EP0196193B1 - Filtre récursif pour signaux vidéo avec séparation des informations de luminance et de chrominance - Google Patents

Filtre récursif pour signaux vidéo avec séparation des informations de luminance et de chrominance Download PDF

Info

Publication number
EP0196193B1
EP0196193B1 EP86302024A EP86302024A EP0196193B1 EP 0196193 B1 EP0196193 B1 EP 0196193B1 EP 86302024 A EP86302024 A EP 86302024A EP 86302024 A EP86302024 A EP 86302024A EP 0196193 B1 EP0196193 B1 EP 0196193B1
Authority
EP
European Patent Office
Prior art keywords
signal
input port
motion
video signal
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86302024A
Other languages
German (de)
English (en)
Other versions
EP0196193A1 (fr
Inventor
Donald Henry Willis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Licensing Corp
Original Assignee
RCA Licensing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Licensing Corp filed Critical RCA Licensing Corp
Priority to AT86302024T priority Critical patent/ATE53730T1/de
Publication of EP0196193A1 publication Critical patent/EP0196193A1/fr
Application granted granted Critical
Publication of EP0196193B1 publication Critical patent/EP0196193B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/77Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase

Definitions

  • the present invention relates to reducing both noise and one of the chrominance or luminance components of a video signal.
  • Video recursive filters typically consist of a frame memory, two scaling circuits and an adder circuit. Incoming or current video signal is scaled by one of the scaling circuits and the scaled video signal is applied to one input port of the adder. A signal delayed by substantially one frame period from the output of the frame memory is scaled in the other of the scaling circuits and applied to a second input port of the adder. Video signal sums produced by the adder are coupled to the input of the frame memory and represent noise-reduced video.
  • the video signal is a monochrome or luminance signal. If the video signal is a chrominance component of composite video a signal chrominance phase inverter must be interposed between the adder circuit and the frame memory. Finally, if the video signal to be processed is composite video, and the desired system output signal is noise-reduced composite video signal, then circuitry must be inserted between the adder and frame memory to invert the phase of the chrominance component only, of the noise-reduced composite video signal.
  • An example of this type of video recursive filter is disclosed in US ⁇ A ⁇ 4,064,530 entitled "Noise Reduction System For Color Television".
  • a recursive filter which does not have provision for chrominance phase inversion, and to which composite video is applied tends to produce a noise reduced luminance component with a small amount of residual chrominance contamination after the occurrence of a number of frame periods in which there is no interframe image motion.
  • a video recursive filter may be employed to partially separate the luminance component from composite video signal for non-moving images. Such a system has limited utility.
  • the present invention is defined in the appended claims.
  • One embodiment of the present invention provides luminance/chrominance separation from composite video signal without residual cross components using a recursive filter system.
  • Another embodiment adaptively controls a luminance/chrominance separating recursive filter to rapidly reach steady state operation following cessation of interframe image motion.
  • a further embodiment of the invention comprises a video signal recursive filter system which includes a delay or storage device for storing a noise-reduced video signal and a summing device for adding a portion of the stored signal to a portion of the current or incoming video signal to produce noise-reduced video signal.
  • a signal combining circuit is arranged to subtract a further portion of current video signal from the noise-reduced video signal to produce a noise-reduced video signal having a predetermined component of the video signal substantially eliminated.
  • the noise reducing system of the invention is useful for processing video signals developed in accordance with conventional TV signal standards, with e.g. appropriate selection of memory size, the invention will be described as applied to the NTSC television standard. It is to be understood that the system may be implemented in either the analog or the digital domain, however, a digital implementation of the system will be described.
  • interconnections constructed with broad arrows represent multiconductor connections for parallel-bit digital signals. Interconnections drawn with narrow arrows represent single conductor connections.
  • digital video signal to be processed is applied to input port 10 and noise reduced signal is available at output port 28.
  • the input video signal may be baseband composite video signal from an analog-to-digital converter (not shown) or it may be, for example, luminance signal with incompletely cancelled chrominance signal therein.
  • the output signal is noise-reduced luminance signal with the chrominance component removed.
  • the input video signal at input port 10 is coupled to a scaling circuit 14 which scales the input video signal by a factor (1-K).
  • the scaled input signal is coupled to one input port of adder 18.
  • the output port of adder 18 is coupled to the input port of a delay or memory device 30 which delays signal by substantially one frame period wherein a frame comprises two fields of NTSC video signal. Delayed signal from memory 30 is coupled to scaling circuit 16 which scales the delayed signal by a factor K.
  • the scaled and delayed signal is applied to a second input port of adder 18.
  • the delay period provided by memory 30 is selected so that the two signals applied to adder 18 are separated in time by precisely one frame period (or a multiple of frame periods).
  • the signal S B is given by The signal S c is equal to the signal S B generated during the previous frame period.
  • the signal S B(n-1) is given by the equation and the signals S B(n-1) may be expressed in similar fashion. Substituting the values of S C(n-i) into equation (1) produces the result
  • the input signal S A is composite video signal, it consists of luminance, Y, chrominance, C and noise, N, components so that the signal S A is more properly represented and each component should be evaluated separately with respect to equations (1) ⁇ (3).
  • the luminance component for a given pixel, in the absence of interframe motion, has in fact the same value from frame to frame.
  • the chrominance component is 180 degrees out of phase from frame to frame. If values for the chrominance component C, are substituted for the sample value S, in equation (3) the polarity of the terms in the series alternate. For the chrominance component equation (3) reduces to
  • Noise is considered differently since noise samples from frame to frame are not coherent regardless of the state of interframe image motion or non-motion.
  • the assumption is made that the noise components of all of the samples have approximately equal RMS values.
  • Noise power adds as the sum of the squares of the respective noise components and the RMS amplitude is the square root of the sum of the squares.
  • the noise value N B is determined by substituting the noise component samples into equation (3) with each term squared. After simplifying, the result is
  • the luminance signal to noise improvement at point B in the FIGURE 1 circuit approaches V(1 +K)/(1 +K) which is large for K approaching 1.
  • the residual chrominance signal is removed from the noise-reduced luminance signal by combining a portion of the input chrominance component with the noise-reduced signal. This is accomplished in the FIGURE 1 circuit by applying the input signal at port 10 to the filter 20 which passes only those signal components in the band of frequencies normally occupied by chrominance signal.
  • the chrominance signal from filter 20 is scaled in element 22 by the factor (K-1 )/(1+K) and then combined with the noise reduced luminance in adder 24.
  • the residual chrominance in the luminance signal has an amplitude of C in (1-K)/(1+K) from equation (8) while the chrominance signal from element 22 is C in (K-1)/(1+K) which, when the two are additively combined, cancel leaving noise reduced luminance.
  • delay element 26 coupling signal from adder 18 to adder 24 compensates for sample processing delays incurred in filter 20.
  • FIGURE 1 recursive filtering is inactivated when interframe image motion is detected. This is accomplished by changing the value of K to zero which effectively disconnects the feedback from memory 30 and couples input signal from port 10 via adder 18 to adder 24 scaled by the factor "1" and via filter 20 to adder 24 scaled by the factor "-1".
  • the chrominance component at point B is in phase with the chrominance component of the signal output of filter 20.
  • the in-phase chrominance from filter 20 is subtracted from the chrominance component in the signal passed by adder 18 leaving only a luminance component and a noise component on output bus 28.
  • the FIGURE 1 circuit operates as a band stop filter to eliminate the chrominance component from the input video signal during motion.
  • Band-pass filter 20 is incorporated to provide low-pass filter luminance during motion intervals. However, during non-motion intervals filter 20 is not necessary to the circuit. In these intervals, the input signal may be coupled directly to scaling circuit 22. In this instance the amplitude of the luminance component at output port 28 is reduced from the amplitude of the luminance component of the input signal. The amplutide of the luminance component at output 28 can be restored by appropriately amplifying the output signal.
  • the signal-to-noise ratio of video signals is sufficiently acceptable so the viewer will readily tolerate a time interval for the system to converge to the desired signal-to-noise improvement. This is not so with regard to chrominance contamination of luminance signal.
  • the elimination of chrominance should be realizable during the first frame of no image motion.
  • the first frame of no image motion is defined herein as the frame period in which the image content of the current input frame is the same as the image content of the immediately preceding frame. This criterion is applied on a pixel basis. In other words, with regard to the overall image there may be areas of interframe image motion. However, each pixel, frame-to-frame, is processed independently of all other pixels.
  • frame of no image motion thus applies to each pixel independently of the condition of motion or non motion of other pixels.
  • the elimination of chrominance may be accomplished if the chrominance component at point B is forced to converge to a steady state value in the first frame of no motion.
  • This condition is achieved with the use of three values of K for scaling circuits 14 and 16; the first value, K i , is used during image motion; the second value, K 2 , is used during the first frame of no motion and the third value, K 3 , is used for all succeeding frames of no motion.
  • K is equal to zero to inactivate the recursive filter part of the system and to lead incoming signal directly to the frame memory to insure that information is available to detect the cessation of motion.
  • the value of K 3 is selected to provide the desired steady state signal-to-noise improvement.
  • K 3 The selection of K 3 involves a trade-off between the extent of signal-to-noise achieveable, and the time required to achieve it and also the subjective difference between the signal-to-noise ratio of moving image objects versus that of non moving image objects.
  • K 2 required to produce a steady state chrominance component at point B and consequently to permit elimination of chrominance in all frames of no motion is given by
  • the scale factors are selected at the pixel rate or a small submultiple of the pixel rate.
  • the values of K are dependent on interframe motion and the history of interframe motion.
  • Differences between the luminance component of samples from successive frames are an indication that motion or no motion has occurred between frames. These differences are provided by subtractor 13 having its minuend and subtrahend inputs connected to the input port 10 and the output of memory 30. The differences are coupled to a motion detector-scale factor generator 12 which produces the respective scale factors for scaling circuits 14, 16 and 22. All illustrative motion detector scale factor generator will be described below with reference to FIGURE 4.
  • FIGURE 2 is an alternative recursive filter noise reducing system.
  • Input video samples, S A are applied at input port 10 and coupled to subtractor 40.
  • Delayed samples S E from memory 30, are coupled to a second input port of subtractor 40 which produces the difference samples (S A ⁇ S E ).
  • the respective samples S A and S E correspond to like pixels of successive image frames.
  • the difference samples (S A ⁇ S E ) are applied to a scaling circuit 48 which produces scaled difference samples K m (S A ⁇ S e ) where K m is a scale factor.
  • the scaled difference samples and the delayed samples S e are applied to an adder 50 which produces sample sums So given by the equation
  • the scale factor Km is set to one and from equation (11) it is seen that the samples So are equal to the input samples S A . After e.g. two frames of no motion the scale factor Km is set to a value Km3. If no motion persists for a relatively large number of frame intervals it can be shown that the noise component S DN at the output of adder 50 converges to the value
  • the scale factor K m is set to a value K m2 during the first frame of no motion.
  • the value of K m2 is given by and the steady state chrominance component S DC is given by
  • the luminance component S DY in the steady state, is equal to the luminance component at the input S AY .
  • Input samples at port 10 are applied to a chrominance band-pass filter 44 which passes the chrominance component S AC , a luminance component S AYH which corresponds to the luminance signal in the chrominance band of frequencies, and a noise component to a scaling circuit 46 which scales the samples by a factor K o .
  • the scaled samples K o (S AC +S AYH +S AN ) are coupled to adder 52.
  • Samples So consisting of components S DY , S oc and S DN from adder 50, are coupled to a second input port of adder 52 which developes the system output signal So given by
  • the chrominance component of Samples So are reduced to zero by setting the scale factor K o to the value -K m3 /(2-K m3 ).
  • the lower frequency luminance component of samples So is equal to the luminance component samples S D y.
  • the luminance component S OYH of samples So, in the chrominance frequency spectrum is equal to S AYN (2(1-K m3 )/(2-K m3 )). This is an undesirable reduction in high frequency luminance but, the amplitude may be restored by selectively peaking the output signal.
  • the noise component S oN is developed from noise contributions passed through scaling circuit 46 and from the output of adder 50. Assuming the worst case i.e. that band-pass filter 44 passes all of the input noise component, the output noise component can be shown to be
  • the ratio of the output noise component S oN to the noise component S ON is equal to V2 (1-K m3 )/(2-K m3 ) which is less than 1 for all values of K m3 less than 1.
  • the difference samples produced by subtractor 40 contain interframe motion information. These differences are applied to a motion detector-scale factor generator circuit 42 which develops the scale factors for scaling circuits 46 and 48 on e.g. a pixel-by-pixel basis i.e. a sample-by- sample basis. Illustrative scale factors produced by circuits 42 are in Table I.
  • the value K m3 will be some small value such as
  • the FIGURE 2 system like the FIGURE 1 system reverts to a chrominance band stop or notch filter between the input and output ports during motion intervals.
  • FIGURE 3 is a variation of the FIGURE 2 system. Elements of the FIGURE 3 circuit designated with like numbers to the FIGURE 2 circuit are similar devices.
  • sample differences (S A ⁇ S E ) from subtracter 40 are applied to scaling circuit 62 which produces scaled sample differences K K (S A ⁇ S E ).
  • the scaled sample differences are coupled to adder 70 wherein they are summed with samples S e from frame memory 30.
  • the sums, S x , from adder 70, in the absence of motion, are coupled unchanged via subtracter 68 to the luminance output port 72 and are expressed by
  • the luminance component of S A is equal to the luminance component of Sg. From equation (16) it is seen therefore, that the output luminance component S x y is equal to the input luminance component SAy regardless of the value of K K .
  • the higher frequency luminance component output by adder 70 are not attenuated as are the higher frequency luminance components output by the FIGURES 1 and 2 circuits.
  • K K is set to one-half.
  • the magnitude of the chrominance components of S A and S E will be equal but they will be anti-phase.
  • the system performs as a luminance frame comb filter and the chrominance component output by adder 70 is zero.
  • the chrominance component S xc will equal zero for K K equal to one-half for the first frame of no motion and K m3 /2 for all succeeding frames of no motion.
  • the noise component S XN for the first frame of no motion is equal to the RMS value of the input noise divided by the square root of two.
  • the chrominance component of signal S x is cancelled in subtracter 68 by the chrominance signal component S oc .
  • the control for gating circuit 66 may be provided by the motion detector 60. In effect, the FIGURE 3 circuit reverts to a band stop filter for chrominance signal during image motion.
  • Chrominance signal with a reduced luminance component may be developed by subtracting the luminance output signal S XY from appropriately delayed composite video signal from input 10. It is noted that during no motion periods the difference signals from subtracter 40 consists substantially of a chrominance signal whose amplitude is slightly larger than the amplitude of the input chrominance component.
  • Table II lists the scale factors K m and K K as well as the gate control for the different conditions of interframe image motion for the FIGURE 3 system.
  • the FIGURE 3 circuitry may be slightly rearranged to provide a further alternative embodiment.
  • the signal input port of the scaling circuit 62 may be coupled to the output of scaling circuit 48 rather than the output of subtracter 40.
  • the values of the scale factor K K must be appropriately changed so that the product of scale factors, K m K K , equal the respective values in Table II listed under the column headed K K .
  • new values of K K are 1, (2-K m3 )/2 and 1/2 for no motion, the first frame post motion and steady state respectively.
  • FIGURE 1-3 In designing the FIGURE 1-3 systems it may be necessary to interpose compensating delays in certain of the signal paths. Those skilled in the art of circuit design will readily recognize such requirements and be able to implement them.
  • the systems have been described in terms of primarily producing a noise-reduced luminance signal from composite video signal or from a luminance input signal containing chrominance contamination. With slight alterations the system can be arranged to, for example, produce a noise reduced chrominance signal from composite video. This may be accomplished in the FIGURE 3 system by changing subtracter 40 to an adder and adders 50 and 70 to subtracters.
  • the sequence of samples may be represented Y 1 -I 1 , Y 2 +Q 2 , Y 3 +1 3 , Y 4 -Q 4 , Y 5 -I 5 , Y 6 +Q 6 , Y 7 +I 7 , Y 8 -Q 8 ,...
  • Corresponding samples on adjacent frame may be represented Y 1 +I 1 , Y 2 -Q 2 , Y 3 -I 3 , Y 4 +Q 4 , Y 5 +I 5 , Y 6 -Q 6 , Y 7 -I 7 , Y 8 +Q 8 ...
  • the luminance and I, Q magnitudes of corresponding samples in the two sequences (frames) are equal (i.e. for no interframe motion)
  • the samples from the first sequence are added to corresponding samples in the second sequence
  • the luminance components, Y will combine constructively but the I, Q components will cancel.
  • the system of FIGURE 3 operates on the principle to produce the luminance output signal.
  • the first sequence may be considered to correspond to the samples S A and the second sequence to correspond to samples S ⁇ .
  • the complemented sequence will have relative values represented by ⁇ (Y 1 +I 1 ), -(Y 2 -Q 2 ), -(Y 3 -1 3 ), ⁇ (Y 4 +Q 4 ), ⁇ (Y 5 +I 5 ), ⁇ (Y 6 -Q 6 ), ⁇ (Y 7 -I 7 ), ⁇ (Y 8 +Q 8 ), ... which may be rewritten -1 1 -Y 1 , Q 2 -Y 2 , I 3 -Y 3 -Q 4 - y 4 , ⁇ I 3 -Y 5 , Q 6 -Y 6 , I 7 -Y 7 , ⁇ Q 8 -Y 8 ...
  • the chrominance signal i.e. the I and Q color difference signals
  • the chrominance signal has significantly less bandwidth than the luminance signal.
  • a recursive filter arranged to produce the chrominance signal it is therefore not necessary to use all of the samples of the foregoing sequences and, thus, the size of the frame memory 30 can be reduced. For example two samples, one containing an I component and one containing a Q component, from each set of four successive samples may be selected and processed. If this is done, however, provision must be made to select samples of opposite I, Q phase in alternate frames. For example, if the samples Y 1 -I 1 , Y 2 +Q 2 , Y 5 -I 5 , Y 6 +Q 6 etc. are selected from the first sequence than samples Y 1 +I 1 , Y 2 -Q 2 , Y 5 +I 5 , Y 6 -Q 6 etc. must be selected from the second sequence.
  • FIGURE 4 shows an illustrative motion detector-scale factor generator.
  • the circuitry shown is directed toward FIGURE 3 system but with modifications that will be immediately apparent to those skilled in the art of circuit design can be made applicable to the FIGURE 1 and 2 systems.
  • Sample differences from subtracter 40 are applied to a low-pass filter 80 to remove the chrominance component. This is necessary since chrominance has a 180 degree phase difference from frame-to-frame and, thus, combines constructively in subtracter 40 rather than providing the difference of the chrominance magnitudes.
  • the low-pass filtered differences are applied to a threshold detector 82 which generates a logic one for the magnitude, i.e. the absolute value, of the differences being greater than a predetermined value and generates a logic zero for the magnitude of the differences being less than this value.
  • the predetermined value or threshold is established to provide a degree of noise immunity in the detection of motion and will be determined by user or designer preference.
  • Motion signal from detector 82 is coupled to the data input port of the memory device 84 which delays the motion signal by one frame period. Delayed motion signal from the memory device 84 and motion signal from the detector 82 are coupled to the address input ports of the ROM's 86 and 88 which are programmed to output the requisite scale factors for the motion states applied to their address input ports.
  • Table III is an illustrative state table for the FIGURE 3 system.
  • Table III is developed around a time sequence of frames running from top to bottom. The condition of interframe image motion was selected to provide all possible 2-bit address states to the ROM's 86 and 88.
  • Note the value Km3 is selected arbitrarily in accordance with the desired system response time and degree of noise reduction.
  • ROM's 86 and 88 will be programmed with the appropriate scale factors or scale factor control signals as described with reference to FIGURES 1 and 2 systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)
  • Picture Signal Circuits (AREA)
  • Image Processing (AREA)
  • Color Television Image Signal Generators (AREA)

Claims (14)

1. Un système de filtre récurrent, pour traiter des signaux vidéo comprenant des composantes de luminance et de chrominance et du bruit, lequel signal vidéo est mis en forme en périodes d'image, caractérisé par:
un filtre récurrent (18, 30) pour combiner une portion du signal vidéo actuel à une portion d'un signal combiné d'images préalables du signal vidéo et qui produit un signal vidéo traité (B), où l'amplitude dudit bruit est réduite, et l'amplitude de l'une des composantes de luminance et de chrominance traitées dudit signal vidéo est sensiblement réduite par rapport à l'amplitude de l'autre composante de luminance et de chrominance traitée; et
un moyen de suppression de signal (20-26) pour combiner un portion du signal vidéo actuel à une portion du signal vidéo traité dudit chiffre récurrent pour supprimer sensiblement l'une desdites composantes de luminance et de chrominance traitées qui est sensiblement réduite et produisant un signal de sortie (28), où le rapport signal-bruit de l'autre desdites composantes de luminance et de chrominance est amélioré par rapport au signal vidéo actuel.
2. Le système selon la revendication 1, caractérisé en ce que le filtre récurrent comprend:
un moyen à retard (30) ayant des bornes d'entrée et de sortie pour retarder un signal de sensiblement une période d'image;
un moyen de combinaison de signaux (18) ayant une sortie couplée à la borne d'entrée dudit moyen à retard et ayant des première et seconde bornes d'entrée;
un premier circuit multiplicateur variable (16) ayant une borne d'entrée couplée à la borne de sortie dudit moyen à retard et une borne de sortie couplée à l'une des bornes d'entrée du moyen de combinaison, et ayant une borne d'entrée de commande;
un second circuit multiplicateur variable (14) ayant une borne d'entrée pour recevoir un signal vidéo actuel, une borne de sortie couplée à l'autre borne d'entrée du moyen de combinaison et ayant une borne d'entrée de commande; et
un circuit (12, 13) de production de facteurs de multiplication répondant au mouvement, au signal vidéo actuel et au signal retardé du moyen à retard pour produire des signaux de commande correspondant aux facteurs de multiplication K et (1-K) pour application aux bornes d'entrée de commande respectives desdits premier et second circuits de multiplication variables et où K est choisi pour avoir une valeur lorsque du mouvement est détecté et au moins une autre valeur en l'absence de mouvement.
3. Le système selon la revendication 2, caractérisé en ce que le moyen de suppression de signal précité (20-26) comprend:
un autre moyen de combinaison (24) ayant une borne de sortie de laquelle un signal vidéo à bruit réduit est disponible, ayant une première borne d'entrée couplée à la borne de sortie dudit moyen de combinaison de signaux, et ayant une seconde borne d'entrée;
un troisième circuit de multiplication variable (22) ayant une borne d'entrée de commande couplée au circuit de production de facteurs de multiplication (12), ayant une borne de sortie couplée à la seconde borne d'entrée dudit autre moyen de combinaison de signaux et ayant une borne d'entrée couplée pour recevoir le signal vidéo actuel.
4. Le système selon la revendication 3, caractérisé en ce que la borne d'entrée du troisième circuit variable précité (22) est couplée pour recevoir le circuit d'entrée du signal vidéo réel via un filtre pour atténuer les fréquences du signal hors de la bande de fréquences normalement occupée par la composante de chrominance précitée.
5. Le système selon la revendication 3, caractérisé en ce que le moyen de production de facteurs de multiplication (12) applique des signaux de commande correspondant aux facteurs de multiplication comportant 0, 1 et -1, respectivement aux premier, second et troisième circuits de multiplication (16, 14, 22) lorsque du mouvement est détecté et des facteurs de multiplication de K, 1-K et (K-1)/(K+1) respectivement aux premier, second et troisième circuits de multiplication pour des périodes d'image d'absence de déplacement, où K est une valeur inférieure à un.
6. Le système selon la revendication 5, caractérisé en ce que le moyen de production de facteurs de multiplication (12) précité applique des signaux de commande correspondant aux facteurs de multiplication de 1/(1+K3), KJ(1 +K3) et (K3-1)/(K3+1) aux premier, second et troisième circuits de multiplication pour la première image d'absence de mouvement, où K3 a une valeur inférieure à 1.
7. Le système selon la revendication 1, caractérisé en ce que le filtre récurrent précité comprend:
un moyen à retard (30) ayant des bornes d'entrée et de sortie, ledit moyen à retard retardant les signaux de sensiblement un multiple comportant un, de périodes d'image;
un premier moyen de combinaison de signaux (50) ayant une première borne d'entrée couplée à la borne de sortie dudit moyen à retard, ayant une borne de sortie couplée à la borne d'entrée dudit moyen à retard et ayant une seconde borne d'entrée;
un circuit de multiplication variable (48) ayant une porte d'entrée de commande pour recevoir des signaux de commande correspondant aux facteurs de multiplication, et ayant une borne de sortie couplée à la seconde borne d'entrée dudit premier moyen de combinaison de signaux (50); un second moyen de combinaison de signaux (40) ayant une première borne d'entrée pour recevoir ledit signal vidéo, une seconde borne d'entrée couplée à la borne de sortie dudit moyen à retard (30) et ayant une borne de sortie couplée à la borne d'entrée du circuit de multiplication (48); et un détecteur de mouvement (42) ayant une borne d'entrée couplée à la borne de sortie dudit second moyen de combinaison de signaux (40) pour produire des signaux de commande qui sont couplés audit moyen de multiplication (48); et où un signal vidéo à bruit réduit (D) (E) est disponible des bornes de sortie dudit premier moyen de combinaison (50) et dudit moyen à retard (30).
8. Le système selon la revendication 7, caractérisé en ce que le moyen de suppression de signaux précité comprend:
un autre circuit de multiplication (46) ayant une borne d'entrée pour recevoir le signal vidéo précité, ayant une borne d'entrée de commande couplée au détecteur de mouvement précité (42) pour recevoir des signaux de commande correspondant aux facteurs de multiplication, et ayant une borne de sortie; et
un autre moyen de combinaison des signaux (52) ayant une première borne d'entrée couplée à la borne de sortie du premier moyen de combinaison de signaux précités (50), une seconde borne d'entrée couplée à la borne de sortie de l'autre circuit de multiplication (46) et ayant une borne de sortie (54) à laquelle un signal vidéo à bruit réduit est disponible où l'une des composantes de luminance et de chrominance est sensiblement éliminée.
9. Le système selon la revendication 8, caractérisé en ce que le signal vidéo précité est couplé à la borne d'entrée de l'autre précité circuit de multiplication (46) via un filtre (44) ayant une bande passante pour laisser passer les fréquences normalement occupées par la composante de chrominance précitée.
10. Le système selon la revendication 8 ou 9, caractérisé en ce que le détecteur de déplacement précité (42) applique des signaux de commande correspondant aux facteurs de multiplication comportant 1 et -1 au circuit de multiplication précité (48) et à l'autre circuit de multiplication précité (46), respectivement, lorsque du mouvement est détecté et K3 et -K3/(2-K3) audit circuit de multiplication et audit autre circuit de multiplication, respectivement, lorsqu'aucun déplacement n'est détecté, et où la grandeur de K3 est une valeur inférieure à un.
11. Le système selon la revendication 10, caractérisé en ce que le détecteur de mouvement précité (42) applique des signaux de commande correspondant aux facteurs de multiplication 1/(2-K3) et -K3/(2-K3) au circuit de multiplication précité (48) et à l'autre circuit de multiplication précité (46) respectivement pour la première image d'absence de mouvement.
12. Le système selon la revendication 7, caractérisé en ce que le moyen de suppression de signaux précité comprend:
un autre moyen de combinaison de signaux (70) ayant une première borne d'entrée couplée à la borne de sortie du moyen à retard précité (30) ayant une seconde borne d'entrée et ayant une borne de sortie à laquelle un signal vidéo à bruit réduit (X) est disponbible, lequel signal vidéo à bruit réduit a une des composantes précitées de luminance et de chrominance sensiblement éliminée; et
un autre circuit de multiplication (62) ayant une borne d'entrée de commande couplée au détecteur de mouvement précité (60) pour recevoir les signaux de commande correspondant aux facteurs de multiplication, ayant une borne de sortie couplée à la seconde borne d'entrée dudit autre moyen de combinaison de signaux (70), et ayant une borne d'entrée couplée à la borne de sortie dudit second moyen de combinaison de signaux (40).
13. Le système selon la revendication 12, caractérisé en ce que le détecteur de mouvement précité (60) est configuré pour appliquer les signaux de commande correspondant aux facteurs de multiplication comprenant 1 au circuit de multiplication et à l'autre circuit de multiplication lorsque du mouvement est détectée et K3 et K3/2 au circuit de multiplication et à l'autre circuit de multiplication respectivement lorsqu'aucun mouvement n'est détecté, et où la grandeur de K3 est une valeur inférieure à un.
14. Le système selon la revendication 13, caractérisé en ce que le détecteur de mouvement précité est configuré pour appliquer les signaux de commande correspondant aux facteurs de multiplication de 1/(2-K3) et 1/2 au circuit de multiplication précité et à l'autre circuit de multiplication précité respectivement pendant la première image d'absence de mouvement.
EP86302024A 1985-03-25 1986-03-19 Filtre récursif pour signaux vidéo avec séparation des informations de luminance et de chrominance Expired - Lifetime EP0196193B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86302024T ATE53730T1 (de) 1985-03-25 1986-03-19 Rekursives filter fuer videosignale mit trennung von leuchtdichte- und farbinformation.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US715811 1985-03-25
US06/715,811 US4646138A (en) 1985-03-25 1985-03-25 Video signal recursive filter with luma/chroma separation

Publications (2)

Publication Number Publication Date
EP0196193A1 EP0196193A1 (fr) 1986-10-01
EP0196193B1 true EP0196193B1 (fr) 1990-06-13

Family

ID=24875582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86302024A Expired - Lifetime EP0196193B1 (fr) 1985-03-25 1986-03-19 Filtre récursif pour signaux vidéo avec séparation des informations de luminance et de chrominance

Country Status (10)

Country Link
US (1) US4646138A (fr)
EP (1) EP0196193B1 (fr)
JP (1) JPH0748862B2 (fr)
KR (1) KR940002161B1 (fr)
AT (1) ATE53730T1 (fr)
AU (1) AU589610B2 (fr)
CA (1) CA1233240A (fr)
DE (1) DE3672066D1 (fr)
ES (1) ES8707642A1 (fr)
SG (1) SG29593G (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752826A (en) * 1986-10-20 1988-06-21 The Grass Valley Group, Inc. Intra-field recursive interpolator
JPH07101924B2 (ja) * 1987-10-26 1995-11-01 パイオニア株式会社 映像信号のノイズ除去装置
JPH01204573A (ja) * 1988-02-10 1989-08-17 Sony Corp 雑音低減回路
US5790177A (en) * 1988-10-17 1998-08-04 Kassatly; Samuel Anthony Digital signal recording/reproduction apparatus and method
GB8826463D0 (en) * 1988-11-11 1988-12-14 Rca Licensing Corp Technique for actv side-panel noise reduction
DE3900490A1 (de) * 1989-01-10 1990-07-12 Broadcast Television Syst Schaltungsanordnung zur decodierung von farbfernsehsignalen
US4890162A (en) * 1989-01-26 1989-12-26 Rca Licensing Corporation Adjustable antialias filters
US4987481A (en) * 1989-04-28 1991-01-22 Walker Digital Audio Video Systems, Inc. Video noise reduction system
JPH0411466A (ja) * 1990-04-28 1992-01-16 Sony Corp ノイズリデューサ
US5173776A (en) * 1990-06-06 1992-12-22 Electroscan Corporation Apparatus and method for improving the signal-to-noise ratio of video display signals
FR2667475B1 (fr) * 1990-09-28 1992-10-30 Thomson Consumer Electronics Procede de mesure du bruit dans une image video active et dispositif pour la mise en óoeuvre du procede.
DE4116762A1 (de) * 1991-05-23 1992-11-26 Roland Man Druckmasch Vorrichtung zum waschen eines zylinders einr druckmaschine
US5278638A (en) * 1991-09-30 1994-01-11 Pioneer Electronic Corporation Noise reducing circuit for images
US5309237A (en) * 1992-03-31 1994-05-03 Siemens Corporate Research, Inc. Apparatus and method of compensating image-sequences for motion
EP0601655A1 (fr) * 1992-12-10 1994-06-15 Koninklijke Philips Electronics N.V. Filtre de réduction de bruit
JPH07162718A (ja) * 1993-12-10 1995-06-23 Nikon Corp 巡回型ノイズ低減装置
US5438374A (en) * 1993-12-10 1995-08-01 At&T Corp. System and method for filtering video signals
DE69426820T2 (de) * 1994-09-30 2001-08-16 St Microelectronics Srl Vorrichtung und Verfahren zum Filtern von Videobildern
KR100202565B1 (ko) * 1996-03-23 1999-06-15 구자홍 복합영상신호의 3차원 휘도/색신호 분리 장치
KR100200702B1 (ko) * 1996-06-05 1999-06-15 윤종용 디지탈 비디오 시스템의 디지탈 비디오 인코더
US7420625B1 (en) 2003-05-20 2008-09-02 Pixelworks, Inc. Fuzzy logic based adaptive Y/C separation system and method
US20060139494A1 (en) * 2004-12-29 2006-06-29 Samsung Electronics Co., Ltd. Method of temporal noise reduction in video sequences
KR20070012047A (ko) * 2005-07-22 2007-01-25 삼성전자주식회사 디지털 영상처리장치 및 그 제어방법
US8090210B2 (en) * 2006-03-30 2012-01-03 Samsung Electronics Co., Ltd. Recursive 3D super precision method for smoothly changing area
GB2438659B (en) * 2006-06-02 2011-03-23 Tandberg Television Asa Recursive filtering of a video image using activity mapping
JP4589276B2 (ja) * 2006-08-07 2010-12-01 トヨタ自動車株式会社 V型内燃機関の可変吸気装置
TWI392334B (zh) * 2009-04-22 2013-04-01 Mstar Semiconductor Inc 影像處理裝置以及影像處理方法
US8760466B1 (en) * 2010-01-18 2014-06-24 Pixar Coherent noise for non-photorealistic rendering
US8675137B2 (en) * 2010-04-13 2014-03-18 Newport Media, Inc. Apparatus and method for adaptive filtering
JP5937548B2 (ja) * 2013-06-26 2016-06-22 古野電気株式会社 ディジタルフィルタおよび信号処理装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1469101A (en) * 1973-03-23 1977-03-30 Dolby Laboratories Inc Noise reduction systems
US4240106A (en) * 1976-10-14 1980-12-16 Micro Consultants, Limited Video noise reduction
US4064530A (en) * 1976-11-10 1977-12-20 Cbs Inc. Noise reduction system for color television
US4305091B2 (en) * 1977-01-31 1998-02-10 J Carl Cooper Electronics noise reducing apparatus and method
US4573070A (en) * 1977-01-31 1986-02-25 Cooper J Carl Noise reduction system for video signals
FR2387557A1 (fr) * 1977-04-14 1978-11-10 Telediffusion Fse Systemes de reduction de visibilite du bruit sur des images de television
GB2102236B (en) * 1978-03-08 1983-06-08 Tokyo Broadcasting Syst Noise reduction system for colour television signal
JPS5510228A (en) * 1978-07-05 1980-01-24 Nec Corp S/n improving unit for television video signal
JPS592227B2 (ja) * 1978-08-21 1984-01-17 株式会社日立製作所 雑音除去方式
US4275418A (en) * 1978-09-14 1981-06-23 Micro Consultants Limited Video noise reduction systems
GB2031686B (en) * 1978-09-14 1983-02-02 Micro Consultants Ltd Movement detection
US4291333A (en) * 1979-05-22 1981-09-22 Fernseh Inc. Noise filter
US4392123A (en) * 1980-06-02 1983-07-05 The Dindima Group Pty. Ltd. Signal-to-noise improving system
US4390894A (en) * 1980-08-20 1983-06-28 U.S. Philips Corporation Noise suppression circuit for a video signal
US4500911A (en) * 1981-05-25 1985-02-19 Nippon Hoso Kyokai Noise reduction apparatus
DE3121597C3 (de) * 1981-05-30 1993-09-30 Bosch Gmbh Robert System zur Verminderung des Rauschens in einem Fernseh-Bildsignal
DE3150008A1 (de) * 1981-12-17 1983-08-25 Robert Bosch Gmbh, 7000 Stuttgart System zur verminderung des rauschens in einem fernsehsignal
US4472733A (en) * 1982-09-01 1984-09-18 Rca Corporation Color channel signal-to-noise improvement in digital television
US4538178A (en) * 1983-06-24 1985-08-27 Rca Corporation Digital signal peaking apparatus with controllable peaking level
AU3034384A (en) * 1983-07-08 1985-01-10 N.V. Philips Gloeilampenfabrieken Video nose reduction

Also Published As

Publication number Publication date
JPS61224609A (ja) 1986-10-06
KR940002161B1 (ko) 1994-03-18
US4646138A (en) 1987-02-24
SG29593G (en) 1993-05-21
ES8707642A1 (es) 1987-08-01
EP0196193A1 (fr) 1986-10-01
ATE53730T1 (de) 1990-06-15
KR860007828A (ko) 1986-10-17
DE3672066D1 (de) 1990-07-19
ES553110A0 (es) 1987-08-01
AU589610B2 (en) 1989-10-19
AU5481286A (en) 1986-10-02
CA1233240A (fr) 1988-02-23
JPH0748862B2 (ja) 1995-05-24

Similar Documents

Publication Publication Date Title
EP0196193B1 (fr) Filtre récursif pour signaux vidéo avec séparation des informations de luminance et de chrominance
US4652907A (en) Apparatus for adaptively controlling a video signal recursive filter
EP0731601B2 (fr) Dispositif de réduction de bruit vidéo
KR19990007950A (ko) 공통 지연 소자를 갖는 휘도/색차 분리필터
MXPA97008123A (en) Luma / chrome separation filter with derressive element co
KR940003052B1 (ko) 비데오 신호의 신호대 잡음비 개선을 위한 순환 필터 장치
GB1515551A (en) Noise reduction in electrical signals
EP0549174B1 (fr) Commande de filtrage adaptif pour la chrominance
KR910006860B1 (ko) 컬러텔레비젼 수상기에 있어서의 복합신호 분리회로
CA2070543C (fr) Detecteur de mouvements dans les signaux video a reponse sur toute la bande sauf aux frequences spatiales diagonales
KR100320901B1 (ko) 움직임검출회로
US4636840A (en) Adaptive luminance-chrominance separation apparatus
EP1107612B1 (fr) Approximation de la norme d'un vecteur
EP0362747B1 (fr) Circuiterie de filtrage en peigne de signaux vidéo PAL et NTSC
US5640211A (en) Luminance signal/color signal separator circuit
JPH0348715B2 (fr)
US4636842A (en) Comb filter "hanging dot" eliminator
KR930008183B1 (ko) 휘도/색도성분 분리장치
EP0648385B1 (fr) Traitement de signaux
KR940004558B1 (ko) 엔티에스시 신호처리계의 휘도 및 색도분리장치
KR940002936B1 (ko) Ntsc 영상신호의 움직임 검출회로
WO1998036578A1 (fr) Separation de la luminance et de la chrominance d'un signal video
JPH0380787A (ja) 適応型ノッチフィルタ
JPH0313194A (ja) ノッチフィルタ
JPS6333990A (ja) テレビジョン信号処理システム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT

17P Request for examination filed

Effective date: 19870310

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RCA LICENSING CORPORATION

17Q First examination report despatched

Effective date: 19890621

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 53730

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3672066

Country of ref document: DE

Date of ref document: 19900719

ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940207

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940208

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940211

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940301

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950319

Ref country code: AT

Effective date: 19950319

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050319