EP0197300B1 - Verfahren zum Steuern und Verbessern der Schriftgüte eines Druckers - Google Patents

Verfahren zum Steuern und Verbessern der Schriftgüte eines Druckers Download PDF

Info

Publication number
EP0197300B1
EP0197300B1 EP86102874A EP86102874A EP0197300B1 EP 0197300 B1 EP0197300 B1 EP 0197300B1 EP 86102874 A EP86102874 A EP 86102874A EP 86102874 A EP86102874 A EP 86102874A EP 0197300 B1 EP0197300 B1 EP 0197300B1
Authority
EP
European Patent Office
Prior art keywords
oscillator
ink
pulse width
values
dac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86102874A
Other languages
English (en)
French (fr)
Other versions
EP0197300A1 (de
Inventor
Jaques Dipl.-Informatiker Carrey (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gesellschaft fur Automationstechnik Mbh
Original Assignee
Gesellschaft fur Automationstechnik Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gesellschaft fur Automationstechnik Mbh filed Critical Gesellschaft fur Automationstechnik Mbh
Priority to AT86102874T priority Critical patent/ATE53340T1/de
Publication of EP0197300A1 publication Critical patent/EP0197300A1/de
Application granted granted Critical
Publication of EP0197300B1 publication Critical patent/EP0197300B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/115Ink jet characterised by jet control synchronising the droplet separation and charging time

Definitions

  • the invention relates to a method for controlling and improving the font quality of a printer, in particular an ink color jet printer, wherein at least one color jet is generated by means of voltage and frequency applied to an oscillator through at least one nozzle of a nozzle plate and charged drops after a certain distance from the nozzle plate solve the ink jet, the drop tear-off distance from the nozzle plate is adjusted via a regulation of the oscillating voltage, and the flight time of a drop is measured from the drop tear-off point to a charge detector.
  • Ink color printers as a form of matrix printers are used today as peripheral devices for electronic computing systems for outputting data. Similar to the principle of a dot matrix printer, the print head of the inkjet printer has a series of vertically arranged nozzles, one below the other, through which jets of liquid ink are sprayed onto the material to be labeled under high pressure. Depending on which nozzles are open or closed, the image of the desired letters and numbers is created on the labeling material from dots of color.
  • nozzles and control devices for example for closing or for electrostatically or magnetically deflecting the undesired color rays
  • continuous color jet printers continuous jet system
  • an ink color jet is generated through a nozzle and then equally spaced ink drops of the same size, which have a charging electrode and a constant one generated by baffle plates pass electric field, the drops being deflected in one direction depending on their charge, while the deflection of the drop in the other direction is carried out by another suitable measure, for example moving the object to be labeled.
  • Disturbance parameters in any case lead to a reduction in the quality of the font.
  • they can be compensated for in a certain defined range by setting the optimum droplet detachment for the current operating state of the system. So far, this compensation has been done optically and manually.
  • the behavior of the droplet formation is observed with a magnifying glass over a stroboscope diode attached to the write head and readjusted by changing a vibration amplitude using a potentiometer. This method is quite unsafe because it depends on the subjective perception of the observer and requires a high degree of system knowledge and practice on the part of the user. This effort leads to a restriction in the range of applications and in the marketability of an ink color printer.
  • An ink color jet printer is known from US Pat. No. 4,496,954, in which the ink jet is passed through charging electrodes. After the drop has been torn off, the individual drops pass between baffle plates and from there either into a vacuum collector or another collector which is preceded by a sensor for determining the drops provided with charge. The oscillation voltage is set via the corresponding values, so that the drop break point is in the satellite-free range.
  • This device is only intended for the initial setup of the ink jet or for a re-setup before a new start, since the above-mentioned collector is engaged in the path of the drops to, for example, a paper to be labeled.
  • the nozzle head is aligned to the collector on the one hand and to a test station for the drop charge on the other.
  • a condition changes during normal operation of the printer such as the printer temperature, there is no further adjustment of the parameters relevant for drip flight.
  • EP-A 0 039 772 A further embodiment of the invention just mentioned can be found in EP-A 0 039 772.
  • two sensors are provided during normal operation of the printer, which detect the drip flight. These sensors measure the flight time of the drop from a drop break point to the respective sensor. These measurement results are compared with other values in an evaluation unit, and the oscillating voltage is thus changed.
  • this does not take into account the fact that, in particular, the change in the color viscosity results in a shift in the drop tear-off point, which can counteract an increase in the oscillating voltage to a certain extent, which is insufficient beyond a certain range and also leads to increased energy consumption.
  • the inventor has set itself the goal of developing an automatic process and integrating it into existing or new process units, which on the one hand regulates the optimal tear-off removal online to ensure the highest possible font quality and on the other hand an increase in the above-mentioned. Display and / or prevent disturbance parameters beyond a certain range.
  • the process is intended to take into account the respective characteristics of the oscillator and nozzle, which are configured in an ink-jet printer, in order not to require very tight manufacturing tolerances.
  • a printer leads to the solution of this task of the type mentioned above, in which the viscosity of the paint is regulated by observing the oscillation voltage and the tear-off distance.
  • a possible additional element of the present invention is the synchronization between drop separation and drop charging. It is first determined whether a charged drop is even displayed on the charge detector. If this is not the case, a phase jump is made at the charging pulse frequency. This continues until the detector indicates a charge.
  • the pulse width of the detected signal is then compared with the pulse width of a stored signal. If deviations are found here again, there is a further phase shift of the charging pulse frequency.
  • the flight time of the drop is only measured when there is a synchronization between drop charging and drop formation. This flight time is then to be compared with a stored flight time, for example from the measurement of the previous flight time. If the actual flight time deviates from the stored flight time, the oscillating voltage is changed until the current flight time is equal to or less than the stored value and the range of the optimal drop tear-off distance is reached.
  • the procedure is otherwise not tied to any specific form of implementation, i.e. it can be integrated into the system as a hardware solution and / or as a software solution. It is required to measure the controlled variable, i.e. the tear-off removal, only the existing components and measuring devices, which are integrated into the system to synchronize the drop charge with its tear-off. Good font quality is guaranteed over a relatively wide viscosity range of the color. Measurements have shown that systems with a defined operating viscosity of approx. 3.1 mPa x sec with a viscosity increase to over 7 mPa x sec still have a high font quality.
  • a device for controlling and improving the font quality of a printer, in particular an ink color jet printer, with an oscillator for generating at least one color jet through at least one nozzle of a nozzle plate, charging electrodes being assigned to the color jet and, after a certain distance from the nozzle plate, drops from the Loosen the ink jet and this drop tear-off distance from the nozzle plate can be adjusted by regulating the oscillating voltage and a drop tear-off control, which interacts with a phase control, is provided, the drop tear-off control is associated with a viscosity control for the paint.
  • the drop stop control contains a device for determining the flight time of a drop, which preferably consists of the charging electrode for applying a charging voltage to the drop, a charging detector for detecting the charge and a flight time counter.
  • a device for determining the flight time of a drop which preferably consists of the charging electrode for applying a charging voltage to the drop, a charging detector for detecting the charge and a flight time counter.
  • both the oscillator and the charging electrode are preceded by a frequency divider, both of which are jointly connected to a system clock feed.
  • the DAC counter is connected via a digital / analog converter to an amplifier which is connected between the oscillator and its pulse converter. In this way, the vibration voltage can be changed.
  • the DigitaVAnalog converter and the DAC counter replace the potentiometer previously used for automatic tracking of the manipulated variable (oscillating voltage).
  • other suitable actuators are also conceivable.
  • Switching elements for synchronizing the charging voltage or a charging pulse with the tear-off are switched on via a second start signal. These switching elements consist of a pulse counter, the above. Frequency divider for the charging electrode and a pulse width comparator. The charge pulse frequency emitted from the frequency divider can be phase-shifted via the latter, the pulse-width comparator being connected both to the charge detector and to the flight time counter and controlling the latter.
  • a pulse width memory is also assigned to the pulse width comparator and contains a value for comparing the current value of the pulse width comparator. This value should preferably be changeable in the pulse width memory, i.e. current values can be adjusted.
  • the flight time counter is followed by a time of flight comparator which compares the time of flight values with values from a time of flight memory and controls the DAC counter. These values in the flight time memory can also be changed by entering current values.
  • the flight time counter is provided with a measured value counter and possibly a rule Direction assigned for a certain number of measured values, wherein a flight time adder is interposed between the flight time counter and the flight time comparator to form an average.
  • the time-of-flight comparator increments or decrements the DAC counter depending on the existing deviations in the time of flight and the oscillator voltage is changed via the DAC counter or the digital / analog converter and amplifier.
  • a flip-flop with which a DAC comparator is connected can be controlled via the first start signal.
  • This DAC comparator in turn compares the values of the DAC counter with values from a DAC reference memory.
  • the reference value in the DAC reference memory represents the vibrating voltage for an optimal drop tear-off depending on the vibrator used and a valid operating viscosity of the paint. It can also be changed if necessary.
  • the DAC comparator detects a difference between the reference value from the DAC reference memory and the value of the DAC counter, it controls a device for regulating the viscosity of the paint. Depending on the difference between the two values, either a valve of a tank for the paint or a valve of a solvent tank is opened and paint or solvent is let into a main tank.
  • the device works fully automatically and is completely independent of the subjective sensations of an observer.
  • the disturbance parameters e.g. The ambient temperature of the system and color pressure fluctuations in the hydraulic system are automatically compensated.
  • the operability of the system within a reaction time to replenish the viscosity is ensured by the optimal drop tear removal for the current ink viscosity is readjusted.
  • the reaction time of the replenishment is relatively short even with long hydraulic lines.
  • a nozzle 2 is arranged in a nozzle plate 1, through which ink color is pressed out of a nozzle prechamber 4. 3 with a supply line is indicated with ink.
  • An oscillator 5 is arranged in this nozzle prechamber 4.
  • the ink color forms an ink jet 6 with a diameter d s (see FIG. 2) and a flow velocity vs.
  • drops 7 form out of the ink jet 6, which then tear off from the ink jet 6 at a drop tear-off point 8 and continue to move at a drop distance ⁇ .
  • the drop-off removal from the drop-off point 8 to the nozzle plate 1 is designated Sa.
  • the drop break-off point lies between two charging electrodes 25, each drop being charged electrostatically differently (according to the shape of the character or matrix).
  • a downstream charge detector 27 checks whether the drops 7 are charged. Then the drop 7 flies through an electric field of two baffles 71 and 72, to which high voltage is applied. Depending on its charge, the drop 7 is deflected in one direction (here vertically). The drop is deflected in the other direction (here horizontally) by the movement of an object 73 to be labeled. If no writing process is triggered, the drop is not deflected by the deflection plates 71, 72, but flies into a collecting tube 74 or the like. and, not shown in detail, is conveyed back into a main tank 64 with a suction pump.
  • the drop detachment distance Sa is now to a considerable extent dependent on a voltage U applied to the oscillator 5, as is shown in FIG. 3.
  • the droplet detachment distance s a gradually decreases. As soon as the oscillating voltage has reached the level U w , the drop detachment distance Sa begins to rise again. The hatched, so-called satellite-free region 9 of droplet formation occurs between two levels U o and Um of the oscillating voltage. An optimal font quality of the system is only guaranteed in this area.
  • the oscillation voltage level U w lies between the two values U o and Um and is representative of the shortest drop tear-off distance.
  • FIG. 5 shows the satellite-free region as a function of the ink viscosity, limited by the oscillation voltage level U o and Um. This satellite-free area becomes smaller with increasing ink viscosity.
  • the course of the oscillation voltage level U w for an optimal droplet removal distance S a is indicated by a broken line.
  • An optical / manual readjustment of this level with increasing ink viscosity is very difficult, since the observer can only form his subjective opinion about the satellite state of the ink jet and not about the appropriate tear-off removal.
  • a circuit for carrying out the method according to the invention consists of three main blocks: a phase control 20, a drop break control 40 and a viscosity control 60 is excited which have the same frequency.
  • This initial value should be such that a sinusoidal voltage of 20 Vpp with a frequency of, for example, 64 kHz is present at the output of an amplifier 45 after a pulse set 44, generated by the frequency divider oscillator 43.
  • the output of the amplifier 45 supplies the oscillator 5 and is the manipulated variable of the entire drop separation control 40. Desired voltage changes for the oscillator 5 are input to the amplifier 45 via a digital / analog converter 54 via 55, which is connected to the DAC counter 41.
  • a pulse counter 21 is started via 11 a and, for 8 clock periods of the 64 kHz of the frequency divider 22, which, like the frequency divider oscillator 43, is connected to the system clock 15, charging voltages alternating between 8 V and 0 V via a charging pulse generator 23 and optionally an amplifier 24 applied to the charging electrode 25 and charged the ink droplets.
  • a flight time counter 46 is started, which is incremented synchronously with the system clock 15.
  • the flight time counter 46 can be stopped by the output 16 of a pulse width comparator 26, provided the drops 7 have been loaded with a charge.
  • the flight time counter 46 reaches a maximum counter reading and causes the charging pulse frequency to experience a phase jump 17 of approximately +12 ° with respect to the oscillator frequency.
  • This phase jump is achieved in that the divider factor of the frequency divider 22 is changed before the charge pulse generator 23 for one clock period.
  • the phase control is repeated until drops with charges are detected by the charge detector 27 and these values are applied as a rectangular pulse via a charge amplifier 28, optionally with pulse processing, at the input of the pulse width comparator 26.
  • the pulse width comparator 26 compares the current pulse width of the signal with the last maximum pulse width from a pulse width memory 29, which was originally input to the pulse width memory 29 via 30 by the pulse width comparator 26.
  • the flight time counter 46 is stopped via the output 16 and a measured value counter 47 is decremented via 16a. If the current pulse width is larger, the old value is overwritten with the new one in the memory 29 via 30 and the phase of the charging pulse generator 23 is shifted in the same direction as the last measurement process by 6 ° with respect to the oscillator frequency. If the current pulse width is smaller, the phase is shifted by +6 ° and both values are shifted by -6 ° .
  • the connections 18, 19 between pulse width comparator 26 and frequency divider 22 are intended for these phase jumps.
  • This phase control 20 ensures an optimal synchronization between the charging of the drops 7 with a specific charge and their tearing off. Furthermore, the electrical properties of the measuring device (charging electrode 25, charge detector 27 and amplifier 28) are automatically adapted by the adaptive method of pulse width evaluation.
  • the phase control 20 and drop break control 40 are interlinked via the pulse width comparator 26, among other things. As stated above, this stops the flight time counter 46 and decrements the measured value counter 47 only when the maximum pulse width has been detected by the phase control 20.
  • the counter reading at the output of the flight time counter 46 is directly proportional to the flight time of the drops 7, namely from their demolition 8 to a charge detector 27, that is to say inversely proportional to the drop detachment distance S a to the nozzle plate 1.
  • the current counter reading then becomes an average in a time-of-flight adder 48 added.
  • an output 33 of the measured value counter 47 activates a time-of-flight comparator 49, so that the current mean value of the drop flight time is compared with the last mean value from a time-of-flight memory 50. The last mean value is then overwritten with the current mean value in time-of-flight memory 50 through 34. If the current mean value of the drop flight time is greater than the last mean value, ie the drop tear-off distance Sa in relation to the nozzle plate 1 has become smaller, the DAC counter 41 is incremented via the connection 35 and the oscillating voltage is increased by approximately 2 V. This control process is repeated until the current mean value of the trop the flight time has become equal to or less than the last mean value and the range of optimal drop removal has been reached.
  • the DAC counter 41 is decremented via the connection 36.
  • a flip-flop 51 which was reset by the signal 10 "start control" via 10b, is set again, so that a DAC comparator 52 is activated via 37 and an output 38 of the DAC counter 41 with an output 39 of a DAC reference memory 53 for all other control processes are continuously compared.
  • the value at the output 38 of the DAC counter 41 is loaded when the flip-flop 51 is set in the DAC reference memory 53, as indicated by arrow 12. This value serves as a reference of the vibrating voltage for optimal droplet detachment depending on the vibrator 5 used and the valid operating viscosity of the ink.
  • the DAC counter 41 is decremented during the next control processes as long as the drop tear-off distance S a is to the right of the turning point U w or in the area 9 (see FIG. 3), ie the currently measured drop flight time is greater than that of the last measurement or at least the same.
  • the droplet detachment distance S a is larger and is therefore to the left of the area of the inflection point Uw (see FIG. 3).
  • the DAC counter 41 is incremented until the drop removal distance S a is again to the right of the area of the turning point Uw.
  • the output 61 from the DAC comparator 52 activates a valve 62 of an ink tank 63, so that a main tank 64 up to a maximum Level is refilled with ink. If, on the other hand, the value at the output 38 of the DAC counter 41 is greater than the reference value, the output 61 of the DAC comparator 52 activates a solvent valve 65 of a solvent tank 66 and the main tank 64 is refilled with solvent up to the maximum fill level. The ink viscosity in the main tank 64 thus decreases again.
  • a level monitor 67 is arranged in the main tank 64, the signals of which are sent to a level monitor 68.
  • Level monitoring 68, valves 62 and 65 and output 61 of 52 are connected to one another by corresponding suitable switching elements, such as AND gate 69 and amplifier 70.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Dot-Matrix Printers And Others (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Steuern und Verbessern der Schriftgüte eines Drukkers, insbesondere eines Tintenfarbstrahldrukkers, wobei zumindest ein Farbstrahl mittels an einen Schwinger angelegte Spannung und Frequenz durch zumindest eine Düse einer Düsenplatte erzeugt wird und sich aufgeladene Tropfen nach einer bestimmten Entfernung von der Düsenplatte aus dem Farbstrahl lösen, deren Tropfenabrißentfernung von der Düsenplatte über eine Regelung der Schwingerspannung eingestellt wird, und die Flugzeit eines Tropfens vom Tropfenabrißpunkt bis zu einem Ladungsdetektor gemessen wird.
  • Tintenfarbstrahldrucker als eine Form von Matrixdruckem finden heute als Peripheriegeräte für elektronische Rechenanlagen zur Ausgabe von Daten Anwendung. Ähnlich dem Prinzip eines Nadeldruckers besitzt der Schreibkopf des Tintenstrahldruckers eine Reihe von senkrecht unter- und nebeneinander angeordneten Düsen, durch die Strahlen flüssiger Tintenfarbe unter hohem Druck auf das zu beschriftende Material gespritzt werden. Je nach dem, welche Düsen geöffnet oder geschlossen sind, entsteht auf dem Beschriftungsmaterial aus Farbpünktchen das Bild der gewünschten Buchstaben und Ziffern. Beim Schreiben wandern Düsen und Steuervorrichtungen (beispielsweise zum Schließen oder zum elektrostatischen oder magnetischen Ablenken der nicht gewünschten Farbstrahlen) zeilenweise am Beschriftungsmaterial vorbei und spritzen ein Zeichen nach dem anderen.
  • Im weiteren sind sogenannte Dauer-Farbstrahldrucker (kontinuierliches Jet-System) bekannt, beispielsweise aus der DE-PS 2 446 740. Bei ihm wird ein Tintenfarbstrahl durch eine Düse und danach gleichbeabstandete Tintentropfen gleicher Größe erzeugt, die eine Ladeelektrode und ein durch Ablenkplatten erzeugtes konstantes elektrisches Feld passieren, wobei die Tropfen je nach ihrer Ladung eine Ablenkung in eine Richtung erfahren, während die Ablenkung des Tropfens in die andere Richtung durch eine andere geeignete Maßnahme, beispielsweise das Bewegen des zu beschriftenden Gegenstandes erfolgt.
  • Im wesentlichen beeinflussen zwei Störparameter die Schriftgüte eines derartigen Dauer-Tintenfarbstrahldruckers, nämlich
    • - die Umgebungstemperatur des Systems, welche die Viskosität der Tinte verändert (besonders bei alkohollöslichen Tinten, wie MEK (Methyläthylketon) und Äthanol und
    • - Tintendruckschwankungen im Hydrauliksystem.
  • Die o.g. Störparameter führen in jedem Fall zu einer Minderung der Schriftgüte. Sie können jedoch in einem bestimmten definierten Bereich kompensiert werden, indem für den jeweils aktuellen Betriebszustand des Systems die optimale Tropfenabrißentfemung eingestellt wird. Diese Kompensation erfolgt bislang optisch-manuell. Dabei wird das Verhalten der Tropfenbildung mit einer Lupe über einer am Schreibkopf angebrachten Stroboskopdiode beobachtet und durch Änderung einer Schwingeramplitude mittels eines Potentiometers nachgesteuert. Dieses Verfahren ist recht unsicher, da es von dem subjektiven Empfinden des Beobachters abhängt, und verlangt seitens des Anwenders ein hohes Maß an Systemkenntnis und Übung. Dieser Aufwand führt zu einer Einschränkung im Einsatzspektrum und in der Marktfähigkeit eines Tintenfarbstrahldruckers.
  • Aus der US-A 4 496 954 ist ein Tintenfarbstrahldrucker bekannt, bei welchem der Tintenstrahl durch Ladeelektroden hindurchgeführt wird. Nach erfolgtem Tropfenabriß gelangen die einzelnen Tropfen zwischen Ablenkplatten und von dort entweder in einen Vakuumsammler oder einen anderen Sammler, dem ein Sensor zur Ermittlung der mit Ladung versehenen Tropfen vorgeschaltet ist. Über die entsprechenden Werte wird die Schwingerspannung eingestellt, so daß der Tropfenabrißpunkt im satellitenfreien Bereich liegt.
  • Diese Vorrichtung ist nur für die erstmalige Einrichtung des Farbstrahles oder für eine Wiedereinrichtung vor einem neuerlichen Beginn gedacht, da der oben genannte Sammler in den Weg der Tropfen zu beispielsweise einem zu beschriftenden Papier eingeschaltet ist. In diesem Vorabtest wird der Düsenkopf einmal zu dem Sammler hin ausgerichtet und zum anderen zu einer Teststation für die Tropfenladung. Ändert sich jedoch beim normalen Betrieb des Druckers eine Bedingung, wie beispielsweise die Druckertemperatur, so findet keine weitere Anpassung der für den Tropfenflug maßgeblichen Parameter statt.
  • Eine weitere Ausgestaltung der eben genannten Erfindung findet sich in der EP-A 0 039 772. Dort sind zwei Sensoren im normalen Betrieb des Druckers vorgesehen, welche den Tropfenflug detektieren. Diese Sensoren messen die Flugzeit des Tropfens von einem Tropfenabrißpunkt zu dem jeweiligen Sensor. In einer Auswerteeinheit werden diese Meßergebnisse mit anderen Werten verglichen und so die Schwingerspannung verändert. Dabei bleibt jedoch unberücksichtigt, daß insbesondere sich durch die Veränderung der Farbviskosität eine Verschiebung des Tropfenabrißpunktes ergibt, der zwar eine Erhöhung der Schwingerspannung in gewissem Umfang entgegenwirken kann, was über einen gewissen Bereich hinaus ungenügend ist und zudem zu einer erhöhten Energieaufnahme führt.
  • Der Erfinder hat sich zum Ziel gesetzt, ein automatisches Verfahren zu entwickeln und in bestehende bzw. neue Prozeßeinheiten zu integrieren, das einerseits die optimale Tropfenabrißentfemung On-line regelt, um eine höchstmögliche Schriftgüte zu gewährleisten und andererseits eine Zunahme der o.g. Störparameter über einen bestimmten Bereich hinaus anzuzeigen und/oder zu verhindern. Dabei soll das Verfahren die jeweiligen Charakteristiken von Schwinger und Düse berücksichtigen, die in einem Tintenfarbstrahldrucker konfigurieren, um keine sehr engen Fertigungstoleranzen erforderlich zu machen.
  • Zur Lösung dieser Aufgabe führt ein Drucker der o.g. Art, bei welchem über eine Beobachtung der Schwingerspannung und der Tropfenabrißentfernung die Viskosität der Farbe geregelt wird.
  • Dadurch erfolgt nach der Regelung der optimalen Tropfenabrißentfemung ein ständiger Vergleich der Schwingerspannungswerte zum Beispiel mit Referenzwerten aus einem Speicher. Diese Referenzwerte sind Werte einer Schwingerspannung für eine optimale Tropfenabrißentfernung in Abhängigkeit des eingesetzten Schwingers und einer gültigen Betriebsviskosität der Farbe. Werden Abweichungen der Schwingerspannungswerte von diesem Referenzwert festgestellt, so wird erfindungsgemäß die Viskosität der Farbe verändert. Es ist bekannt, daß eine zunehmende Farbviskosität eine stetige Erhöhung der Schwingerspannung erfordert, so daß bei einer gewissen Farbviskosität der Regelbereich der optimalen Tropfenabrißentfernung verlassen wird. Dies wird durch die Beeinflussung der Farbviskosität selbst vermieden.
  • Ein mögliches zusätzliches Element der vorliegenden Erfindung ist die Synchronisation zwischen Tropfenabriß und Tropfenaufladung. Dabei wird zuerst festgestellt, ob ein geladener Tropfen am Ladungsdetektor überhaupt angezeigt wird. Ist dies nicht der Fall, wird bei der Ladeimpulsfrequenz ein Phasensprung vorgenommen. Dies geschieht solange, bis der Detektor eine Ladung anzeigt.
  • Danach wird die Pulsbreite des detektierten Signals mit der Pulsbreite eines abgespeicherten Signals verglichen. Werden hier wiederum Abweichungen festgestellt, so erfolgt eine weitere Phasenverschiebung der Ladeimpulsfrequenz.
  • Erst wenn danach eine Synchronisation zwischen Tropfenaufladung und Tropfenbildung erfolgt ist, wird die Flugzeit des Tropfens gemessen. Diese Flugzeit ist dann mit einer gespeicherten Flugzeit beispielsweise aus der Messung der vorangegangenen Flugzeit zu vergleichen. Beim Abweichen der tatsächlichen Flugzeit von der gespeicherten Flugzeit wird die Schwingerspannung verändert, bis die aktuelle Flugzeit gleich oder kleiner ist als der gespeicherte Wert und dadurch der Bereich der optimalen Tropfenabrißentfernung erreicht ist.
  • In der Praxis hat es sich als günstig erwiesen, nicht jede einzelne Flugzeit mit dem Wert aus dem Speicher zu vergleichen, sondern eine Vielzahl von Flugzeiten aufzuaddieren und daraus einen Mittelwert zu bilden, welcher mit einem Mittelwert aus dem Speicher verglichen wird.
  • Das Verfahren ist im übrigen an keine bestimmte Realisierungsform gebunden, d.h. es kann als Hardwarelösung und/oder als Softwarelösung in das System integriert werden. Es benötigt zur Meßung der Regelgröße, d.h. der Tropfenabrißentfemung, ausschließlich die vorhandenen Komponenten und Meßeinrichtungen, welche zur Synchronisation der Tropfenaufladung auf ihren Abriß in das System integriert sind. Es wird eine gute Schriftqualität über einen relativ breiten Viskositätsbereich der Farbe gewährleistet. Messungen haben gezeigt, daß Systeme mit einer definierten Betriebsviskosität von ca. 3,1 mPa x sec bei einer Viskositätszunahme auf über 7 mPa x sec noch eine hohe Schriftgüte besitzen.
  • Bei einer erfindungsgemäßen Vorrichtung zum Steuern und Verbessern der Schriftgüte eines Druckers, insbesondere eines Tintenfarbstrahldruckers, mit einem Schwinger zum Erzeugen zumindest eines Farbstrahls durch zumindest eine Düse einer Düsenplatte, wobei dem Farbstrahl Ladeelektroden zugeordnet sind und nach einer bestimmten Entfernung von der Düsenplatte sich Tropfen aus dem Farbstrahl lösen und diese Tropfenabrißentfernung von der Düsenplatte über eine Regelung der Schwingerspannung einstellbar sowie eine Tropfenabrißregelung, die mit einer Phasenregelung zusammenwirkt, vorgesehen ist, ist mit der Tropfenabrißregelung eine Viskositätsregelung für die Farbe verbunden. Die Tropfenabrißregelung enthält eine Einrichtung zum Bestimmen der Flugzeit eines Tropfens, die bevorzugt aus der Ladeelektrode zum Anlegen einer Ladespannung an den Tropfen, einem Ladedetektor zum Detektieren der Ladung und einem Flugzeitzähler besteht. Sowohl dem Schwinger wie auch der Ladelektrode ist außer einem Impulsgenerator bzw. Impulsumsetzer ein Frequenzteiler vorgeschaltet, welche beide gemeinsam mit einer Systemtakteinspeisung verbunden sind.
  • Ober ein Startsignal wird ein DAC-Zähler (DAC = Digital-Analog-Converter) angeregt, welcher wiederum mit einem DAC-Anfangswert-Speicher verbunden ist. Der DAC-Zähler steht über einen Digital/Analog-Wandler mit einem Verstärker in Verbindung, welcher zwischen den Schwinger und seinen Impulsumsetzer eingeschaltet ist. Auf diese Weise kann die Schwingerspannung verändert werden. Hier ersetzt der DigitaVAnalog-Wandler und der DAC-Zähler das zur automatischen Nachführung der Stellgröße (Schwingerspannung) bislang verwendete Potentiometer. Es sind jedoch auch andere geeignete Stellglieder denkbar.
  • Über ein zweites Startsignal werden Schaltelemente zum Synchronisieren der Ladespannung bzw. eines Ladeimpulses mit dem Tropfenabriß zugeschaltet. Diese Schaltelemente bestehen aus einem Impulszähler, dem o.g. Frequenzteiler für die Ladeelektrode und einem Pulsbreitecomparator. Ober letzteren kann die aus dem Frequenzteiler abgegebene Ladeimpulsfrequenz phasenverschoben werden, wobei der Pulsbreitecomparator sowohl mit dem Ladungsdetektor wie auch mit dem Flugzeitzähler in Verbindung steht und letzteren steuert. Dem Pulsbreitecomparator ist im übrigen ein Pulsbreitespeicher zugeordnet, welcher einen Wert zum Vergleichen des aktuellen Wertes des Pulsbreitecomparators enthält. Bevorzugt soll dieser Wert im Pulsbreitespeicher veränderbar, d.h. aktuellen Werten angleichbar sein.
  • Dem Flugzeitzähler folgt ein Flugzeitcomparator nach, welcher die Flugzeitwerte mit Werten aus einem Flugzeitspeicher vergleicht und den DAC-Zähler ansteuert. Auch diese Werte im Flugzeitspeicher können durch Eingabe von aktuellen Werten verändert werden.
  • Bevorzugt soll jedoch nicht jede einzelne Flugzeit mit einem Wert aus dem Flugzeitspeicher verglichen werden. Zur Erfassung einer Mehrzahl von Werten bzw. deren Mittelwert ist dem Flugzeitzähler ein Meßwertzähler und gegebenenfalls eine Regeleinrichtung für eine bestimmte Anzahl von Meßwerten zugeordnet, wobei zwischen Flugzeitzähler und Flugzeitcomparator ein Flugzeitaddierer zum Bilden eines Mittelwertes zwischengeschaltet ist.
  • Der Flugzeitcomparator inkrementiert oder dekrementiert den DAC-Zähler je nach den vorhandenen Abweichungen der Flugzeit und über den DAC-Zähler bzw. den Digital/Analog-Wandler und Verstärker wird die Schwingerspannung verändert.
  • Weiterhin ist über das erste Startsignal ein Flipflop ansteuerbar, mit dem ein DAC-Comparator verbunden ist. In diesem DAC-Comparator werden wiederum die Werte des DAC-Zählers mit Werten aus einem DAC-Referenzspeicher verglichen. Der Referenzwert im DAC-Referenzspeicher stellt die Schwingerspannung für eine optimale Tropfenabrißentfernung in Abhängigkeit des eingesetzten Schwingers und einer gültigen Betriebsviskosität der Farbe dar. Auch er kann gegebenfalls verändert werden. Stellt der DAC-Comparator eine Differenz zwischen dem Referenzwert aus dem DAC-Referenzspeicher und dem Wert des DAC-Zählers fest, so steuert er eine Einrichtung zur Regelung der Viskosität der Farbe an. Je nach Differenz der beiden Werte wird entweder ein Ventil eines Tanks für die Farbe oder ein Ventil eines Lösungsmitteltanks geöffnet und Farbe bzw. Lösungsmittel in einen Haupttank eingelassen.
  • Insgesamt arbeitet die Vorrichtung vollautomatisch und ist völlig unabhängig von subjektiven Empfindungen eines Beobachters. Die Störparameter, wie z.B. Umgebungstemperatur des Systems und Farbdruckschwankungen im Hydrauliksystem, werden automatisch ausgeglichen. Die Betriebsfähigkeit des Systems innerhalb einer Reaktionszeit zur Nachdosierung der Viskosität wird gewährleistet, indem die optimale Tropfenabrißentfernung für die aktuelle Tintenviskosität nachgeregelt wird. Im übrigen ist die Reaktionszeit der Nachdosierung auch bei langen Hydraulikleitungen relativ gering.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels, sowie anhand der Zeichung; diese zeigt in
    • Figur 1 eine vergrößerte schematisierte Darstellung der Arbeitsweise eines Farbstrahldrucker;
    • Figur 2 ein vergrößerter Ausschnitt aus Fig. 1;
    • Figur 3 eine graphische Darstellung der Abhängigkeit der Tropfenabdßentfemung von der an einen Schwinger angelegten Spannung;
    • Figur 4 eine graphische Darstellung der Abhängigkeit eines Schwingerspannungspegels von der Farbviskosität;
    • Figur 5 eine graphische Darstellung der Abhängigkeit eines satellitenfreien Bereichs von der Farbviskosität;
    • Figur 6 ein Blockschaltbild einer Schaltung zur Durchführung des erfindungsgemäßen Verfahrens zur Regelung der Tropfenabrißentfernung.
  • Nach Figur 1 ist in einer Düsenplatte 1 eine Düse 2 angeordnet, durch welche Tintenfarbe aus einer Düsenvorkammer 4 gepreßt wird. Mit 3 ist eine Versorgungsleitung mit Tinte angedeutet. In dieser Düsenvorkammer 4 ist ein Schwinger 5 angeordnet. Die Tintenfarbe bildet nach der Düse 2 einen Tintenstrahl 6 mit einem Durchmesser ds (siehe Fig. 2) und einer Strömungsgeschwindigkeit vs. Nach einer gewissen Entfernung von der Düsenplatte 1 formen sich aus dem Tintenstrahl 6 Tropfen 7 heraus, welche dann an einem Tropfenabrißpunkt 8 von dem Tintenstrahl 6 abreißen und sich mit einem Tropfenabstand λ weiter bewegen. Die Tropfenabrißentfemung vom Tropfenabrißpunkt 8 zur Düsenplatte 1 ist mit Sa bezeichnet.
  • Der Tropfenabrißpunkt liegt zwischen zwei Ladeelektroden 25, wobei jeder Tropfen unterschiedlich (entsprechend der Form des Zeichens oder Matrize) elektrostatisch aufgeladen wird. Ein nachgeschalteter Ladungsdetektor 27 prüft, ob die Tropfen 7 geladen sind. Anschließend duchfliegt der Tropfen 7 ein elektrisches Feld zweier Ablenkplatten 71 und 72, an welche Hochspannung angelegt ist. Entsprechend seiner Ladung wird der Tropfen 7 in eine Richtung (hier vertikal) abgelenkt. Die Ablenkung des Tropfens in die andere Richtung (hier horizontal) erfolgt durch die Bewegung eines zu beschriftenden Gegenstandes 73. Ist kein Schreibprozeß ausgelöst, wird der Tropfen nicht von den Ablenkplatten 71, 72 abgelenkt, sondern fliegt in ein Fangrohr 74 od.dgl. und wird, nicht näher gezeigt, mit einer Absaugpumpe wieder in einen Haupttank 64 zurückbefördert.
  • Die Tropfenabrißentfemung Sa ist nun in erheblichem Maße von einer an den Schwinger 5 angelegten Spannung U abhängig, wie dies in Figur 3 gezeigt ist.
  • Wird die Schwingerspannung U, beginnend mit Ub kontinuierlich erhöht, so nimmt die Tropfenabrißentfemung sa allmählich ab. Sobald die Schwingerspannung den Pegel Uw erreicht hat, beginnt die Tropfenabrißentfemung Sa wieder anzusteigen. Zwischen zwei Pegeln Uo und Um der Schwingerspannung stellt sich der schraffierte sog. satellitenfreie Bereich 9 der Tropfenbildung ein. Eine optimale Schriftgüte des Systems ist ausschließlich in diesem Bereich gewährleistet.
  • Der Schwingerspannungspegel Uw liegt zwischen den beiden Werten Uo und Um und ist für die kürzeste Tropfenabrißentfernung stellvertretend.
  • Eine Zunahme der Tintenviskosität bei unveränderter Systemkonfiguration (Schwinger/Düse) und bei konstantem Tintendruck würde eine Kurvenschar mit unterschiedlichen Werten für die Schwingerspannungspegel Uw, Uo und Um in Figur 2 ergeben. Stellvertretend wird in Figur 4 die Abhängigkeit des Schwingerspannungspegels Uw, der zur Einstellung der kürzesten Tropfenabrißentfernung und somit des satellitenfreien Bereichs repräsentativ ist, von der Tintenviskosität ηt dargestellt.
  • Es ist klar ersichtlich, daß eine steigende Tintenviskosität ηt eine Erhöhung des Schwingerspannungspegels Uw erfordert, um eine optimale Tropfenabrißentfernung Sa zu erreichen. Dabei nimmt die Tropfenabrißenttemung sa, bezogen auf die Düsenplatte 1, ab.
    • Typische Werte für Uw min. bei ηtmin = 2,5 mPa x sec: 35 - 60 V.
    • Typische Werte für Uw max. bei llt max. = 5 mPa x sec: 80 - 120 V.
  • Die Streuung der Grenzwerte für Uw min. und Uw max. liegen in den verschiedenen Schwingercharakteristiken begründet.
  • Figur 5 stellt in Abhängigkeit der Tintenviskosität den satellitenfreien Bereich dar, eingegrenzt durch die Schwingerspannungspegel Uo und Um. Dabei wird mit steigender Tintenviskosität dieser satellitenfreie Bereich kleiner. Der Verlauf des Schwingerspannungspegels Uw für eine optimale Tropfenabrißentfernung Sa ist gestrichelt gekennzeichnet. Eine optisch/manuelle Nachsteuerung dieses Pegels bei zunehmender Tintenviskosität ist nur sehr schwer möglich, da der Beobachter seine subjektive Meinung ausschließlich über den Satellitenzustand des Tintenstrahls bilden kann und nicht über die geeignete Tropfenabrißentfemung.
  • Eine Schaltung zur Durchführung des erfindungsgemäßen Verfahrens besteht nach Figur 6 aus drei Hauptblöcken: Einer Phasenregelung 20, einer Tropfenabrißregelung 40 und einer Viskositätsregelung 60. Phasenregelung 20 und Tropfenabrißregelung 40 sind über eine Systemtaktverbindung 15 miteinander gekoppelt, wobei einerseits ein Frequenzteiler 22, andererseits ein Frequenzteiler 43 angeregt wird, welche dieselbe Frequenz haben.
  • Ein erstes Steuersignal 10 = "Startregelung" gilt der Tropfenabrißregelung 40. Mit ihm 10a wird ein DAC-Zähler 41 (DAC = DigitaVAnalog-Converter) so angeregt, daß er sich mit einem DAC-Anfangswert 42 auflädt. Dieser Anfangswert soll so sein, daß am Ausgang eines Verstärkers 45 nach einem Impulssetzer 44 beispielsweise eine Sinusspannung von 20 Vpp mit einer Frequenz von beispielsweise 64 kHz anliegt, generiert von dem Frequenzteilerschwinger 43. Der Ausgang des Verstärkers 45 versorgt den Schwinger 5 und ist die Stellgröße der gesamten Tropfenabrißregelung 40. Gewünschte Spannungsänderungen für den Schwinger 5 werden dem Verstärker 45 über einen Digital/Analog-Wandler 54 über 55 eingegeben, welcher mit dem DAC-Zähler 41 in Verbindung steht.
  • Mit einem zweiten Steuersignal 11 = "Start Synchronisation" wird die Phasenregelung 20 eingeleitet. Dabei wird ein lmpulszähler 21 über 11 a gestartet und für 8 Taktperioden der 64 kHz des Frequenzteilers 22, welcher wie der Frequenzteilerschwinger 43 mit dem Systemtakt 15 in Verbindung steht, Ladespannungen abwechselnd von 8 V und 0 V über einen Ladeimpulsgenerator 23 und gegebenenfalls einen Verstärker 24 an die Ladeelektrode 25 angelegt und die Tintentröpfchen aufgeladen. Mit dem Steuersignal 11 b wird gleichzeitig ein Flugzeitzähler 46 gestartet, der synchron zum Systemtakt 15 inkrementiert wird. Der Flugzeitzähler 46 kann vom Ausgang 16 eines Pulsbreitecomparators 26 gestoppt werden, vorausgesetzt die Tropfen 7 sind mit einer Ladung geladen worden. Andernfalls erreicht der Flugzeitzähler 46 einen maximalen Zählerstand und bewirkt, daß die Ladeimpulsfrequenz einen Phasensprung 17 von ca. +12° gegenüber der Schwingerfrequenz erfährt. Dieser Phasensprung wird dadurch erreicht, daß der Teilerfaktor des Frequenzteilers 22 vor dem Ladeimpulsgenerator 23 für eine Taktperiode geändert wird.
  • Die Phasenregelung wird solange wiederholt, bis Tropfen mit Ladungen von dem Ladungsdetektor 27 detektiert werden und diese Werte über einen Ladungsverstärker 28 gegebenenfalls mit Pulsaufbereitung am Eingang des Pulsbreitecomparators 26 als ein Rechteckimpuls anleigen. Der Pulsbreitecomparator 26 vergleicht dann die aktuelle Pulsbreite des Signals mit der letzten maximalen Pulsbreite aus einem Pulsbreitespeicher 29, welche ursprünglich vom Pulsbreitecomparator 26 dem Pulsbreitespeicher 29 über 30 eingegeben worden war. Gleichzeitig wird der Flugzeitzähler 46 über den Ausgang 16 gestoppt und ein Meßwertzähler 47 über 16a dekrementiert. Ist die aktuelle Pulsbreite größer, wird der alte Wert mit dem neuen im Speicher 29 über 30 überschrieben und die Phase des Ladeimpulsgenerators 23 richtungsgleich zum letzten Meßvorgang um 6° gegenüber der Schwingerfrequenz verschoben. Ist die aktuelle Pulsbreite kleiner, so wird die Phase um +6°, und sind beide Werte gleich um -6° verschoben. Für diese Phasensprünge sind die Verbindungen 18, 19 zwischen Pulsbreitecomparator 26 und Frequenzteiler 22 gedacht.
  • Durch diese Phasenregelung 20 wird eine optimale Synchronistation zwischen der Aufladung der Tropfen 7 mit einer bestimmten Ladung und deren Abriß bewirkt. Des weiteren werden die elektrischen Eigenschaften der Meßeinrichtung (Ladeelektrode 25, Ladungsdetektor 27 und -verstärker 28) durch das adaptive Verfahren der Pulsbreiteauswertung automatisch angepasst.
  • Die Phasenregelung 20 und Tropfenabrißregelung 40 sind unter anderem über den Pulsbreitecomparator 26 miteinander verknüpft. Dieser stoppt, wie oben ausgeführt, den Flugzeitzähler 46 und dekrementiert den Meßwertzähler 47 nur dann, wenn die maximale Pulsbreite von der Phasenregelung 20 detektiert wurde. Der Zählerstand am Ausgang des Flugzeitzählers 46 ist direkt proportional der Flugzeit der Tropfen 7 und zwar von ihrem Abriß 8 bis zu einem Ladungsdetektor 27, d.h. umgekehrt proportional der Tropfenabrißentfemung Sa zu der Düsenplatte 1. Der aktuelle Zählerstand wird dann zu einer Mittelwertbildung in einem Flugzeitaddierer 48 hinzuaddiert. Ist eine Anzahl der benötigten Meßwerte 56 erreicht, aktiviert ein Ausgang 33 des Meßwertzählers 47 einen Flugzeitcomparator 49, so daß der aktuelle Mittelwert der Tropfenflugzeit mit dem letzten Mittelwert aus einem Flugzeitspeicher 50 verglichen wird. Anschließend wird der letzte Mittelwert mit dem aktuellen Mittelwert im Flugzeitspeicher 50 über 34 überschrieben. Ist der aktuelle Mittelwert der Tropfenflugzeit größer als der letzte Mittelwert, d.h. die Tropfenabrißentfernung Sa bezogen auf die Düsenplatte 1 ist kleiner geworden, so wird der DAC-Zähler 41 über die Verbindung 35 inkrementiert und die Schwingerspannung um ca. 2 V erhöht. Dieser Regelvorgang wird solange wiederholt, bis der aktuelle Mittelwert der Tropfenflugzeit gleich oder kleiner als der letzte Mittelwert geworden ist und dadurch der Bereich der optimalen Tropfenentfernung erreicht wurde.
  • Ist dieser Zustand erreicht, so wird der DAC-Zähler 41 über die Verbindung 36 dekrementiert. Ein Flipflop 51, welches durch das Signal 10 "Startregelung" über 10b rückgesetzt wurde, wird wieder gesetzt, so daß ein DAC-Comparator 52 über 37 aktiviert und ein Ausgang 38 des DAC-Zählers 41 mit einem Ausgang 39 eines DAC-Referenzspeichers 53 für alle weiteren Regelvorgänge kontinuierlich verglichen wird.
  • Beim erstmaligen Einschalten (Inbetriebnahme) des Systems wird der Wert am Ausgang 38 des DAC-Zählers 41 mit dem Setzen des Flipflops 51 im DAC-Referenzspeicher 53 geladen, wie dies über Pfeil 12 angedeutet ist. Dieser Wert dient als Referenz der Schwingerspannung für optimale Tropfenabrißentfemung in Abhängigkeit des eingesetzten Schwingers 5 und der gültigen Betriebsviskosität der Tinte.
  • Zur Regelung der optimalen Tropfenabrißentfernung wird während der nächsten Regelvorgänge der DAC-Zähler 41 solange dekrementiert, solange sich die Tropfenabrißentfemung Sa rechts vom Wendepunkt Uw oder in dem Bereich 9 befindet (siehe Fig. 3), d.h. die aktuelle gemessene Tropfenflugzeit ist größer als die der letzten Meßung oder zumindest gleich.
  • Wird die aktuelle gemessene Tropfenflugzeit kleiner als die der letzten Meßung, so ist die Tropfenabrißentfemung Sa größer and liegt deshalb links vom Bereich des Wendepunktes Uw (siehe Fig. 3). Der DAC-Zähler 41 wird solange inkrementiert, bis sich die Tropfenabrißentfemung Sa wiederum rechts vom Bereich des Wendepunktes Uw befindet. Durch diese Regelung der Tropfenabrißentfernung können Tintendruckschwankungen in Hydrauliksystemen bereits allein schon ausgeglichen werden.
  • Eine zunehmende Tintenviskosität erfordert eine stetige Erhöhung der Schwingerspannung U, um im Regelbereich der optimalen Tropfenabrißentfernung Sa zu bleiben (siehe Fig. 4). In Fig. 6 wird ein einfaches Verfahren und eine Anordnung zur Viskositätregelung 60' gezeigt. Der DAC-Comparator 52 vergleicht kontinuierlich den Ausgang 38 des DAC-Zählers 41 mit dem Wert des Ausgangs 39 aus dem DAC-Referenzspeicher 53. Dieser Referenzwert ist stellvertretend für die Schwingerspannung U, die zur Erreichung der Optimalen Tropfenabrißentfemung Sa erforderlich ist. Ist bei einer gültigen Betriebsviskosität der Wert am Ausgang 38 des DAC-Zählers 41 kleiner oder gleich demjenigen aus dem Referenzspeicher 53, so aktiviert der Ausgang 61 vom DAC-Comparator 52 ein Ventil 62 eines Tintentanks 63, so daß ein Haupttank 64 bis zu einer maximalen Füllstandshöhe mit Tinte nachgefüllt wird. Ist dagegen der Wert am Ausgang 38 des DAC-Zählers 41 größer als der Referenzwert, wird vom Ausgang 61 des DAC-Comparators 52 ein Lösungsmittelventil 65 eines Lösungsmittelstanks 66 aktiviert und der Haupttank 64 bis zur maximalen Füllstandshöhe mit Lösungsmittel nachgefüllt. Damit nimmt die Tintenviskosität im Haupttank 64 wieder ab.
  • Weiterhin ist im Haupttank 64 ein Füllstandswächter 67 angeordnet, dessen Signale an eine Füllstandsüberwachung 68 gegeben werden. Füllstandsüberwachung 68, Ventile 62 und 65 sowie Ausgang 61 von 52 sind durch entsprechende geeignete Schaltelemente, wie UND-Gatter 69 und Verstärker 70, miteinander verbunden.

Claims (19)

1. Verfahren zum Steuern und Verbessern der Schriftgüte eines Druckers, insbesondere eines Tintenfarbstrahldruckers, wobei zumindest ein Farbstrahl (6) mittels an einen Schwinger (5) angelegte Spannung und Frequenz durch zumindest eine Düse (2) einer Düsenplatte (1) erzeugt wird und sich aufgeladene Tropfen (7) nach einer bestimmten Entfemung von der Düsenplatte (1) aus dem Farbstrahl (6) lösen, deren Tropfenabrißentfemung (Sa) von der Düsenplatte (1) über eine Regelung der Schwingerspannung optimal eingestellt wird, und die Flugzeit eines Tropfens (7) vom Tropfenabrißpunkt (8) bis zu einem Ladungsdetektor (27) gemessen wird, dadurch gekennzeichnet, daß über eine Beobachtung der Schwingerspannung und der Tropfenabrißentfemung (Sa) die Viskosität der Farbe geregelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Regelung der optimalen Tropfenabrißentfemung ein ständiger Vergleich der Schwingerspannungswerte mit Referenzwerten aus einem Speicher (53) stattfindet, welche als Referenz der Schwingerspannung für eine optimale Tropfenabrißentfemung (Sa) in Abhängigkeit des eingesetzten Schwingers (5) und einer gültigen Betriebsviskosität der Farbe dienen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei Feststellung der Nichtladung der Tropfen (7) am Ladungsdetektor (27) die Ladeimpulsfrequenz einen Phasensprung erfährt, bis eine Ladung vom Ladungsdetektor (27) erfaßt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Pulsbreite des detektierten Signals mit der Pulsbreite eines abgespeicherten Signals verglichen wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß bei einer Abweichung der aktuellen Pulsbreite von der gespeicherten die Ladungsphasen des Ladungsimpulses gegenüber der Schwingerfrequenz verschoben werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die neue Pulsbreite nach der Phasenverschiebung als aktuelle Pulsbreite abgespeichert wird.
7. Vorrichtung zum Steuern und Verbessern der Schriftgüte eines Druckers, insbesondere eines Tintenfarbstrahldruckers, mit einem Schwinger (5) zum Erzeugen zumindest eines Farbstrahls (6) durch zumindest eine Düse (2) einer Düsenplatte (1), wobei dem Farbstrahl (6) Ladeelektroden (25) zugeordnet sind und nach einer bestimmten Entfernung von der Düsenplatte (1) sich Tropfen (7) aus dem Farbstrahl (6) lösen und diese Tropfenabrißentfemung (Sa) von der Düsenplatte (1) über eine Regelung der Schwingerspannung einstellbar sowie eine Tropfenabrißregelung (40), die mit einer Phasenregelung (20) zusammenwirkt, vorgesehen ist, dadurch gekennzeichnet, daß mit der Tropfenabrißregelung (40) eine Viskositätsregelung (60) für die Farbe verbunden ist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß über ein Startsignal (10) ein DAC-Zähler (41) anregbar ist, welcher mit einem DAC-Anfangswert-Speicher (42) verbunden ist und über den am Ausgang eines Verstärkers (45) eine bestimmte Sinusspannung mit einer bestimmten Frequenz, generiert von einem Frequenzteiler (43), an den Schwinger (5) angelegt ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß über ein zweites Startsignal (11) Schaltelemente zum Synchronisieren der Ladespannung bzw. eines Ladeimpulses mit dem Tropfenabriß zuschaltbar sind, welche aus einem Impulszähler (21), einem Frequenzteiler (22) und einem Pulsbreitecomparator (26) bestehen, über welchen die aus dem Frequenzteiler (22) über einen Ladeimpulsgenerator (23) an die Ladeelektrode (25) abgegebenen Ladeimpulsfrequenzen phasenverschiebbar sind, wobei der Pulsbreitecomparator (26) auch mit dem Ladungsdetektor (27) in Verbindung steht und den Flugzeitzähler (46) steuert.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß dem Pulsbreitecomparator (26) ein Pulsbreitespeicher (29) zugeordnet ist, welcher veränderte Werte zum Vergleichen der aktuellen Werte des Pulsbreitecomparators (26) enthält.
11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß der Frequenzteiler (22) über einen Systemtakt (15) mit dem Frequenzteiler (43) des Schwingers (5) und einem Flugzeitzähler (46) in Verbindung steht.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß dem Flugzeitzähler (46) ein Flugzeitcomparator (49) nachgeordnet ist, welcher die Flugzeitwerte mit ggfs. veränderbaren Werten aus einem Flugzeitspeicher (50) vergleicht und den DAC-Zähler (41) ansteuert.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß der Flugzeitzähler (46) mit einem Meßwertzähler (47) und ggfs. mit einer Regeleinrichtung (56) für eine Anzahl der Meßwerte verbunden ist, wobei zwischen Flugzeitzähler (46) und Flugzeitcomparator (49) ein Flugzeitaddierer (48) zum Bilden eines Mittelwertes angeordnet ist.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Flugzeitcomparator (49) auch über ein vom Startsignal (10) gesteuertes Flipflop (51) mit einen DAC-Comparator (52) verbunden ist, in welchem die Werte des DAC-Zählers (41) mit Werten aus einem DAC-Referenzspeicher (53) vergleichbar sind.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß dieser Referenzwert die Schwingerspannung für eine optimale Tropfenabrißentfernung (Sa) in Abhängigkeit des eingesetzten Schwingers (5) und einer gültigen Betriebsviskosität der Farbe ist.
1.6. Vorrichtung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß der DAC-Comparator (52) mit der Einrichtung (60) zur Regelung der Viskosität der Farbe verbunden ist.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Einrichtung (60) aus einem Haupttank (64) für die Farbe besteht, welcher mit einem Farbtank (63) und einem Lösungsmitteltank (66) in Verbindung steht.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß der Füllstand im Haupttank (64) überwacht ist.
19. Vorrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß am Farbtank (63) und am Lösungsmitteltank (66) Ventile (62, 65) zum Steuem der Zugabe angeordnet sind.
EP86102874A 1985-03-05 1986-03-05 Verfahren zum Steuern und Verbessern der Schriftgüte eines Druckers Expired - Lifetime EP0197300B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86102874T ATE53340T1 (de) 1985-03-05 1986-03-05 Verfahren zum steuern und verbessern der schriftguete eines druckers.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3507670 1985-03-05
DE19853507670 DE3507670A1 (de) 1985-03-05 1985-03-05 Verfahren zum steuern und verbessern der schriftguete eines druckers

Publications (2)

Publication Number Publication Date
EP0197300A1 EP0197300A1 (de) 1986-10-15
EP0197300B1 true EP0197300B1 (de) 1990-06-06

Family

ID=6264192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86102874A Expired - Lifetime EP0197300B1 (de) 1985-03-05 1986-03-05 Verfahren zum Steuern und Verbessern der Schriftgüte eines Druckers

Country Status (3)

Country Link
EP (1) EP0197300B1 (de)
AT (1) ATE53340T1 (de)
DE (2) DE3507670A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249828B2 (en) * 2004-03-17 2007-07-31 Kodak Graphic Communications Canada Company Method and apparatus for controlling charging of droplets
CN102282022B (zh) * 2009-06-24 2014-07-30 株式会社日立产机系统 喷墨记录装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787882A (en) * 1972-09-25 1974-01-22 Ibm Servo control of ink jet pump
US4310846A (en) * 1978-12-28 1982-01-12 Ricoh Company, Ltd. Deflection compensated ink ejection printing apparatus
CA1156710A (en) * 1980-05-09 1983-11-08 Gary L. Fillmore Break-off uniformity maintenance
JPS597055A (ja) * 1982-07-05 1984-01-14 Ricoh Co Ltd インクジエツト記録装置
DE3331587A1 (de) * 1982-09-01 1984-03-01 Ricoh Co., Ltd., Tokyo Farbstrahlschreiber mit ablenksteuerung
US4496954A (en) * 1982-12-16 1985-01-29 International Business Machines Corporation Reservo interval determination in an ink jet system

Also Published As

Publication number Publication date
EP0197300A1 (de) 1986-10-15
ATE53340T1 (de) 1990-06-15
DE3671725D1 (de) 1990-07-12
DE3507670A1 (de) 1986-09-11

Similar Documents

Publication Publication Date Title
DE2723037C3 (de) Tintenstrahlschreiber mit einer Vielzahl von Düsen
DE2348724C3 (de) Vorrichtung zum Synchronisieren der Tröpfchenbildung mit der Tröpfchenaufladung in einem Tintenstrahldrucker
DE60025582T2 (de) Drucker mit vereinfachtem Herstellungsverfahren und Herstellungsverfahren
DE2457327C3 (de) Phasensynchronisierer für einen Tintenstrahlschreiber
DE60206702T2 (de) Kontinuierlich arbeitender Tintenstrahldrucker mit Düsen unterschiedlichen Durchmessers
DE69911289T2 (de) Verfahren zum Ausstossen einer elektrisch leitenden Flüssigkeit und kontinuierliche Tintenstrahldruckvorrichtung für ein solches Verfahren
DE2422255C3 (de) Bildwiedergabevorrichtung
DE2346558A1 (de) Regelkreis fuer die geschwindigkeitskonstanthaltung der tintentropfen eines tintenstrahldruckers
DE2541082C3 (de) Vorrichtung zum Synchronisieren von Tröpfchenbildung und -aufladung bei einem Tintenstrahlschreiber
DE102006045060A1 (de) Verfahren und Vorrichtung zur Erzeugung von Tintentropfen mit variablen Tropfenvolumen
DE2532150A1 (de) Verfahren und einrichtung zur geschwindigkeitsregelung von tintentropfen
DE2221698A1 (de) Verfahren und Einrichtung zum Beeinflussen einer Fluessigkeitsstroemung
DE3045932A1 (de) Verfahren und einrichtung zum erzeugen eines strahles aus fluessigkeitstroepfchen
DE2425679C3 (de) Vorrichtung zum Erzeugen und selektiven Ablenken von Flüssigkeitströpfchen
DE2353525A1 (de) Tintenstrahlschreiber
DE3219214C2 (de)
DE2520702A1 (de) Verfahren zum drucken mittels farbfluessigkeitsstrahl
DE2458216A1 (de) Elektrostatischer fluessigkeitsstrahlschreiber
DE3125194C2 (de) Kontrolleinrichtung für Tintenstrahldrucker
DE2428309A1 (de) Druckvorrichtung
EP0197300B1 (de) Verfahren zum Steuern und Verbessern der Schriftgüte eines Druckers
DE3140215C2 (de) Vorrichtung zur Erzeugung von einzelnen Farbtröpfchen für einen Farbstrahldrucker
DE60119207T2 (de) Kontinuierlich arbeitender Tintenstrahldrucker mit asymmetrischer Tropfenumlenkung
DE102014112939A1 (de) Prefire vor Pixel in einem lnspection Mode
DE3319353C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870402

17Q First examination report despatched

Effective date: 19880728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 53340

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3671725

Country of ref document: DE

Date of ref document: 19900712

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910305

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910313

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910316

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910320

Year of fee payment: 6

Ref country code: FR

Payment date: 19910320

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910403

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910503

Year of fee payment: 6

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910627

Year of fee payment: 6

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920305

Ref country code: GB

Effective date: 19920305

Ref country code: AT

Effective date: 19920305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920331

Ref country code: CH

Effective date: 19920331

Ref country code: BE

Effective date: 19920331

BERE Be: lapsed

Owner name: G.- FUR AUTOMATIONSTECHNIK M.B.H.

Effective date: 19920331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86102874.4

Effective date: 19921005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050305