EP0204181B1 - Elektromagnet - Google Patents

Elektromagnet Download PDF

Info

Publication number
EP0204181B1
EP0204181B1 EP86106472A EP86106472A EP0204181B1 EP 0204181 B1 EP0204181 B1 EP 0204181B1 EP 86106472 A EP86106472 A EP 86106472A EP 86106472 A EP86106472 A EP 86106472A EP 0204181 B1 EP0204181 B1 EP 0204181B1
Authority
EP
European Patent Office
Prior art keywords
magnet
inner core
permanent magnet
magnets
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86106472A
Other languages
English (en)
French (fr)
Other versions
EP0204181A1 (de
Inventor
Ferdinand Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0204181A1 publication Critical patent/EP0204181A1/de
Application granted granted Critical
Publication of EP0204181B1 publication Critical patent/EP0204181B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/206Electromagnets for lifting, handling or transporting of magnetic pieces or material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0632Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a spherically or partly spherically shaped armature, e.g. acting as valve body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0689Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0689Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets
    • F02M51/0692Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets as valve or armature return means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/123Guiding or setting position of armatures, e.g. retaining armatures in their end position by ancillary coil

Definitions

  • the invention relates to an electromagnet according to the first part of patent claim 1
  • An electromagnet of an electromagnetically actuated valve with a built-in permanent magnet has already been proposed, in which the armature is pulled towards the core in the non-energized state, while the armature assumes a position at a distance from the core in the case of electromagnetic excitation.
  • Such a valve has the advantage of not requiring a holding current in the rest position.
  • the use of cylindrical and flat magnets means that the valve is large.
  • the electromagnet according to the invention with the characterizing features of the main claim has the advantage of being compact due to the use of at least one ring-shaped, radially magnetized permanent magnet and a second permanent magnet and the resulting design of the core.
  • the electromagnet can also be used in a fuel injector with higher fuel pressures without the risk of the armature lifting off from the pole shoes as a result of the pressure of the fuel.
  • an outer core In the electromagnet shown in Figure 1 for a fuel injection valve of a fuel injection system of internal combustion engines, 1 denotes an outer core. This has, for example, the shape of a pot, the bottom of which runs in the form of a truncated cone. The frustoconical end of the outer core 1 is flattened in a plane perpendicular to the axis of the valve and leaves an opening 11 free. The tapered end of the truncated cone of the outer core 1 forms a ring-shaped outer pole 2 when the outer core 1 is closed in a ring shape. Surrounded by the outer core 1, there is an inner core 3 coaxially therein, which can have the same length as the outer core.
  • the inner core 3 On the length on which the outer core 1 is cylindrical, the inner core 3 has the shape of a solid cylinder. In the region of the truncated cone shape of the outer core 1, the inner core 3 tapers in a cone 4, which ends in an inner pole 5, which is in the same plane as the outer pole 2 and is surrounded by it, and which is thus aligned with the opening 11.
  • a magnetic coil 6, which is wound on a coil carrier 7, is located between the inner core 3 and the outer core 1, lying on the inner core.
  • Power supplies, not shown, serve to supply power to the solenoid.
  • a magnetically conductive ring 9 which extends radially to the outer core 1 and whose outer diameter is dimensioned such that between the ring 9 and the outer core 1 there is an annular gap 10.
  • an annular first permanent magnet 8 is located between the inner core 3 and the outer core 1 and terminates with them.
  • This permanent magnet 8 is radially polarized, ie it has either a south pole on the inner jacket and a north pole on the outer jacket (as indicated in the drawing, for example) or a north pole on the inner jacket and a south pole on the outer jacket.
  • an annular second permanent magnet 14 with the same polarity as the first permanent magnet 8.
  • a first working air gap 18 is formed between the flat side 17 of the armature 15 and the outer pole 2 of the outer core 1 and a second working air gap 19 is formed between the armature 15 and the inner pole 5 of the inner core 3.
  • the plane in which the working air gaps of outer pole 2 and armature 15 on the one hand and inner pole 5 and armature 15 on the other hand are arranged can be made convex or concave, with a circular or elliptical curvature.
  • valve needle 16 is fastened, for example by welding or soldering.
  • the valve needle 16 is cylindrical and is fixedly connected at its other end to a valve body 20 which, in cooperation with a valve seat 21 Opening or closing of the valve causes.
  • Valve body 20 and valve seat 21 are worked in such a way that when the valve body 20 moves in the direction of the poles 2, 5, the valve body 20 bears against the valve seat 21 and closes the valve.
  • the valve seat 21 is incorporated on the end face of a cylindrical valve seat body 22.
  • Valve seat body 22 and outer core 1 are connected to one another such that no relative movement of the two parts to one another is possible, for example by fastening in a common valve housing, not shown in the drawings.
  • a coaxial bore 30 adjoins the valve seat 21 and penetrates the valve seat body 22.
  • a transition area 32 between bore 30 and bore 31 is conical and serves as a stop for the maximum opening stroke of valve needle 16 and valve body 20.
  • the Outer diameter is slightly smaller than the diameter of the bore 30 surrounding it.
  • the fuel is supplied to the bore 30 via at least one feed opening 35 in the valve seat body. This extends radially from the jacket of the valve seat body 22 to the bore 30 in that section of the bore 30 which is located on the side of the collar 33 facing the armature 15.
  • the function of the electromagnetic fuel injection valve is as follows: When the magnet coil 6 is not energized, magnetic fields are only generated by the permanent magnets 8 and 14; the armature 15 is thereby attracted by the outer pole 2 and the inner pole 5 and the valve body 20 is brought sealingly onto the valve seat 21.
  • the magnetic flux generated by the first permanent magnet 8 runs on the one hand via the outer core 1, outer pole 2, armature 15, inner pole 5 and inner core 3 back to the first permanent magnet and thus also encloses the magnet coil 6.
  • part of the magnetic generated by the first permanent magnet 8 runs Flow over the outer core 1, annular gap 10, ring 9 and inner core 3 back to the first permanent magnet.
  • the magnetic flux generated by the second permanent magnet 14 runs in the same direction as the magnetic flux of the first permanent magnet 8 via the outer core 1, outer pole 2, armature 15, inner pole 5 and inner core 3 back to the second permanent magnet
  • the magnetic coil 6 is supplied with voltage, such an electromagnetic field is induced that the field lines of the electromagnetic field in the first working air gap 18 and in the second working air gap 19 run opposite to the field lines of the magnetic fields generated by the permanent magnets 8, 14.
  • the excitation of the magnetic coil 6 should be so great that the field strength of the electromagnetic field in the area of the working air gaps 18, 19 is equal to the field strength of the magnetic field of the permanent magnets 8, 14, so that no magnetic force acts on the armature 15 and the valve can open .
  • the magnetic flux of the electromagnetic field runs primarily over the inner core 3, inner pole 5, armature 15, outer pole 2, outer core 1, annular gap 10 and ring 9 back to the inner core 3.
  • the ring 9 with the annular gap 10 is useful since the first Permanent magnet 8 conducts the electromagnetic flux only with difficulty.
  • the diameter of the inner core 3 it is to be dimensioned such that the state of a saturation of the induced magnetic flux occurs in the inner core 3 when the magnet coil 6 flows through.
  • FIGS. 2 and 3 the parts that remain the same and function the same as in the exemplary embodiment according to FIG. 1 are identified by the same reference numerals.
  • the ring-shaped first permanent magnet 8 in FIG. 1 is replaced in the embodiment according to FIGS. 2 and 3 by a first permanent magnet in the form of a flat magnet 40, which is fixed between two magnetically conductive supports 41, 42 in such a way that each of its poles on one of the supports 41 , 42 is present.
  • the cross section of both supports 41, 42 has the shape of a circular section, the flat magnet 40 being clamped between a flat side 38 of the support 41 and a flat side 39 of the support 42.
  • the support 41 is designed as an extension of the inner core 3 in the direction away from the valve seat 21, so that the flat side 38 runs parallel to the longitudinal axis of the inner core 3.
  • the support 42 is part of a cover 50 fixed to the end face of the outer core 1 facing away from the valve seat 21 and extends in the direction of the inner core 3.
  • This cover like the outer core 1, is made of soft magnetic material and is part of both the electromagnetic circuit and that of the flat magnet 40 induced magnetic circuit.
  • a connection reducing the magnetic resistance within the electromagnetic circuit as is given in the exemplary embodiment according to FIG. 1 by ring 9 and annular gap 10, can then be omitted if the flat magnet 40 in the north-south direction between the flat sides 38, 39 of the Supports 41, 42 are made sufficiently narrow.
  • ring-shaped permanent magnets 8, 14 can only be purchased at a very high cost at the time of the invention, it is proposed to replace a ring magnet by an arrangement of a plurality of individual magnets which approximately forms a circular shape.
  • FIG. 4 shows an exemplary embodiment in which six rectangular magnets 60 are arranged on a carrier body 61 made of soft magnetic material.
  • the circumference of the carrier body 61 is designed as an equilateral polygon and here has, for example, six contact surfaces 62, on each of which one of the magnets 60 is arranged. All right corner magnets 60 are polarized in the same direction in the radial direction.
  • the magnets 60 can be individually separated without the aid of a carrier body between the inner core 3 and insert the outer core 1.
  • the inner core 3 is designed with a cylindrical cross section.
  • the arrangement of the individual magnets 60 manufactured in the manner described above between the inner core 3 and the outer core 1 results in a quasi-annular permanent magnet magnetized in the radial direction.
  • the form of a hexagonal arrangement of the rectangular magnets 60 described for example can be transferred to any equilateral polygons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electromagnets (AREA)
  • Magnetically Actuated Valves (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Elektromagnet nach dem ersten Teil des Patentanspruches 1
  • Es ist schon ein Elektomagnet eines elektromagnetisch betätigbaren Ventils mit einem eingebauten Permanentmagneten vorgeschlagen worden, bei dem der Anker in nicht erregtem Zustand zum Kern gezogen wird, während bei elektromagnetischer Erregung der Anker eine Stellung mit Abstand zum Kern einnimmt. Ein solches Ventil hat den Vorteil, in Ruhestellung keinen Haltestrom zu benötigen. Durch die Verwendung von zylinderförmigen und flachen Magneten bedingt ist jedoch eine große Baugröße des Ventils.
  • Vorteile der Erfindung
  • Der erfindungsgemäße Elektromagnet mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, durch die Verwendung mindestens eines ringförmigen, radial magnetisierten Permanentmagneten sowie eines zweiten Permamentmagneten und durch die dadurch bedingte Gestaltung des Kerns kompakt zu bauen.
  • Hierdurch wird eine größere Haltekraft bei nicht stromdurchflossener Spule erreicht, wodurch sich der Elektromagnet auch in einem Kraftstoffeinspritzventil mit höheren Kraftstoffdrücken einsetzen läßt, ohne daß die Gefahr eines durch den Druck des Kraftstoffes bewirkten Abhebens des Ankers von den Polschuhen besteht.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Elektromagneten möglich.
  • Vorteilhaft ist es, beide Permanentmagneten ringförmig auszubilden und radial zu magnetisieren.
  • Von Vorteil ist es weiterhin, eine Öffnung im Ventilgehäuse oder im Außenkern vorzusehen, durch welche eine gezielte Beeinflussung des Permanentmagneten durch ein von außen aufgebrachtes Magnetfeld möglich ist. Dies ermöglicht eine Einstellung der dynamischen Einspritzmenge des Ventils.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.
  • Es zeigen
    • Figur 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Elektomagneten,
    • Figur 2 ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Elektromagneten in Teilansicht,
    • Figur 3 einen Schnitt entlang der Linie 111-111 in Figur 2,
    • Figur 4 ein Ausführungsbeispiel eines aus mehreren Einzelmagneten zusammengesetzten Ringmagneten.
  • In dem in Figur 1 dargestellten Elektromagneten für ein Kraftstoffeinspritzventil einer Kraftstoffeinspritzanlage von Brennkraftmaschinen ist mit 1 ein Außenkern bezeichnet. Dieser hat beispielsweise die Form eines Topfes, dessen Boden in Form eines Kegelstumpfes zuläuft. Das kegelstumpfförmige Ende des Außenkerns 1 ist in einer Ebene senkrecht zur Achse des Ventils abgeflacht und läßt eine Öffnung 11 frei. Das auslaufende Ende des Kegelstumpfes des Außenkerns 1 bildet bei einer geschlossenen ringförmigen Ausbildung des Außenkerns 1 einen ringförmigen Außenpol 2. Vom Außenkern 1 umschlossen, befindet sich koaxial hierin ein Innenkern 3, welcher die gleiche Länge besitzen kann, wie der Außenkern. Auf jener Länge, auf welcher der Außenkern 1 zylindrisch ausgebildet ist, besitzt der Innenkern 3 die Form eines Vollzylinders. Im Bereich der Kegelstumpfform des Außenkerns 1 verjüngt sich der Innenkern 3 in einem Konus 4, welcher in einem, in der gleichen Ebene wie der Außenpol 2 liegenden und von diesem umgebenen Innenpol 5 endet, der also auf die Öffnung 11 ausgerichtet ist.
  • Zwischen Innenkern 3 und Außenkern 1 befindet sich, auf dem Innenkern aufliegend, eine Magnetspule 6, welche auf einem Spulenträger 7 gewickelt ist. Nicht dargestellte Stromzuführungen dienen der Stromversorgung der Magnetspule.
  • Auf der den Polen 2, 5 abgewandten Seite der Magnetspule 6 befindet sich, mit dem Innenkern 3 fest verbunden oder Teil desselben, ein magnetisch leitender und radial sich zum Aussenkern 1 erstreckender Ring 9, dessen Außendurchmesser so bemessen ist, daß zwischen Ring 9 und Außenkern 1 ein ringförmiger Spalt 10 besteht. Auf der den Polen 2, 5 abgewandten Seite des Ringes 9 befindet sich, zwischen Innenkern 3 und Außenkern 1 eingelassen und mit ihnen abschließend, ein ringförmiger erster Permanentmagnet 8. Dieser ist radial gepolt, besitzt also entweder einen Südpol am Innenmantel und einen Nordpol am Außenmantel (wie in der Zeichnung beispielsweise angedeutet) oder einen Nordpol am Innenmantel und einen Südpol am Außenmantel. Andererseits der Magnetspule 6, ebenfalls zwischen Innenkern 3 und Außenkern 1 eingelassen, befindet sich ein ringförmiger zweiter Permanentmagnet 14 mit gleich gerichteter Polung wie der erste Permanentmagnet 8.
  • Den Stirnflächen von Außenpol 2 und Innenpol 5 zugewandt ist ein Anker 15 angeordnet, welcher etwa in Form einer mit einer Flachseite 17 den beiden Polen 2, 5 zugewandten Halbkugel ausgebildet ist. Zwischen der Flachseite 17 des Ankers 15 und dem Außenpol 2 des Außenkerns 1 wird ein erster Arbeitsluftspalt 18 und zwischen dem Anker 15 und dem Innenpol 5 des Innenkerns 3 ein zweiter Arbeitsluftspalt 19 gebildet. Hier sind aber auch verschiedene andere Formen des Ankers und der Pole denkbar. So läßt sich etwa die Ebene, in welcher die Arbeitsluftspalte von Außenpol 2 und Anker 15 einerseits und Innenpol 5 und Anker 15 andererseits angeordnet sind, konvex oder konkav ausführen, mit kreisförmiger oder elliptischer Krümmung. In der runden Seite des Ankers 15 ist eine Bohrung eingearbeitet, in welcher eine Ventilnadel 16 beispielsweise durch Schweißen oder Löten befestigt ist. Die Ventilnadel 16 ist zylindrisch und an ihrem anderen Ende mit einem Ventilkörper 20 fest verbunden, welcher im Zusammenwirken mit einem Ventilsitz 21 ein Öffnen bzw. Schließen des Ventils bewirkt. Ventilkörper 20 und Ventilsitz 21 sind dergestalt gearbeitet, daß sich bei Bewegung des Ventilkörpers 20 in Richtung auf die Pole 2, 5 der Ventilkörper 20 an den Ventilsitz 21 anlegt und das Ventil verschließt. Der Ventilsitz 21 ist an der Stirnseite eines zylindrischen Ventilsitzkörpers 22 eingearbeitet. Ventilsitzkörper 22 und Außenkern 1 sind so miteinander verbunden, daß keine Relativbewegung beider Teile zueinander möglich ist, etwa durch Befestigung in einem gemeinsamen, in den Zeichnungen nicht dargestellten Ventilgehäuse.
  • An den Ventilsitz 21 schließt sich eine koaxiale Bohrung 30 an, welche den Ventilsitzkörper 22 durchdringt. An der dem Ventilsitz 21 abgewandten und den Polen 2, 5 zugewandten Seite des Ventilsitzkörpers 22 befindet sich eine weitere, fluchtend zu Bohrung 30 angeordnete Bohrung 31, deren Durchmesser grösser ist als jener von Bohrung 30 und geringfügig größer als der Durchmesser des Ankers 15, welcher von der Bohrung 31 radial geführt wird. Ein Übergangsbereich 32 zwischen Bohrung 30 und Bohrung 31 ist kegelförmig ausgebildet und dient als Anschlag für den maximalen Öffnungshub von Ventilnadel 16 und Ventilkörper 20. Nahe am Ventilkörper 20 befindet sich auf der Ventilnadel 16 ein Bund 33 von dreieckiger oder anderer Gestalt in axialer Richtung, dessen Außendurchmesser geringfügig kleiner ist als der Durchmesser der ihn umschliessenden Bohrung 30.
  • Die Kraftstoffzuführung zur Bohrung 30 erfolgt über mindestens eine Speiseöffnung 35 im Ventilsitzkörper. Diese verläuft radial vom Mantel des Ventilsitzkörpers 22 zur Bohrung 30 in jenem Abschnitt der Bohrung 30, welcher sich auf der dem Anker 15 zugewandten Seite des Bundes 33 befindet.
  • Die Funktion des elektromagnetischen Kraftstoffeinspritzventils ist wie folgt: Bei nicht mit Strom beaufschlagter Magnetspule 6 werden Magnetfelder nur von den Permanentmagneten 8 und 14 erzeugt; der Anker 15 wird dadurch von Außenpol 2 und Innenpol 5 angezogen und der Ventilkörper 20 dichtend auf den Ventilsitz 21 gebracht. Der durch den ersten Permanentmagneten 8 erzeugte magnetische Fluß verläuft einerseits über Außenkern 1, Außenpol 2, Anker 15, Innenpol 5 und Innenkern 3 zurück zum ersten Permanentmagneten und umschließt damit auch die Magnetspule 6. Andererseits verläuft ein Teil des durch den ersten Permanentmagneten 8 erzeugten magnetischen Flusses über Außenkern 1, ringförmigen Spalt 10, Ring 9 und Innenkern 3 zurück zum ersten Permanentmagneten. Der durch den zweiten Permanentmagneten 14 erzeugte magnetische Fluß verläuft gleichsinnig wie der magnetische Fluß des ersten Permanentmagneten 8 über den Außenkern 1, Außenpol 2, Anker 15, Innenpol 5 und Innenkern 3 zum zweiten Permanentmagneten zurück
  • Wird die Magnetspule 6 hingegen mit Spannung beaufschlagt, so wird dadurch ein solches Elektromagnetfeld induziert, daß die Feldlinien des Elektromagnetfeldes im ersten Arbeitsluftspalt 18 und im zweiten Arbeitsluftspalt 19 entgegengesetzt zu den Feldlinien der durch die Permanentmagnete 8, 14 erzeugten Magnetfelder verlaufen. Die Erregung der Magnetspule 6 soll dabei so groß sein, daß die Feldstärke des Elektromagnetfeldes im Bereich der Arbeitsluftspalte 18, 19 gleich der Feldstärke des Magnetfeldes der Permanentmagnete 8, 14 ist, so daß auf den Anker 15 keine Magnetkraft mehr wirkt und das Ventil öffnen kann. Der magnetische Fluß des Elektromagnetfeldes verläuft in erster Linie über Innenkern 3, Innenpol 5, Anker 15, Außenpol 2, Außenkern 1, ringförmigen Spalt 10 und Ring 9 zurück zum Innenkern 3. Der Ring 9 mit dem ringförmigen Spalt 10 ist zweckmäßig, da der erste Permanentmagnet 8 den Elektromagnetfluß nur schwer leitet.
  • Bei der Auslegung des Durchmessers des Innenkerns 3 ist dieser so zu bemessen, daß bei stromdurchflossener Magnetspule 6 im Innenkern 3 der Zustand einer Sättigung des induzierten Magnetflusses eintritt.
  • Durch die Kompensation der Feldstärken der von den Permanentmagneten 8, 14 und der Magnetspule 6 induzierten Magnetfelder am Anker 15 verbleibt als auf den Anker 15 wirkende statische Kraft nur die hydraulische Druckkraft des Kraftstoffes. Diese Kraft läßt sich aus der Größe der druckwirksamen Flächen an Anker 15 und Ventilkörper 20 und dem Kraftstoffdruck ermitteln.
  • Bei dem in Figur 2 und 3 dargestellten Ausführungsbeispiel sind die gegenüber dem Ausführungsbeispiel nach Figur 1 gleichbleibenden und gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Der ringförmige erste Permanentmagnet 8 in Figur 1 ist bei der Ausführung entsprechend Figur 2 und 3 durch einen ersten Permanentmagneten in Form eines Flachmagneten 40 ersetzt, welcher zwischen zwei magnetisch leitenden Stützen 41, 42 derart fixiert ist, daß jeder seiner Pole an einer der Stützen 41, 42 anliegt. Der Querschnitt beider Stützen 41, 42 hat die Form eines Kreisabschnitts, wobei der Flachmagnet 40 zwischen einer Flachseite 38 der Stütze 41 und einer Flachseite 39 der Stütze 42 eingespannt ist. Die Stütze 41 ist als Verlängerung des Innerkems 3 in dem Ventilsitz 21 abgewandter Richtung ausgebildet, so daß die Flachseite 38 parallel zur Längsachse des Innenkerns 3 verläuft. Die Stütze 42 ist Teil eines an der dem Ventilsitz 21 abgewandten Stirnseite des Außenkerns 1 fixierten Dekkels 50 und erstreckt sich in Richtung zum Innenkern 3. Dieser Deckel besteht ebenso wie der Außenkern 1 aus weichmagnetischem Material und ist Teil sowohl des Elektromagnetkreises als auch des vom Flachmagneten 40 induzierten Magnetkreises. Eine den magnetischen Widerstand mindernde Verbindung innerhalb des elektromagnetischen Kreises, wie sie bei dem Ausführungsbeispiel nach Figur 1 durch Ring 9 und ringförmigen Spalt 10 gegeben ist, kann dann fortfallen, wenn der Flachmagnet 40 in Nord-Süd-Richtung zwischen den Flachseiten 38, 39 der Stützen 41, 42 hinreichend schmal ausgeführt wird.
  • An dem dem Ventilsitz 21 abgewandten Ende des Außenkerns 1 sind in diesem mindestens zwei in rechteckiger oder in anderer Form ausgeführte Öffnungen 51 eingearbeitet. Durch diese Öffnungen 51 hindurch läßt sich mittels einer von aussen wirkenden, nicht gezeigten Vorrichtung eine Beeinflussung des Flachmagneten 40 durch ein äußeres Magnetfeld erreichen. Hierdurch ist eine gezielte Einstellung der Stärke des auf den Anker 15 wirkenden Magnetfeldes und damit der dynamischen Einspritzmenge des Einspritzventils möglich.
  • Da die radial magnetisierten, ringförmigen Permanentmagnete 8, 14 zur Zeit der Erfindung nur zu sehr hohen Kosten erstanden werden können, wird vorgeschlagen, durch eine näherungsweise eine Kreisform bildende Anordnung mehrerer Einzelmagnete einen Ringmagneten zu ersetzen.
  • Figur 4 zeigt ein Ausführungsbeispiel, in welchem sechs rechteckförmige Magnete 60 an einem Trägerkörper 61 aus weichmagnetischem Material angeordnet sind. Der Umfang des Trägerkörpers 61 ist als gleichseitiges Vieleck ausgebildet und weist hier beispielsweise sechs Anlageflächen 62 auf, an denen je einer der Magnete 60 angeordnet ist. Alle Recht, eckmagnete 60 sind dabei in radialer Richtung gleichsinnig gepolt. Durch eine Bearbeitung des Trägerkörpers 61 im Innern und der dem Trägerkörper 61 abgewandten Flächen 63 der Magneten 60 in Kreisbogenform etwa durch Drehen oder Schleifen ist eine Überführung in die Form eines Ringes möglich. Ge strichelt ist die Ursprungsform der Magnete 60 dargestellt.
  • Es ist gleichfalls möglich, die Flächen 63 nach Aufspannung der Magnete 60 auf eine gemeinsame Werkstückaufnahme und hierdurch sichergestellte Fixierung der Magnete 60 in Form eines gleichseitigen Vielecks in oben beschriebener Weise in Form eines Ringes zu bearbeiten. Führt man den Innenkern 3 in Querschnittsform eines gleichseitigen Prismas aus, dessen Seitenlänge gleich ist der Länge einer Polfläche 65 eines der Magneten 60 und dessen Seitenzahl gleich ist der Zahl der Magnete 60, so lassen sich die Magnete 60 einzeln ohne Zuhilfenahme eines Trägerkörpers zwischen Innenkern 3 und Außenkem 1 einsetzen.
  • Möglich ist es ebenfalls, nach einer oben beschriebenen Aufspannung der Magneten 60 auf eine gemeinsame Werkstückaufnahme auch die inneren Polflächen 65 der Magneten 60 in Form eines Ringes zu bearbeiten. Der Innenkern 3 ist dabei mit zylindrischem Querschnitt ausgeführt.
  • Durch die Anordnung der in oben beschriebener Weise gefertigten einzelnen Magnete 60 zwischen Innenkern 3 und Außenkern 1 ergibt sich ein quasi ringförmiger, in radialer Richtung magnetisierter Permanentmagnet. Die beispielsweise beschriebene Form einer sechseckigen Anordnung der Rechteckmagnete 60 läßt sich auf beliebige, gleichseitige Vielecke übertragen.

Claims (8)

1. Elektromagnet, insbesondere zur Steuerung eines Kraftstoffeinspritzventiles für Kraftstoffeinspritzanlagen von Verbrennungskraftmaschinen, mit einem Anker (15), einem Innenkern (3) aus weichmagnetischem Material, einer den Innenkern (3) umschließenden Magnetspule (6) sowie mit mindestens einem Permanentmagneten (8; 14; 40; 60), dadurch gekennzeichnet,
- daß zwischen dem von der Magnetspule (6) umschlossenen Innenkern (3) und einem aus weichmagnetischem Material bestehenden, die Magnetspule (6) zumindest teilweise umgreifenden Außenkern (1) einerseits der Magnetspule (6) ein erster Permanentmagnet (8; 40; 60) und andererseits der Magnetspule (6) ein zweiter Permanentmagnet (14; 60) angeordnet ist,
- daß mindestens der zweite Permanentmagnet (14; 60) ringförmig ausgebildet und radial magnetisiert ist,
- daß zwischen dem Außenkem (1) und dem Anker (15) ein erster Arbeitsluftspalt (18) und zwischen dem Innenkern (3) und dem Anker (15) ein zweiter Arbeitsluftspalt (19) gebildet wird, und
- daß die Permanentmagnete (8; 14; 40; 60) so gepolt sind, daß ihre Magnetfelder an den Arbeitsluftspalten (18, 19) dem durch die Magnetspule (6) induzierten Elektromagnetfeld entgegen verlaufen.
2. Elektromagnet nach Anspruch 1, dadurch gekennzeichnet, daß die Feldstärken der durch die Permanentmagnete (8; 14; 40; 60) erzeugten Magnetfelder und die Feldstärke des durch die Magnetspule (6) erzeugten Elektromagnetfeldes sich im Bereich des ersten Arbeitsluftspaltes (18) und des zweiten Arbeitsluftspaltes (19) gegenseitig zu einer Nettofeldstärke von Null kompensieren.
3. Elektromagnet nach Anspruch 2, dadurch gekennzeichnet, daß auch der erste Permanentmagnet (8) ringförmig ausgebildet und radial magnetisiert ist.
4. Elektromagnet nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der erste Permanentmagnet ein senkrecht zur Längsachse des Innenkerns (3) magnetisierter Flachmagnet ist.
5. Elektromagnet nach Anspruch 4, dadurch gekennzeichnet, daß der erste Permanentmagnet (40) mit dem einen Pol an einer parallel zur Längsachse des Innenkerns (3) verlaufenden Flachseite (38) des Innenkerns (3) und mit dem anderen Pol an einer Flachseite (39) einer magnetisch leitenden Stütze (42) anliegt, die Teil eines zum Außenkern (1) führenden magnetisch leitenden Deckels (50) ist.
6. Elektromagnet nach Anspruch 4, dadurch gekennzeichnet, daß der Außenkern (1) zwei einander gegenüberliegende Öffnungen (51) hat, über die der erste Permanentmagnet (40) in den Einflußbereich eines von außen aufgeprägten Magnetfeldes gebracht werden kann.
7. Elektromagnet nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der ringförmige Permanentmagnet (8, 14) aus einem Trägerkörper (61) aus weichmagnetischem Material gebildet wird, dessen Umfang als gleichseitiges Vieleck ausgebildet mindestens sechs Anlageflächen (62) aufweist, an denen je ein in radialer Richtung magnetisierter, rechteckförmiger Magnet (60) anliegt, dessen dem Trägerkörper (61) abgewandte Fläche (63) kreisbogenförmig verläuft.
8. Elektromagnet nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der ringförmige Permanentmagnet (8, 14) durch mehrere Magnete (60) ersetzt ist, welche zwischen dem Innenkern (3) und dem Außenkern (1) in der Weise eingefügt sind, daß sie jeweils mit einer Innenfläche, welche gleichzeitig der eine Magnetpol eines der Magneten (60) ist, am Umfang des Innenkerns (3) anliegen und daß sie mit einer äußeren Fläche (63), welche gleichzeitig der andere Magnetpol eines der Magneten (60) ist, an der Innenseite des Aussenkerns (1) anliegen.
EP86106472A 1985-06-05 1986-05-13 Elektromagnet Expired EP0204181B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853520142 DE3520142A1 (de) 1985-06-05 1985-06-05 Elektromagnet
DE3520142 1985-06-05

Publications (2)

Publication Number Publication Date
EP0204181A1 EP0204181A1 (de) 1986-12-10
EP0204181B1 true EP0204181B1 (de) 1989-09-27

Family

ID=6272492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86106472A Expired EP0204181B1 (de) 1985-06-05 1986-05-13 Elektromagnet

Country Status (4)

Country Link
US (1) US4660011A (de)
EP (1) EP0204181B1 (de)
JP (1) JPS61287204A (de)
DE (2) DE3520142A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975157A (zh) * 2011-11-04 2014-08-06 大陆汽车有限公司 用于控制阀的阀组件和控制阀

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190223A (en) * 1988-10-10 1993-03-02 Siemens Automotive L.P. Electromagnetic fuel injector with cartridge embodiment
DE3834446A1 (de) * 1988-10-10 1990-04-12 Mesenich Gerhard Elektromagnetisches einspritzventil in patronenbauweise
US5405050A (en) * 1993-10-27 1995-04-11 Nordson Corporation Electric dispenser
DE10039076A1 (de) * 2000-08-10 2002-02-21 Bosch Gmbh Robert Brennstoffeinspritzventil
US6791442B1 (en) 2003-11-21 2004-09-14 Trombetta, Llc Magnetic latching solenoid
US20060272714A1 (en) * 2005-06-03 2006-12-07 Conrado Carrillo Magnetic circuit design for linear actuator with small coil diameter
EP2064472B1 (de) * 2006-09-07 2016-08-31 Fluid Automation Systems S.A. Bistabiles ventil
EP2916054A2 (de) * 2007-03-28 2015-09-09 Fillon Technologies Dosierventil
DE102010015514A1 (de) * 2010-04-16 2011-10-20 Svm Schultz Verwaltungs-Gmbh & Co. Kg Verriegelungseinheit
US9368266B2 (en) 2014-07-18 2016-06-14 Trumpet Holdings, Inc. Electric solenoid structure having elastomeric biasing member
EP3034853B1 (de) * 2014-12-15 2018-05-23 Continental Automotive GmbH Spulenanordnung und Einspritzventil für Flüssigkeit
EP3064757B1 (de) * 2015-03-05 2018-11-14 Continental Automotive GmbH Verfahren zur herstellung eines injektors zum einspritzen von fluid und injektor zum einspritzen von fluid
EP3141736A1 (de) * 2015-09-09 2017-03-15 Continental Automotive GmbH Leistungsgruppe für einen kraftstoffinjektor sowie kraftstoffinjektor
CN105927436B (zh) * 2016-05-19 2019-04-19 哈尔滨工程大学 自锁式电磁控制喷油器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708245A (en) * 1950-03-22 1955-05-10 Signal Engineering & Mfg Co Alternating current vibratory device
US3091725A (en) * 1958-08-28 1963-05-28 American Radiator & Standard Electro-magnetic device
DE1165224B (de) * 1960-02-12 1964-03-12 Walker O S Co Inc Dauermagnethebevorrichtung
US3316514A (en) * 1965-03-29 1967-04-25 Westinghouse Electric Corp Fail safe electro-magnetic lifting device with safety-stop means
US4072918A (en) * 1976-12-01 1978-02-07 Regdon Corporation Bistable electromagnetic actuator
DE3139949A1 (de) * 1981-02-26 1983-04-28 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoff-einspritzduese fuer brennkraftmaschinen
JPH0134326Y2 (de) * 1981-04-22 1989-10-19
DE3336011A1 (de) * 1983-10-04 1985-04-18 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975157A (zh) * 2011-11-04 2014-08-06 大陆汽车有限公司 用于控制阀的阀组件和控制阀

Also Published As

Publication number Publication date
EP0204181A1 (de) 1986-12-10
US4660011A (en) 1987-04-21
JPS61287204A (ja) 1986-12-17
DE3665956D1 (en) 1989-11-02
DE3520142A1 (de) 1986-12-11

Similar Documents

Publication Publication Date Title
EP0136594B1 (de) Elektromagnet
EP0204181B1 (de) Elektromagnet
EP0772738B1 (de) Elektromagnetisch betätigbares ventil
DE3124071C2 (de)
DE3802648C2 (de)
DE3335169C2 (de) Kraftstoffeinspritzvorrichtung
DE3921151A1 (de) Magnetsystem
DE4310719C2 (de) Verfahren zur Herstellung eines Magnetkreises für ein Ventil
DE2600196A1 (de) Magnetventil
DE4109868A1 (de) Einstellbuchse fuer ein elektromagnetisch betaetigbares ventil und verfahren zur herstellung
DE2062420A1 (de) Elektromagnetisch betätigbares Kraftstoff-Einspritzventil für eine Brennkraftmaschine
DE68915998T2 (de) Kolbenartiger elektromagnet.
DE102010056435A1 (de) Solenoidbetätigte Vorrichtung und Verfahren dafür
EP2313896A2 (de) Metallisches verbundbauteil, insbesondere für ein elektromagnetisches ventil
DE19829380A1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung eines Brennstoffeinspritzventiles
DE68913209T2 (de) Elektrisch betätigbares ventil für kraftstoff-einspritzanlagen für brennkraftmaschinen.
DE3527174A1 (de) Doppeltwirkendes magnetventil
DE2337843A1 (de) Magnet fuer elektromagnetisch betaetigte ventile
DE10300136A1 (de) Kraftstoffeinspritzvorrichtung mit stationärem und bewegbarem Kern
DE3540660A1 (de) Elektromagnetisch betaetigbares kraftstoffeinspritzventil
DE112006002067T5 (de) Vermeidung eines Funkschadens an Ventilgliedern
DE3704542A1 (de) Kraftstoff-einspritzventil
DE4436616C2 (de) Hubmagnet und Verfahren zu seiner Herstellung
EP0213585B1 (de) Elektromagnetisch betätigte Ventilanordnung
EP0278099A1 (de) Elektronmagnetisch getaktetes Einspritzventil für gemischverdichtende Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19870522

17Q First examination report despatched

Effective date: 19881115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3665956

Country of ref document: DE

Date of ref document: 19891102

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920429

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920527

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920728

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930513

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050513