation des hottes dans un four, les mêmes éléments que ceux des figures précédentes portant les mêmes références.
  • La figure 4A représente schématiquement une hotte fixée dans la partie supérieure du four, la figure 48 représente une hotte fixée dans la partie inférieure du four, tandis que la figure 4C représente une variante avec deux chambres de diffusion et une seule paire de rideaux.
  • Sur la figure 4A, 150 et 151 représentent respectivement les parois supérieure et inférieure du four. Les rideaux réfractaires 113 et 114 s'étendent sensiblement jusqu'à la paroi inférieure 151 du four.
  • Sur la figure 48, les rideaux réfractaires 113, 114 sont fixés par leur réglettes de fixation 115, 116 à la paroi supérieure 150 du four, tandis que la chambre d'expansion 205 (identique à la chambre 105 précédemment décrite) est fixée à la paroi inférieure 151 du four, la plaque perforée de ladite chambre 105 étant bien orientée vers la paroi supérieure 150 du four. L'injection du gaz dans la chambre 205 s'effectue par la canalisation 203, les extrémités des rideaux 113 et 114 arrivant sensiblement au niveau de la paroi perforée de la chambre 205.
  • La figure 4C représente une variante avec une seule paire de rideaux et deux chambres d'admission respectivement 105 et 205. Les dispositions relatives des deux chambres 105 et 205, sensiblement identiques l'une à l'autre, sont telles que les rideaux réfractaires 113 et 114 en position verticale viennent entourer la chambre d'admission 205, de manière à maintenir le gaz injecté par les canalisations 103 et 203 entre lesdits rideaux 113 et 114.
  • Exemple 1
  • L'exemple ci-après concerne un four ouvert continu de recuit de tube acier. L'atmosphère utilisée dans ce four de recuit a sensiblement la composition suivante: 10% de H2, 8% de CO, 4% de CO2, 78 de N1 (en volume), point de rosée: environ 0°C.
  • Ce four comporte une zone de préchauffage P.H.Z. de 3,50 mètres de longueur suivi d'une zone de traitement thermique à environ 900°C. Dans la zone de préchauffage, les tubes en acier sont progressivement amenés à la température de la zone chaude.
  • La figure 5 illustre, à l'aide des courbes respectivement J1 et J2, le rapport des concentrations en gaz carbonique et monoxyde de carbone en fonction de la distance dans le four par rapport à la zone d'entrée. Dans cet exemple comparatif, une hotte ayant la structure représentée à la figure 3 avec les dimensions données ci-après avait été installée à l'entrée du four, la sortie de celui-ci s'effectuant directement sur l'atmosphère ambiante. La courbe J1 représente le rapport des concentrations CO/CO2 en l'absence de flux laminaire homogène d'azote dans la hotte, tandis que la courbe J2 représente le même rapport de concentration avec un flux homogène et laminaire d'azote entre les rideaux réfractaires de ladite hotte. On constate à l'évidence que le rapport desdites concentrations est sensiblement constant sur toute la longueur de la zone du préchauffage du four, lorsqu'un rideau homogène et laminaire d'azote circule entre les rideaux réfractaires. Ceci montre l'intérêt de l'utilisation d'une hotte selon l'invention, puisque l'on retrouve ainsi à l'entrée du four le caractère réducteur de l'atmosphère vis-à-vis du métal traité.
  • La géométrie de la hotte utilisée était la suivante:
    • Largeur: 1 m
    • Profondeur: 0, 15 m
    • Epaisseur matelas de laine de roche: 0,05 m
    • Hauteur chambre d'expansion: 0, 10 m
    • Diamètre perforations: 2 mm
    • Entre-axes de deux perforations successives: 4 mm
    • Pas de chambre de pré-admission.
  • Le débit d'azote dans la hotte était de 10 NM 3 par heure.
  • Exemple 2
  • Cet exemple a été réalisé à l'aide du four représenté sur la figure 2.
  • Le four est un four ouvert à tapis de recuit d'inox. Les différentes atmosphères injectées aux points GI1, G12, G13, G14 du four sont représentés dans le tableau ci-dessous:
    Figure imgb0004
  • La figure 6 montre les concentrations en hydrogène dans le four.
  • La courbe D1 représente la concentration en hydrogène dans le four en l'absence de hotte, tandis que la courbe D2 représente la concentration en hydrogène dans le four en utilisant le procédé selon l'invention, résumé dans le tableau ci-dessus. Le point d'injection G12 est situé à la limite de la zone de chauffe de traitement thermique et de la zone de refroidissement du four. Selon l'invention, l'hydrogène est presque exclusivement dirigé vers la zone de refroidissement du four. Les pièces à la sortie du four ne montrent aucune trace d'oxydation.
  • La courbe D1 (four sans hotte) montre que, pratiquement sur toute la longueur de la zone chaude HZ du four de traitement, (4 mètres dans cet exemple), il y a une concentration significative d'hydrogène. Celle-ci varie approximativement de 25% au point d'injection (7 mètres de la zone d'entrée) à environ 1 % à 3 mètres de la zone d'entrée du four. Au milieu de cette zone chaude, on trouve une concentration d'environ 10% en hydrogène.
  • La courbe D2 (four avec hottes selon l'invention) montre que la concentration en hydrogène est de l'ordre de 1 % à environ 6 mètres de l'entrée du four, les 3/4 de la zone chaude ne comportant pas d'hydrogène. Par contre, le profil de concentration en hydrogène avec ou sans hotte dans la zone de refroidissement CZ est sensiblement identique.
  • Cet exemple montre les possibilités de zonage précis des fours de traitement thermique à l'aide du procédé selon l'invention.
  • Exemple 3
  • Cet exemple a été réalisé dans le four de la figure 1. La zone de traitement thermique HZ était à une température de 800°C, avec une injection de gaz au point GI à la limite entre la zone chaude HZ et la zone de refroidissement CZ. Dans le cas présent, on a placé une hotte uniquement à l'entrée H1 de la zone chaude, aucune hotte n'étant disposée en sortie. L'atmosphère injectée est identique à celle de l'exemple 1, atmosphère bien connue de l'homme de métier pour le recuit de feuillards en acier.
  • La figure 7A représente la concentration en gaz carbonique dans l'atmosphère du four respectivement sans hotte (E1) et avec hotte (E2), en fonction de l'abscisse du point de mesure dans le four par rapport à l'entrée de celui-ci.
  • On constate qu'à environ 6 mètres de l'entrée du four, pour une zone de traitement thermique d'une longueur totale de 20 mètres, la concentration en C02 est la même dans les deux cas, tandis qu'on constate une diminution de moitié de la concentration en C02 à 1 mètre de l'entrée, dans le cas d'un four muni d'une hotte en entrée selon l'invention.
  • Dans ce dernier cas, la concentration en C02 à l'entrée du four est sensiblement identique à celle de l'atmosphère injectée dans le four, ce qui montre l'absence d'entrée d'espèces oxydantes dans le four utilisant le procédé selon l'invention.
  • Les courbes F1 et F2 de la figure 7B représentent les variations du point de rosée en °C dans un four respectivement sans hotte et avec hotte par rapport à l'abscisse du point de mesure de celui-ci par rapport à l'entrée. Le point de rosée est nettement abaissé, avec une hotte (courbe F2) celui-ci étant sensiblement identique dans les deux cas à 8 mètres de l'entrée du four. Par conséquent, la concentration en H20, espèce oxydante, dans le four utilisant le procédé selon l'invention est également maintenue constante jusqu'à l'entrée du four.
  • Dans ces deux exemples, le débit de gaz neutre dans les hottes, c'est-à-dire l'azote dans le cas présent, était de 2, 5 m3/heure.
  • La figure 8 illustre un exemple préférentiel de réalisation du procédé selon l'invention, nécessitant au moins deux points d'injections de gaz dans le four de traitement. Cette variante se caractérise par l'égalité des pressions aux points d'injections G.I. et G'.I'. du four. Ceci permet d'obtenir une zone CD dans le four dans laquelle la pression de gaz est sensiblement identique. Par conséquent, on réalise ainsi un excellent «zonage» du four puisque le gaz issu du point G. 1. va se diriger presque exclusivement vers la sortie AB du four, tandis que le gaz issu du point d'injection G'. l'. va se diriger presque exclusivement vers la sortie EF du four. Seule une diffusion des gaz s'effectue dans la zone CD, diffusion à vitesse très faible. Si l'on applique, par exemple, cette variante de réalisation, au four de la figure 2, en choisissant d'injecter du gaz en G.12. et G.13. seulement, c'est-à-dire à l'entrée et à la sortie de la zone chaude H.Z., celle-ci aura les caractéristiques de la zone CD décrite ci-dessus. En particulier, on notera les relations suivantes concernant les pressions:
    • Ptmaxi = Pfmaxi > Phmaxi > Pa
  • Bien entendu, on peut conserver à la zone CD ses propriétés tout en réalisant d'autres injections de gaz dans le four dans les zones 8C et DE du four, à pression inférieure à Ptmaxi et Pfmaxi-
  • Les figures 9A et 9B représentent une variante préférentielle de l'invention dans laquelle un rideau de gaz inerte ou inactif (N2 sur la figure) est utilisé à l'entrée seulement du four.
  • Sur la figure 9A, on a schématise le four, vue en coupe, uniquement au niveau de son entrée 303 et de sa sortie 304. A l'entrée 303 du four est placée une hotte 305 munie de rideaux réfractaires 306 et 307, tels qu'illustrés sur les figures 3 et 4, cette hotte étant solidaire de la partie haute 301 du four. Les rideaux réfractaires ont leur extrémité inférieure située à proximité de la partie basse 302 du four, généralement munie d'un tapis d'avance des objets à traiter tels que 308. Une distance de l'ordre de quelques centimètres entre l'extrémité inférieure des rideaux 306 et 307 et la partie inférieure 302 du four convient bien en pratique. Aucun dispositif particulier n'est placé à la sortie 304 du four. Pour déterminer le débit de gaz inerte ou inactif (généralement de l'azote) qui doit être injecté dans la hotte 305 de la manière décrite ci-avant, on mesure tout d'abord au niveau des rideaux 306 et 307, en l'absence d'injection d'azote, le débit d'air qui pénètre dans le four par les phénomènes de convection naturelle. Cette mesure s'effectue à l'aide d'un fil chaud, d'une manière connue en soi.
  • On injecte ensuite dans la hotte le même débit d'azote. On constate, comme cela est schématisé par les flèches sur la figure, que l'azote s'écoule entre les rideaux, puis pénètre dans le four à la place de l'air. Celui-ci, bien qu'attiré vers l'entrée s'écoule le long du rideau 306 sans pénétrer entre ceux-ci. On vérifie aisément la diminution importante du taux d'oxygène dans le four en mesurant la concentration de celui-ci à l'aide d'une sonde placée dans le four, au delà du rideau 307.
  • Sur la figure 9B, les mêmes éléments que ceux de la figure 9Aa portent les mêmes références. La hotte 305 est placée, dans cette variante, dans la partie inférieure du four, sans rideaux réfractaires. Le réglage du débit d'azote s'effectue de la manière indiquée plus haut. On constate comme précedemment que l'air arrivant à proximité de l'entrée du four ne pénètre pas dans celui-ci mais est entraîné vers le haut par le courant d'atmosphère sortant de la partie haute de l'entrée du four.
  • L'utilisation du procédé illustré sur la figure 9 permet de réduire les débits d'atmosphère utilisée dans les fours de traitement thermique, quelque soit le nombre et la nature des points d'injection de gaz dans ceux-ci, pour son taux d'oxygène déterminé dans la zone chaude du four. A titre d'exemple, un four continu ayant une zone d'entrée de 2m, une zone chaude à 800°C de 5m et une zone de refroidissement à l'eau de 10m, ainsi qu'une section d'entrée d'environ 0,2 m2, consommait lorsque ses deux extrémités étaient ouvertes 100 Nm3/h d'azote pour réaliser une atmosphère de protection destinée au recuit des pièces en cuivre. Après avoir placé deux rideaux réfractaires (dont l'extrémité inférieure est à moins de 5 cm de la partie basse du four) et la hotte appropriée à l'entrée de la zone d'entrée, on mesure la vitesse de l'air à l'entrée du four, en l'absence d'azote dans la hotte. Celle-ci est de 37 cm/s. On injecte alors de l'azote à 37 cm/s dans ladite hotte ce qui correspond à un débit de 30 Nm3/h d'azote. Le débit d'azote dans le four peut être alors ramené à 20 Nm3/h, pour une quantité identique des produits à la sortie du four. On constate donc globalement une diminution de 50% des débits d'azote dans ce four.

Claims (18)

1. Procédé de traitement thermique d'objets dans un four continu, dans lequel les objets à traiter sont introduits successivement par un support mobile dans le four comportant au moins une zone de traitement thermique (H.Z.) dans laquelle est injectée une atmosphère de composition déterminée, les zones d'entrée et/ou de sortie du four comportant des moyens engendrant un flux sensiblement laminaire de gaz inerte ou non réactif dans les conditions du traitement de manière à prévenir l'entrée d'air dans le four, caractérisé en ce que le flux de gaz inerte ou non réactif d'extrémité de four se présente sous forme d'un seul rideau, homogène, à écoulement vertical dans un plan transversal d'une partie d'extrémité horizontale de four et traversé par la direction d'avancée des pièces à traiter, l'injection du gaz inerte ou non réactif s'effectuant, après homogénéisation de sa vitesse et de sa pression, dans des conditions telles qu'un régime d'écoulement sensiblement laminaire est maintenu sur toute la hauteur du rideau de gaz.
2. Procédé selon la revendication 1, caractérisé en ce que le rideau de gaz inerte ou non réactif s'étend sensiblement sur toute la hauteur de la partie d'extrémité horizontale du four.
3. Procédé selon la revendication 2, caractérisé en ce que les moyens engendrant une atmosphère de gaz inerte ou non réactif comportent deux rideaux en matériau réfractaire s'étendant sensiblement jusqu'au support mobile entre lesquels le rideau de gaz inerte ou non réactif est injecté de haut en bas.
4. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que le rideau de gaz est créé par l'injection, de bas en haut, de gaz inerte ou non réactif.
5. Procédé selon la revendication 4, caractérisé en ce que l'injection de gaz inerte ou non réactif se fait dans un plan sensiblement vertical.
6. Procédé selon l'une des revendications 1 à 5, dans lequel des moyens engendrant une atmosphère de gaz inerte ou non réactif sont disposés à l'entrée au moins du four continu, caractérisé en ce que le débit de gaz inerte ou non réactif injecté par lesdits moyens est égal au débit d'air entrant dans le four mesuré en l'absence de débit de gaz inerte ou non réactif dans les moyens engendrant l'atmsphère dudit gaz.
7. Procédé selon l'une des revendications 1 à 6, dans lequel le four de traitement thermique comporte deux points d'injection de gaz, caractérisé en ce que l'injection des gaz se fait à égale pression en ces deux points de manière à maintenir une zone d'égale pression entre eux, les gaz injectés s'écoulant de part et d'autre de cette zone.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que les pressions de gaz dans le four sont reliées par l'une des suivantes :
Figure imgb0005
ou
Figure imgb0006
relations dans lesquelles
-Pa est la pression atmosphèrique ;
'Phmax! est la pression maximale du flux de gaz inerte ou non réactif laminaire ;
'Ptmax! est la pression maximale dans la zone de traitement thermique ;
'Pfmax! est la pression maximale dans la zone de refroidissement du four.
9. Hotte pour la mise en oeuvre du procédé selon l'une des revendications 1 à 8, dans laquelle sont prévus :
-des moyens d'injection de gaz non réactif dans une chambre d'admission (105) dont le fond (109) est perforé,
-au moins un rideau réfractaire (113, 114) de part et d'autre du flux de gaz, mobile autour d'un axe (115, 116) situé dans le plan du rideau (113,114), et orienté de manière à être placé dans le passage des pièces à traiter,

caractérisée en ce qu'elle comporte également :
-des moyens (110) perméables au gaz non réactif disposés sur le fond perforé (109) de la chambre d'admission (105), permettant de donner une très faible vitesse au flux de gaz à la sortie de la plaque perforée (109), sans provoquer de perte de charge sensible au niveau dudit flux de manière à engendrer entre les rideaux réfractaires (113, 114) un rideau de gaz sensiblement homogène et laminaire sur toute sa hauteur.
10. Hotte selon la revendication 9, dans laquelle la chambre d'admission (105) comporte un fond perforé (109) sensiblement rectangulaire, dont la longeur est égale à la largeur du four sur lequel la hotte est destinée à être montée, caractérisée en ce que la vitesse du gaz inerte non réactif est sensiblement identique en tout point de traversée de la plaque perforée et inférieur à :
Figure imgb0007
avec
n = viscosité du gaz neutre inerte à la température ambiante,
p = masse volumique du gaz neutre dans les conditions normales,
a = largeur du four,
b = profondeur de la plaque de diffusion.
11. Hotte selon l'une des revendications 9 ou 10, caractérisée en ce que l'injection de gaz dans la chambre d'admission (105) s'effectue de manière sensiblement symétrique par rapport à la direction d'admission dudit gaz dans ladite chambre (105).
12. Hotte selon l'une des revendications 9 ou 10, caractérisée en ce que l'injection dans la chambre d'admission (105) s'effectue par l'intermédiaire d'une chambre de préadmission (103), ladite chambre préadmission (103) étant séparée de la chambre d'admission (105) par des moyens perméables au gaz inerte (110), permettant de donner une vitesse très faible au gaz lors de sa pénétration dans la chambre d'admission (105), sans provoquer de perte de charge sensible au niveau du flux du gaz.
13. Hotte selon la revendication 12, caractérisée en ce que la chambre de préadmission (103) comporte également deux parois perforées (120, 102) entre lesquelles sont disposés des moyens perméables au gaz (104).
14. Hotte selon l'une des revendications 9 à 13, caractérisée en ce que la hauteur de la chambre d'admission (105) est au moin supérieure à deux fois l'épaisseur des moyens perméables au gaz (110).
15. Hotte selon l'une des revendications 9 à 14, caractérisée en ce que lesdits moyens perméables au gaz (110) sont choisis parmi les matériaux frittés, la laine de roche, la laine de verre, la laine de quartz.
16. Hotte selon l'une des revendications 9 à 15, caractérisée en ce que l'épaisseur des moyens perméables au gaz (110) est sensiblement identique sur toute la surface du fond perforé (109) de la chambre d'admission (105) et n'est pas inférieure à deux centimètres.
17. Hotte selon l'une des revendications 9 à 16, caractérisée en ce que la hauteur de la chambre d'admission (105) est sensiblement constante.
18. Utilisation de la hotte selon l'une des revendications 9 à 17 dans des fours de traitement thermique.
EP86401150A 1985-06-05 1986-05-30 Procédé de traitement thermique, hotte pour la mise en oeuvre de ce procédé et son utilisation dans les fours de traitement thermique Expired - Lifetime EP0206873B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86401150T ATE39501T1 (de) 1985-06-05 1986-05-30 Waermebehandlungsverfahren, gasabdichtungsvorrichtung und dessen verwendung in waermebehandlungsoefen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8508470 1985-06-05
FR8508470A FR2583064B1 (fr) 1985-06-05 1985-06-05 Procede de traitement thermique, hotte pour la mise en oeuvre de ce procede et son utilisation dans les fours de traitement thermique

Publications (3)

Publication Number Publication Date
EP0206873A1 EP0206873A1 (fr) 1986-12-30
EP0206873B1 EP0206873B1 (fr) 1988-12-28
EP0206873B2 true EP0206873B2 (fr) 1992-07-08

Family

ID=9319890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86401150A Expired - Lifetime EP0206873B2 (fr) 1985-06-05 1986-05-30 Procédé de traitement thermique, hotte pour la mise en oeuvre de ce procédé et son utilisation dans les fours de traitement thermique

Country Status (12)

Country Link
US (1) US4746289A (fr)
EP (1) EP0206873B2 (fr)
JP (1) JP2665333B2 (fr)
KR (1) KR870000438A (fr)
AT (1) ATE39501T1 (fr)
AU (1) AU587256B2 (fr)
BR (1) BR8602604A (fr)
CA (1) CA1277214C (fr)
DE (1) DE3661542D1 (fr)
ES (2) ES8708018A1 (fr)
FR (1) FR2583064B1 (fr)
ZA (1) ZA864139B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO159960C (no) * 1986-07-08 1989-02-22 Norsk Hydro As Ovn for hoeytemperaturbehandling av plastiske eller forherdete produkter.
US5404836A (en) * 1989-02-03 1995-04-11 Milewski; John V. Method and apparatus for continuous controlled production of single crystal whiskers
US5409159A (en) * 1994-02-28 1995-04-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus and methods for inerting solder during wave soldering operations
US5411200A (en) * 1994-02-28 1995-05-02 American Air Liquide, Inc. Process and apparatus for the wave soldering of circuit boards
US5520320A (en) * 1994-04-22 1996-05-28 Air Liquide America Corporation Process for wave soldering components on a printed circuit board in a temperature controlled non-oxidizing atmosphere
IL119434A (en) * 1995-11-27 2000-01-31 Boc Group Inc Furnace
CN1094521C (zh) * 1998-03-26 2002-11-20 川崎制铁株式会社 连续热处理炉及连续热处理炉的氛围控制方法和冷却方法
EP1914325B1 (fr) * 2005-07-25 2013-09-11 Nippon Steel & Sumitomo Metal Corporation Procéde de traitement thermique en continu pour tuyaux de métal
JP5029974B2 (ja) * 2010-01-21 2012-09-19 富山住友電工株式会社 金属多孔体及びそれを用いた電池用電極、並びに金属多孔体の製造方法
CN103305744B (zh) * 2012-03-08 2016-03-30 宝山钢铁股份有限公司 一种高质量硅钢常化基板的生产方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668701A (en) * 1951-02-03 1954-02-09 Selas Corp Of America Heating control system
US3223396A (en) * 1963-04-22 1965-12-14 Hayes Inc C I Heat treatment apparatus
US3467366A (en) * 1967-10-02 1969-09-16 Hayes Inc C I Furnace construction having atmosphere curtain
US3618919A (en) * 1969-11-03 1971-11-09 Btu Eng Corp Adjustable heat and gas barrier
BE791511A (fr) * 1971-11-19 1973-03-16 Flynn Charles S Appareil de traitement thermique rapide d'une bande de matiere
US3984197A (en) * 1972-03-25 1976-10-05 Hoechst Aktiengesellschaft Device for the wet treatment and drying of textile material
FR2421979A1 (fr) * 1978-04-07 1979-11-02 Alsacienne Constr Meca Installation de traitement thermique de produits textiles sous forme continue
US4217090A (en) * 1978-08-22 1980-08-12 B & K Machinery International Limited Oven heating system
IT8021945V0 (it) * 1980-06-02 1980-06-02 Luca Ferdinando De Dispositivo didattico per suonare strumenti musicali.
DE3029136C2 (de) * 1980-07-31 1982-06-03 Computer Gesellschaft Konstanz Mbh, 7750 Konstanz Steuerschaltung für an eine Datenverarbeitungsanlage anschließbare Peripheriegeräte
US4501553A (en) * 1981-06-29 1985-02-26 Chugai Ro Co., Ltd. Floating equipment and floating-type heat treating furnace for striplike works
EP0075438B1 (fr) * 1981-09-19 1987-12-16 BOC Limited Traitement thermique de métaux
GB2139741B (en) * 1983-05-04 1988-06-08 Air Prod & Chem Method of operating heat treatment furnace

Also Published As

Publication number Publication date
ES8708018A1 (es) 1987-09-01
CA1277214C (fr) 1990-12-04
ES8800412A1 (es) 1987-10-16
ES555695A0 (es) 1987-09-01
KR870000438A (ko) 1987-02-18
ZA864139B (en) 1987-02-25
BR8602604A (pt) 1987-02-03
ATE39501T1 (de) 1989-01-15
EP0206873A1 (fr) 1986-12-30
AU587256B2 (en) 1989-08-10
JP2665333B2 (ja) 1997-10-22
JPS6237317A (ja) 1987-02-18
DE3661542D1 (en) 1989-02-02
EP0206873B1 (fr) 1988-12-28
FR2583064A1 (fr) 1986-12-12
FR2583064B1 (fr) 1987-08-14
ES557554A0 (es) 1987-10-16
US4746289A (en) 1988-05-24
AU5832786A (en) 1986-12-11

Similar Documents

Publication Publication Date Title
EP0206873B2 (fr) Procédé de traitement thermique, hotte pour la mise en oeuvre de ce procédé et son utilisation dans les fours de traitement thermique
CA2655924A1 (fr) Dispositif de securisation d'un four equipe d'un chauffage et d'un refroidissement rapides fonctionnant sous atmosphere controlee
FR2492075A1 (fr) Procede et appareil pour le sechage d'une matiere contenat du solvant
FR2672518A1 (fr) Buse a alimentation dissymetrique pour la formation d'une couche de revetement sur un ruban de verre, par pyrolyse d'un melange gazeux.
FR2553438A1 (fr) Procede et installation pour traiter des fibres d'un precurseur contenant du carbone
EP1160342A1 (fr) Procédé de mise en sécurisation d'une enceinte de traitement thermique fonctionnant sous atmosphère contrôlée
EP0199649B1 (fr) Revêtement du verre fabriqué dans une installation de flottage par des composés pyrolysables en poudre
WO1996024011A1 (fr) Procede et dispositif de confinement, notamment d'une atmosphere particuliere dans un espace de traitement en continu de produits traversants
EP3686534B1 (fr) Procédé et four pour le traitement thermique d'une bande d acier de haute résistance comprenant une chambre d homogénéisation en température
EP1133666B1 (fr) Dispositif pour le traitement thermique a haute temperature d'une matiere ligneuse
EP1687455A1 (fr) Procede et dispositif de refroidissement d'une bande d'acier
FR2523709A1 (fr) Four de traitement par chauffage en continu
EP1522809B1 (fr) Procédé de traitement thermique d'une série d'objets et appareil associé
EP3397786A1 (fr) Dispositif et procede pour realiser une oxydation controlee de bandes metalliques dans un four de traitement en continu
FR2640164A1 (fr) Dispositif de distribution d'un solide pulverulent en suspension dans un gaz sur un substrat en defilement
EP1077267B1 (fr) Installation de traitement thermique de pièces métalliques en lots ou unitaires au défilé
EP1412689B1 (fr) Procede et dispositif de refroidissement des alveoles d'un four a chambres
FR2612619A1 (fr) Procede pour limiter les entrees d'air dans un four et four pour la mise en oeuvre de ce procede
WO2002088680A1 (fr) Procede de controle d'un produit traite dans un four et four ainsi equipe de moyens de controle
FR3037059A1 (fr) Four a injection sonique
CH627262A5 (en) Method of continuous treatment by diffusion of metal articles, and muffle furnace for implementing the method
EP1675805A1 (fr) Procede de controle du formage de verre plat
JPH0451513B2 (fr)
FR2587731A1 (fr) Procede et dispositif de depot chimique de couches minces uniformes sur de nombreux substrats plans a partir d'une phase gazeuse
BE688927A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880601

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881228

Ref country code: AT

Effective date: 19881228

REF Corresponds to:

Ref document number: 39501

Country of ref document: AT

Date of ref document: 19890115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3661542

Country of ref document: DE

Date of ref document: 19890202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890531

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: AGA AKTIEBOLAG

Effective date: 19890916

NLR1 Nl: opposition has been filed with the epo

Opponent name: AGA AKTIEBOLAG.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900430

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900531

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910411

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910415

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910423

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910426

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920531

Ref country code: LI

Effective date: 19920531

Ref country code: CH

Effective date: 19920531

Ref country code: BE

Effective date: 19920531

27A Patent maintained in amended form

Effective date: 19920708

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

BERE Be: lapsed

Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19920531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: AR

REG Reference to a national code

Ref country code: FR

Ref legal event code: DS

EUG Se: european patent has lapsed

Ref document number: 86401150.7

Effective date: 19921204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010411

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050530