EP0196363B1 - Ein- und mehrstufiger Axialkompressor - Google Patents

Ein- und mehrstufiger Axialkompressor Download PDF

Info

Publication number
EP0196363B1
EP0196363B1 EP85113808A EP85113808A EP0196363B1 EP 0196363 B1 EP0196363 B1 EP 0196363B1 EP 85113808 A EP85113808 A EP 85113808A EP 85113808 A EP85113808 A EP 85113808A EP 0196363 B1 EP0196363 B1 EP 0196363B1
Authority
EP
European Patent Office
Prior art keywords
resonator
axial compressor
absorption
compressor
clearance spaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85113808A
Other languages
English (en)
French (fr)
Other versions
EP0196363A1 (de
Inventor
Manfred Förster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Gutehoffnungshutte GmbH
Original Assignee
MAN Gutehoffnungshutte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Gutehoffnungshutte GmbH filed Critical MAN Gutehoffnungshutte GmbH
Priority to AT85113808T priority Critical patent/ATE49459T1/de
Publication of EP0196363A1 publication Critical patent/EP0196363A1/de
Application granted granted Critical
Publication of EP0196363B1 publication Critical patent/EP0196363B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/665Sound attenuation by means of resonance chambers or interference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/664Sound attenuation by means of sound absorbing material

Definitions

  • the invention relates to a single-stage or multi-stage axial compressor with dead volumes within the compressor housing.
  • pressure pulsations which occur in a single-stage radial compressor with reduced delivery capacity and which cause pulsating impacts in the impeller, which cause vibrations and disturbing noises, are to be prevented in that a single passage or over at least in one wall in the unspanned diffuser channel the circumference of distributed passages are arranged which connect the diffuser channel to at least one annular pressure compensation chamber arranged behind the diffuser wall.
  • GB-A-2 090 334 relates to a tubular resonator for axial machines for reducing vibrations of the impeller blades of the first row of a gas turbine of an aircraft engine.
  • a plurality of tube resonators are embedded in the wall of the flow channel directly opposite the tip of the rotating impeller blade, tuned to 1/4 of the wavelength of the flutter frequency of the impeller blades.
  • absorption resonators form practically perforated walls, each with an inlet bore and a small volume arranged behind it.
  • Absorption resonators of this type are also known in silencers.
  • the object of the invention is to reduce the amplitude of an existing pulsation spectrum in single-stage or multi-stage axial compressors, in order to enlarge the usable working range in the characteristic map of the compressor.
  • an axial compressor is equipped with one or more absorption resonators, so-called Helmholtz resonators.
  • the absorption resonators are arranged between several stages in a stage group.
  • the specialty of the axial compressor and here in the case of speed-controllable machines, is that the pumping point of interest is reached at a constant final pressure, which corresponds to the design pressure, at a speed at which all stages reach their pump limit at the pumping point of the entire compressor. At lower speeds, the first stages pump first. At higher speeds, however, the last stages pump first.
  • the coupling of the absorption resonators is of course not limited to the area of the middle compressor stages. You can also e.g. be coupled to the compressor discharge chamber.
  • the absorption resonators can be used in both compressor sections.
  • the dead volumes known in the case of axial compressors within the compressor housing are suitable as resonator chambers. These are coupled to the gas flow via a circumferential slot, which is arranged before or after an impeller. Such a design creates a Helmholtz resonator, the circumferential slot forming the mouth of the resonator.
  • the axial compressor does not have sufficient dead volumes in the housing, additional dead volumes, which serve as resonator chambers, can be coupled from the outside according to the invention.
  • the walls of the resonator chambers can be at least partially equipped with a damping material of a certain sound resistance.
  • a damping material of a certain sound resistance can e.g. be an insulating material based on mineral fiber.
  • a damping of the neck of the Helmholtz resonator, represented by the circumferential slot, is not possible because of the narrow shape.
  • the frequency of the pulsation spectrum to be damped depends on the type, number of stages and some dynamic factors of the respective axial compressor and is therefore determined experimentally once for each type.
  • the design according to the invention is also suitable for damping pump pulses in the event of a complete stall (deep surge). Although the frequency of this pump is lower, the absorption resonator has a dampening effect.
  • the invention does not take into account the relatively high frequencies resulting from speed and number of blades, nor the relatively low frequency in the event of a complete stall, the "pumping" of the compressor.
  • the existing broadband pulsation spectrum superimposed on the gas flow in the range from 200 to 800 Hz is considered under "steady-state conditions".
  • the amplitude of these pulsations increases when the delivery capacity is reduced before the circulating stall flow (rotating stall) and ultimately the complete stall.
  • the housing space (dead volume) which can be seen between the inflow part 5 and the outflow part 6 is used as the resonator chamber 7.
  • the compressor has a circumferential slot 8, which serves as a coupling slot for the absorption resonator (resonator chamber) 7 and can also be referred to as the neck of a Helmholtz resonator.
  • the walls of the resonator chamber 7, as indicated in FIG. 2, are coated with an acoustic insulation layer D, for example mineral wool.
  • the absorption resonator as shown in the schematic diagram (FIG. 2), represents a mass-spring resonance system.
  • the volume V gives the spring.
  • the resonator neck (slot 8) with its surface S and the length L gives the mass.
  • the resonance frequency is according to the formula certainly.
  • the expression (1 + 2 A I) denotes the muzzle correction necessary for the resonator neck length for this application.
  • an experimentally determined correction for the resonance frequency to higher frequencies is used, since the oscillating gas mass is carried away at the slot outlet by the high gas flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  • Die Erfindung betrifft einen ein- oder mehrstufigen Axialkompressor mit Totvolumina innerhalb des Kompressorgehäuses.
  • Für die Entstehung von Strömungsinstabilitäten und Druckpulsationen in Axialkompressoren sind nicht nur strömungsdynamische Vorgänge, sondern auch akustische Gesetzmäßigkeiten verantwortlich.
  • Bei der Betrachtung der komplexen Strömungsverhältnisse und des Ablösungsbeginns einer dreidimensionalen Grenzschicht wurden bereits von Emmons, Pearson und Grant auch akustische Einflüsse mit einbezogen. C. R. Sparks hat sich intensiv mit der akustischen Einordnung eines Radialkompressors und den verbindenden Rohrleitungen befaßt (Journal of Engineering for Power, Oct. 1983, Vol. 105).
  • Nach der EP-A-0 046 173 sollen bei einem einstufigen Radialverdichter bei verminderter Förderleistung auftretende Druckpulsationen, welche pulsierende Stöße im Laufrad hervorrufen, die Vibrationen und Störgeräusche verursachen, dadurch verhindert werden, daß im unbeschaufelten Diffusorkanal mindestens in einer Wand ein einziger Durchtritt oder über den Umfang verteilte Durchtritte angeordnet sind, die den Diffusorkanal mit mindestens einer hinter der Diffusorwand angeordneten ringförmigen Druckausgleichskammer verbinden.
  • Die GB-A-2 090 334 betrifft einen röhrenartigen Resonator für Axialmaschinen zur Reduzierung von Schwingungen der Laufradschaufeln der ersten Reihe einer Gasturbine eines Flugzeugtriebswerkes. In der Wand des Strömungskanals unmittelbar gegenüber der Spitze der rotierenden Laufradschaufel sind eine Mehrzahl von Röhrenresonatoren eingelassen, abgestimmt auf 1/4 der Wellenlänge der Flatterfrequenz der Laufradschaufeln.
  • Derartige Absorptionsresonatoren bilden praktisch perforierte Wände mit jeweils einer Eintrittsbohrung und einem dahinter angeordneten kleinen Volumen. Absorptionsresonatoren dieser Art sind auch in Schalldämpfern bekannt.
  • In der US-A-2 252 256 wird die Bedämpfung der Schallenergie, die ein Impeller mit einer Drehfrequenz erzeugt, durch nachträgliche Anordnung von in die den Impeller oder Propeller umgebende Wand eingelassenen Aborptionsresonatoren behandelt.
  • Aufgabe der Erfindung ist es, bei einstufigen oder mehrstufigen Axialkompressoren die Amplitude eines vorhandenen Pulsationsspektrums zu reduzieren, um damit den nutzbaren Arbeitsbereich im Kennfeld des Kompressors zu vergrössern.
  • Im Gegensatz zu den oben gewürdigen Druckschriften, bei denen zum Zweck der Reduzierung von Schallschwingungen konstruktiv Hohlräume geschaffen wurden, die als akustische Resonatoren verwendet werden, sind es nach der Erfindung von vornherein vorhandene Totvolumina, die als Resonatorkammern verwendet werden. Der so entstehende Helmholtz-Resonator wirkt als Pulsationsabsorber und reduziert die Amplitude des im Axialkompressor vorhandenen Pulsationsspektrums.
  • Diese Aufgabe wird durch die in den Patentansprüchen angegebenen Maßnahmen gelöst.
  • Erfindungsgemäß wird ein Axialkompressor mit einem oder mehreren Absorptionsresonatoren, sogenannten Helmholtz-Resonatoren, ausgerüstet.
  • Bei mehrstufigen Axialkompressoren werden die Absorptionsresonatoren zwischen mehreren Stufen einer Stufengruppe angeordnet.
  • Beim Axialkompressor, und hier bei drehzahlregelbaren Maschinen, gilt die Besonderheit, daß der interessierende Pumppunkt bei konstantem Enddruck, der dem Auslegungsdruck entspricht, bei einer Drehzahl erreicht wird, bei der im Pumppunkt des gesamten Kompressors alle Stufen gleichzeitig ihre Pumpgrenze erreichen. Bei kleineren Drehzahlen pumpen zuerst die ersten Stufen. Bei höheren Drehzahlen pumpen dagegen zuerst die letzten Stufen.
  • Um hier besonders effektiv die Absorptionsresonatoren einzusetzen, ist es sinnvoll, diese in der Mitte der Stufengruppe anzuordnen. Dadurch erhält man den kürzesten Abstand von diesem Punkt zu allen pumpenden Axialstufen.
  • Die Ankoppelung der Absorptionsresonatoren ist selbstverständlich nicht auf den Bereich der mittleren Kompressorstufen beschränkt. Sie können auch z.B. an die Kompressoraustrittskammer angekoppelt werden.
  • Bei Axialkompressoren mit Niederdruck- und Hochdruckteil lassen sich die Absorptionsresonatoren in beiden Kompressorteilen verwenden.
  • Nach der Erfindung bieten sich als Resonatorkammern die bei Axialkompressoren bekannten Totvolumina innerhalb des Kompressorgehäuses an. Diese werden über einen rundumlaufenden Schlitz, der vor oder nach einem Laufrad angeordnet wird, an den Gasstrom angekoppelt. Durch eine derartige Ausbildung wird ein Helmholtz-Resonator geschaffen, wobei der umlaufende Schlitz den Mündungshals des Resonators bildet.
  • Weist der Axialkompressor keine ausreichenden Totvolumina im Gehäuse auf, so können erfindungsgemäß zusätzliche Totvolumina, die als Resonatorkammern dienen, von außen angekoppelt werden.
  • Um nun die relativ steile Resonanzkurze des so gebildeten Helmholtz-Resonators abzuflachen, lassen sich erfindungsgemäß die Wandungen der Resonatorkammern mindestens teilweise mit einem Dämpfungsmaterial einer bestimmten Schallresistenz ausrüsten. Dies kann z.B. ein Dämmstoff auf der Basis Mineralfaser sein. Eine Bedämpfung des Mündungshalses des Helmholtz-Resonators, dargestellt durch den umlaufenden Schlitz, ist wegen der schmalen Formgebung nicht möglich.
  • Die Frequenz des zu bedämpfenden Pulsationsspektrums ist abhängig von Bauart, Stufenzahl und einigen dynamischen Faktoren des jeweiligen Axialkompressors und wird deshalb für jeden Typ einmal experimentell ermittelt.
  • Es ist ferner von Einfluß, ob die Ansaugströmung bereits pulsationsbehaftet ist, da solche Pulsationen beim Durchtritt durch den Kompressor noch eine Verstärkung erfahren können.
  • Die erfindungsgemäße Ausbildung eignet sich auch für die Bedämpfung von Pumpstößen bei völligem Strömungsabriß (deep surge). Obwohl die Frequenz bei diesem Pumpen niedriger liegt, bleibt eine bedämpfende Wirkung das Absorptionsresonators erhalten.
  • Die Erfindung zieht nicht die relativ hohen Frequenzen, resultierend aus Drehzahl und Schaufelzahl, und ebensowenig die relativ niedrige Frequenz beim völligen Strömungsabriß, dem «Pumpen» des Kompressors, in Betracht.
  • Vielmehr wird das vorhandene breitbandige, den Gasstrom überlagerte Pulsationsspektrum im Bereich von 200 bis 800 Hz unter «steady-state-Bedingungen» betrachtet. Die Amplitude dieser Pulsationen nimmt bekanntlich bei Reduzierung der Förderleistung zu, bevor es zu der umlaufenden Abrißströmung (rotating ställ) und letztlich zum kompletten Strömungsabriß kommt.
  • Die Erfindung wird nachfolgend anhand der schematischen Zeichnung, die ein Ausführungsbeispiel darstellt, näher erläutert.
  • Es zeigen:
    • Fig. 1 einen Querschnitt durch den oberen Teil des Axialkompressors und
    • Fig. 2 einen vergrößerten Querschnitt eines Absorptions-Resonators.
    • Fig. 1 stellt den oberen Teil eines Axialkompressors dar mit dem Gehäuseoberteil 1, in dem sich der Rotor 2 mit den Laufschaufeln 3 und den Leitschaufein 4 befindet. Der Einströmteil des Kompressors ist mit 5 und der Ausströmteil mit 6 bezeichnet.
  • Der zwischen Einströmteil 5 und Ausströmteil 6 erkennbare Gehäuseraum (Totvolumen) wird als Resonatorkammer 7 verwendet. Zwischen einer Laufschaufel 3 und einer Leitschaufel 4 weist der Kompressor einen umlaufenden Schlitz 8 auf, der als Ankoppelungsschlitz für den Absorptionsresonator (Resonatorkammer) 7 dient und auch als Mündungshals eines Helmholtz-Resonators bezeichnet werden kann.
  • Zur Abflachung der Resonanzkurve und damit die Absorption für einen breiteren Frequenzbereich wirksam wird, sind die Wandungen der Resonatorkammer 7, wie in Fig. 2 angedeutet, mit einer akustischen Dämmschicht D, beispielsweise Mineralwolle, beschichtet.
  • Der Absorptionsresonator, wie er in der Prinzipskizze (Fig. 2) dargestellt ist, stellt ein Masse-Feder-Resonanzsystem dar. Das Volumen V ergibt die Feder. Der Resonatorhals (Schlitz 8) mit seiner Fläche S und der Länge L ergibt die Masse.
  • Die Resonanzfrequenz wird nach der Formel
    Figure imgb0001
    bestimmt.
  • Der Ausdruck (1 + 2 A I) bezeichnet die für diesen Anwendungsfall notwendige Mündungskorrektur für die Resonatorhalslänge. Außerdem kommt eine experimentell ermittelte Korrektur für die Resonanzfrequenz zu höheren Frequenzen zur Anwendung, da durch die hohe Gasströmung die schwingende Gasmasse am Schlitzaustritt fortgetragen wird.

Claims (4)

1. Ein- oder mehrstufiger Axialkompressor mit Totvolumina innerhalb des Kompressorgehäuses, dadurch gekennzeichnet, daß die im Axialkompressor vorhandenen Totvolumina als Resonatorkammern vorgesehen sind und der Axialkompressor mit mindestens einem breitbandigen Absorptionsresonator (7) als Pulsationsabsorber ausgerüstet ist, und zur Ankoppelung des Absorptionsresonators (7) an den Gasstrom rundumlaufende Schlitze (8), die den Mündungshals des Absorptionsresonators bilden, vor oder nach einem rotierenden Laufrad (3) angeordnet sind, und daß die Wandungen des Absorptionsresonators (7) mit einem Dämpfungsmaterial (D) ausgekleidet sind.
2. Ein- und mehrstufiger Axialkompressor nach Anspruch 1, dadurch gekennzeichnet, daß die Schlitze (8) durch Stege unterbrochen sind.
3. Ein- und mehrstufiger Axialkompressor nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß als Resonatorkammern zusätzliche Totvolumina von außen angekoppelt sind.
4. Ein- und mehrstufiger Axialkompressor nach den Ansprüchen 1-3, dadurch gekennzeichnet, daß die Resonanzfrequenz des Absorptionsresonators (7) auf den Pulsationsbereich mit der maximalen Amplitude innerhalb von 200 bis 800 Hz abgestimmt ist oder auf die 1. Harmonische dieser Frequenz.
EP85113808A 1985-03-30 1985-10-30 Ein- und mehrstufiger Axialkompressor Expired - Lifetime EP0196363B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113808T ATE49459T1 (de) 1985-03-30 1985-10-30 Ein- und mehrstufiger axialkompressor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853511769 DE3511769A1 (de) 1985-03-30 1985-03-30 Ein- und mehrstufiger axialkompressor
DE3511769 1985-03-30

Publications (2)

Publication Number Publication Date
EP0196363A1 EP0196363A1 (de) 1986-10-08
EP0196363B1 true EP0196363B1 (de) 1990-01-10

Family

ID=6266914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113808A Expired - Lifetime EP0196363B1 (de) 1985-03-30 1985-10-30 Ein- und mehrstufiger Axialkompressor

Country Status (3)

Country Link
EP (1) EP0196363B1 (de)
AT (1) ATE49459T1 (de)
DE (2) DE3511769A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3927791A1 (de) * 1989-08-23 1991-02-28 Gebhardt Ventilatoren Axialventilator
FR2911923B1 (fr) * 2007-01-25 2011-07-08 Snecma Redresseur acoustique pour carter de soufflante de turboreacteur
US20130263823A1 (en) * 2010-10-25 2013-10-10 Umfotec Umformtechnik Gmbh Disc damper for charge air lines of an internal combustion engine having a turbocharger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2252256A (en) * 1939-01-11 1941-08-12 Harris Eliot Huntington Sound attenuator for air impellers
NL67569C (de) * 1948-01-26
DE1403519A1 (de) * 1961-06-24 1969-12-11 Gutehoffnungshuette Sterkrade Einrichtung zur Grenzschichtabsaugung bei Turbomaschinen,insbesondere Radialverdichtern
DE2036085A1 (de) * 1970-07-20 1972-01-27 Kresic M Achsensymmetrisch-Zentrifugalventilator
DE2622969C3 (de) * 1976-05-21 1980-02-07 Hans Friedrich Ing.(Grad.) 8000 Muenchen Bernstein Gehäuse für ein Radialgebläse
GB2090334B (en) * 1980-12-29 1983-11-16 Rolls Royce Damping flutter of ducted fans

Also Published As

Publication number Publication date
DE3511769A1 (de) 1986-10-02
DE3575332D1 (de) 1990-02-15
EP0196363A1 (de) 1986-10-08
ATE49459T1 (de) 1990-01-15

Similar Documents

Publication Publication Date Title
DE69017042T2 (de) Doppeltströmungsschalldämpfer für ein turbinentriebwerk.
DE60105531T2 (de) Gasturbinenbrennkammer, Gasturbine und Düsentriebwerk
DE69202692T2 (de) Auspuffschalldämpfer für einen Kühlverdichter.
EP1738061B1 (de) Verfahren zur auslegung einer turbine eines flugtriebwerks
EP1244870B1 (de) Schalldämpfer für den verdichter eines abgasturboladers
DE68904020T2 (de) Mehrstufiger zentrifugalverdichter.
DE3788449T2 (de) Abgasschalldämpfer für Gasturbinen.
EP2140119B1 (de) Verdichter für einen abgasturbolader
EP1483536B1 (de) Gasturbine
DE19818873C2 (de) Hubkolbenbrennkraftmaschine
WO2005119031A1 (de) Absorberschalldämpfer für verdichter
DE4316475A1 (de) Gasturbinen-Brennkammer
DE112014006922T5 (de) Akustische Behandlungsanordnung für ein Turbinensystem
WO2007022648A1 (de) Kreiselverdichter
CH714432B1 (de) Radialverdichter.
EP0196363B1 (de) Ein- und mehrstufiger Axialkompressor
DE102009024568A1 (de) Verdichterlaufrad
DE102006060694B4 (de) Rotor- und Statorschaufel-Anordnung für ein Gasturbinentriebwerk
DE19818874C2 (de) Hubkolbenmaschine
EP1153219B1 (de) Diffusor ohne pulsation der stoss-grenzschicht und verfahren zum unterdrücken der stoss-grenzschicht-pulsation von diffusoren
DE102012202707B3 (de) Laufradseitenräume mit Resonatoren bei radialen Strömungsmaschinen
WO2006018189A1 (de) Abgasturbolader für eine brennkraftmaschine
EP3737850A1 (de) Filterschalldämpfer für einen abgasturbolader einer brennkraftmaschine
DE10220507B4 (de) Verbrennungsmotor
WO2018178385A1 (de) Verdichter eines abgasturboladers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870214

17Q First examination report despatched

Effective date: 19880714

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 49459

Country of ref document: AT

Date of ref document: 19900115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3575332

Country of ref document: DE

Date of ref document: 19900215

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85113808.1

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT -DANN A

NLS Nl: assignments of ep-patents

Owner name: GHH BORSIG TURBOMASCHINEN GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030929

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030930

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031001

Year of fee payment: 19

Ref country code: LU

Payment date: 20031001

Year of fee payment: 19

Ref country code: CH

Payment date: 20031001

Year of fee payment: 19

Ref country code: AT

Payment date: 20031001

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031009

Year of fee payment: 19

Ref country code: BE

Payment date: 20031009

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031010

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041030

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041030

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

BERE Be: lapsed

Owner name: *GHH BORSIG TURBOMASCHINEN G.M.B.H.

Effective date: 20041031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

BERE Be: lapsed

Owner name: *GHH BORSIG TURBOMASCHINEN G.M.B.H.

Effective date: 20041031