EP0189108A1 - Heizvorrichtung, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Verfahren zu ihrer Herstellung - Google Patents

Heizvorrichtung, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0189108A1
EP0189108A1 EP86100466A EP86100466A EP0189108A1 EP 0189108 A1 EP0189108 A1 EP 0189108A1 EP 86100466 A EP86100466 A EP 86100466A EP 86100466 A EP86100466 A EP 86100466A EP 0189108 A1 EP0189108 A1 EP 0189108A1
Authority
EP
European Patent Office
Prior art keywords
heating coil
bearing layer
heating device
heating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86100466A
Other languages
English (en)
French (fr)
Other versions
EP0189108B1 (de
Inventor
Hans Kummermehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramaspeed Ltd
Original Assignee
Grunzweig und Hartmann und Glasfaser AG
Gruenzweig und Hartmann AG
Ceramaspeed Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6260781&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0189108(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Grunzweig und Hartmann und Glasfaser AG, Gruenzweig und Hartmann AG, Ceramaspeed Ltd filed Critical Grunzweig und Hartmann und Glasfaser AG
Priority to AT86100466T priority Critical patent/ATE65150T1/de
Publication of EP0189108A1 publication Critical patent/EP0189108A1/de
Application granted granted Critical
Publication of EP0189108B1 publication Critical patent/EP0189108B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/688Fabrication of the plates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/748Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the invention relates to a heating device, in particular for a radiation-heated hotplate, according to the preamble of claim 1, and to processes which are particularly suitable for its production according to the preamble of claim 9.
  • the thermal insulation must be carried out on the outside facing away from the heating coil in a very small space with a high temperature gradient. Therefore, a highly disperse insulating material is used for the insulating layer, as it is manufactured and sold by the applicant under the name MINILEIT (registered trademark);
  • This insulating material consists of a microporous oxide airgel obtained from flame hydrolysis, in particular silica airgel and / or aluminum oxide airgel, generally with suitable additives such as reinforcing mineral fibers and / or opacifiers and / or binders for hardening.
  • This thermal insulation material is either pressed directly into the receiving shell of the heating device to form the insulating layer, or is pre-pressed as a plate and inserted into the receiving shell.
  • a major problem is the storage of the heating coil on the top of the insulation layer made of the insulation material described. It is known from EP-OS 79 076 that the heating coil or another heating element directly in the thermal insulation material of the insulation press layer. For this purpose, the heating element is placed in the pressing tool and covered with the still powdery insulation material, after which the heating element is pressed together with the insulation material in order to achieve the desired degree of compression of the insulation material.
  • the upper press-in layer of the thermal insulation material can contain a different consistency than the rest of the insulating layer and, in addition to a high proportion of hardener, can contain an electrically insulating, heat-conducting substance.
  • the heating coil is pressed in, at least to a third of its coil diameter, that is to say its overall height, the pressed-in part being completely surrounded by the pressed thermal insulation material and anchored in this way.
  • the material of the press-fit layer must contain heat-conducting additives in order to avoid destructive heat build-up in the embedding area by appropriate heat dissipation; as a result, the thermal insulation material of the press-fit layer is stripped of its essential property, namely the outstanding thermal insulation.
  • the thermal insulation material and the heating coil Since in practice it must always be ensured that intimate, direct contact between the thermal insulation material and the heating coil is avoided, a special bearing material is regularly provided for the heating coil.
  • the storage of the heating coil must be optimized according to various, sometimes contradicting, aspects.
  • the heating coil When the heating coil is received in grooves, a substantial part of the outer surface of the heating coil is always covered and can therefore only generate useful radiation to a reduced extent.
  • the storage in grooves especially if these are lined with a closed-surface hard coating, provides a clean positional securing.
  • the radiation can be optimized by anchoring the heating coil on a flat bearing layer, but the heating coil cannot be permanently anchored securely on such a flat bearing layer in view of the considerable temperature changes.
  • the invention has for its object to provide a heating device of the type specified in the preamble of claim 1, in which the heating coil Despite the extreme temperature changes that occur, it is permanently securely stored and at the same time ensures improved, that is to say optimal, heat radiation, the manufacture of the heating device being carried out with a minimum of effort and, furthermore, the greatest possible thermal insulation with the lowest possible overall height being achieved.
  • each individual spiral wire is embedded in the material of the bearing layer only with its lower arch section, i. H. only at most up to about the full wire gauge.
  • This means that the wire of the heating coil is clamped in a quasi-punctiform manner only in the lower apex region of the arch section in the bearing layer, but is otherwise freely available for radiation over its entire length.
  • This small anchoring depth is sufficient for secure anchoring, since each lower arc section of the filament wire is held individually in this way, and thermal expansions can be absorbed without significant stresses due to expansions in the area of the upper arc sections of the heating coil.
  • the entire thermal insulation material is arranged on the side of the heating coil to be insulated, it unfolds fully Insulation effect to the side to be insulated.
  • the material of the insulating layer can be pressed flat or with an uncomplicated shape, so that this reduces manufacturing costs.
  • the bearing layer only needs to have a very small layer thickness, depending on the wire thickness of the heating coil or even less, and thus only makes a minor contribution to the overall height.
  • the material of the bearing layer can be designed, for example by adding opacifying agents or the like, with a view to optimizing its contribution to thermal insulation without fear of disadvantageous heat build-up. Furthermore, since the material of the insulation layer is not mechanically stressed by the storage of the heating coil, its consistency, in particular its degree of compaction, can also be optimized with regard to thermal insulation aspects, so that overall the greatest possible thermal insulation results with the lowest possible overall height.
  • either the bearing layer can be prefabricated as a thin plate with the heating coil anchored thereon and then - optionally at another location - combined with the likewise plate-shaped or also pressed-in insulation layer, or else there is a coating of the insulating layer directly with the material of the bearing layer with subsequent pressing in of the heating coil, in which case a support ring can also be bonded to the material of the bearing layer in a particularly advantageous manner.
  • the heating device shown consists essentially of a receiving shell 1 made of metal, in particular aluminum sheet, and thermal insulation material in the form of a thermal barrier coating 2, which is arranged on the inside of the peripheral wall 3 of the receiving shell 1 between the bottom 4 and a heating coil 5.
  • the electrically operated heating coil 5 has electrical connections, not shown, which are led out of the area of the receiving shell 1 in a suitable manner.
  • the heating device shown is used for radiant heating of a glass ceramic cover of a hotplate, the glass ceramic plate (not shown in detail) resting on a support surface 10 and thus being kept at a distance from the upper edge of the peripheral wall 3 of the receiving shell 1 and from the heating coil 5.
  • the peripheral wall 3 of the receiving shell 1 and thus the entire heating device has an essentially circular shape in plan view and is concentric with a central axis 9.
  • the insulation layer 2 consists of fine-pored silica airgel with additives. This material is known per se and shows in addition to the silica airgel in all Rule up a mineral fiber reinforcement and / or an opacifier and / or a binder as a hardener; Such highly effective thermal insulation materials are sold by the applicant under the name MINILEIT (registered trademark), reference being made to the relevant DE-OSen 27 47 663, 27 48 307, 27 54 956 and 31 08 816 for details, to which extent explicit reference is made.
  • MINILEIT registered trademark
  • a material is preferably used for the insulation layer 2, which consists of 30 to 50% by weight of pyrogenic silica, 20 to 50% by weight of opacifying agent and 5 to 15% by weight of aluminum fibers, and in a density of 200 to 4,000 kg / m is present, but does not need to be organic or inorganic hardened.
  • a special thermal insulation material has a thermal conductivity that is lower than that of still air and, moreover, is only slightly temperature-dependent.
  • the plates or layers pressed from such powdery base materials are not mechanically resistant.
  • the material can also have aluminum oxide airgel, or a suitable mixture of both aerogels, in order to achieve higher temperature resistance if required.
  • the insulation material of the insulation layer can contain 2 additions of high temperature resistant materials such as manganese oxide, zirconium oxide or titanium oxide. For special purposes you can also work with their airgel.
  • a bearing layer 7 is arranged on the insulation layer 2 and can have a thickness of approximately 1 mm or a little more.
  • the bearing layer 7 may consist of a mixture of materials that contains mineral fibers and a ceramic binder that solidifies at temperatures between about 500 ° C. and 1000 ° C. by ceramic bonding.
  • the proportion of mineral bevels should be as high as possible, since the mineral fibers counteract a tendency of the bearing layer 7 to shrink at elevated temperatures. Therefore, the mineral Fibers are present in a proportion of more than 50% by weight of the dry mixture, but preferably in an even higher proportion of 75 to 95% by weight, a proportion of approximately 80% by weight being selected in the example.
  • the mineral fibers have a softening or melting point of over 1000 ° C.
  • the mineral fibers are drawn from the melt with a thickness between about 0.5 and 3 microns, preferably between 1 and 2 microns and then ground so that they are broken to lengths between 2 and 20 microns, preferably between 5 and 10 microns, whereby however in any case the length of the mineral fibers whose thickness exceeds at least twice, so that there is actually still a fiber character.
  • the additives such as fluxes in the melt for the production of the fibers, such as Na 2 0, 8203, MgO, Fe 2 0 3 and other additives known per se, can then be selected such that the desired temperature resistance is within ranges above 1000 ° C or above 1100 ° C, i.e. in areas in which the mineral fibers based on aluminum silicate do not soften or melt at the maximum temperature that occurs during operation.
  • the ceramic binder can also consist of aluminum silicate particles or fiber elements, which, however, in contrast to the mineral fibers, soften and sinter at temperatures between 500 and 1000 ° C and thus result in the ceramic bond.
  • water glass can basically be considered as a material for the bearing layer 7, it has been shown, however, that a coating with water glass as a binder shrinks very sharply at elevated temperatures, and in particular leakage currents can occur due to the addition of water glass when the heating coil 5 is energized.
  • These problems do not occur if the ceramic binder explained is chosen instead of the water glass, although a certain amount of shrinkage can also occur in the case of a ceramic binder, but this only becomes disruptive when the binder contains a relatively high content of about 50% by weight of the dry mixture appears.
  • the proportion of binder is therefore between about 5 and 50% by weight, preferably between 10 and 20% by weight, of the dry mixture, in the example case around 15% by weight, with one being smaller than the mineral fibers, preferably one in terms of particle volume Power of ten or order of magnitude smaller particle size of the mineral particles of the ceramic binder is selected; even the smaller particle size results in a softening or melting point at lower temperatures, the setting being able to be made in detail by appropriate choice of the flux to produce correspondingly low-melting mineral particles.
  • a ceramic or silica-based binder that ceramizes at high temperatures, as is known per se, for example, for coating such a material from EP-OS 81 825.
  • the silica sol as a ceramic binder is given together with inorganic fibers such as aluminum silicate fibers or quartz fibers as well if further inorganic fillers are applied in a slurry.
  • Suitable inorganic fibers for the coating material are in principle all correspondingly temperature-resistant fibers such as aluminum silicate fibers, quartz fibers, etc., but aluminum silicate fibers are generally preferred for reasons of cost.
  • the fibers must be so close together that the silica sol forms a connection between them and adheres to neighboring fibers instead of forming their own particles that are not bound to the filler.
  • the fibers thus primarily act as a dispersing agent for the silica sol in order to form a closed surface with it.
  • aluminum silicate fibers are even more expensive than most inorganic granular additives such as ground aluminum oxide, quartz sand, mullite, zirconium oxide, etc., so that these fibers can be stretched by granular fillers which are similar to the fibers, albeit to a lesser extent, than for cost reasons Dispersants can serve for the silica sol.
  • Clays and kaolin are also suitable as inorganic granular additives.
  • Aluminum oxide, optionally with an admixture of kaolin, is preferred, which improves the suppleness of the bearing layer 7.
  • the amount of silica sol essentially results from the need for binders for the closed surface coating with regard to the desired caking of the fillers with one another.
  • the amount of the silica sol has a lower limit where the abrasion resistance of the surface is too low due to the binder content being too low.
  • the proportion of the silica sol as a solid must not be less than about one tenth of the fillers and fibers to be bound therewith in the surface coating, so that the silica sol in the closed surface coating is present in any case in a solids content of 10% by weight or more.
  • An increase in the proportion of silica sol initially gives one Increased abrasion resistance through better integration of the fibers and granular fillers as well as a shiny and smooth surface.
  • an upper limit for the amount of silica sol in the closed surface coating is where the silica sol tends to particulate in a granular form and thus become brittle. This is avoided by a sufficiently high filler, in particular fiber, content of the silica sol. Therefore, the proportion of the silica sol based on the amount of fillers in the coating composition may only be approximately 1: 1, so that at least as many parts by weight of fillers as dry parts by weight of silica sol are present in the closed storage layer 7.
  • the proportion of the fillers present in fiber form should not be less than a third of the fillers of the bearing layer 7 in order to allow the fibers to act sufficiently as network formers to form a closed film.
  • the above information relates to the proportions by weight in the finished bearing layer 7, so that the dry mass of the silica sol is taken into account.
  • the aqueous silica sol i.e. the colloidal silica
  • This can be supported by adding wetting agents, as is known per se, although mechanical support by doctor blades or rollers is of course also possible.
  • aqueous silica sol (30% solids content) 23.5% by weight aluminum silicate fibers 11.8% by weight aluminum oxide 5.9% by weight kaolin
  • aqueous silica sol (30% solids content) 13.3% by weight of aluminum silicate fibers 6.7% by weight of aluminum oxide 10.0% by weight of kaolin
  • the masses are applied moist with a liquid to paste-like consistency corresponding to the type of application by spraying, knife coating, brushing, dipping, screen printing or the like.
  • the heating coil 5 has been previously stress-free annealed in the desired shape and is thus pretreated by means of a magnet with a temperature of, for example, 200 ° C. and pressed into the still moist bearing layer 7.
  • the indentation is preferably only carried out until about two thirds of the wire thickness of the lower arc section of each helix ring is immersed in the mass, due to the increased temperature of the heating coil, a certain solidification of the mass already occurs during the pressing in and thus the heating coil is attached. If necessary, a small proportion of organic additives can be added to the mass to achieve an adhesive effect.
  • the material When the heating coil is in operation, the material then ceramizes completely under the action of heat and cementes the embedded arch section of the heating coil to a certain extent.
  • the immersion depth should be kept as low as possible to minimize the radiation to hinder. The immersion depth of approximately 2/3 of the wire thickness shown in FIG. 2 is therefore optimal.
  • the radially outer peripheral region 6 of the receiving shell 1 or the insulating layer 2 and thus also the bearing layer 7 is bent upwards in the example shown in the example, so that the heating device as a whole has an approximately plate-like appearance in cross section.
  • a support ring 8 made of bonded fibers, for example a material such as that sold under the name Fiberfrax (registered trademark), is placed on the cranked peripheral region 6 and forms the support to the underside with the upper support surface 10 in the manner already described the glass ceramic plate.
  • the heater can be manufactured in various ways. First of all, the material of the insulating layer 2 can be pressed against the bottom 4 of the receiving shell 1 in a manner known per se and can thus be formed as a compressed insulating layer 2 directly above the bottom 4 of the receiving shell 1. The mass for forming the bearing layer 7 can then be applied to the surface of the insulating layer 2 formed in this way by spraying, brushing or the like, and the heating coil can be pressed in. Then the support ring 8 can also be expediently placed as long as the mass for forming the bearing layer 7 is still moist, and is thus held in place by adhesion. In such a case, the illustrated heating device is either prefabricated in one stage or - with an interruption and, if necessary, a change of location after the insulation layer 2 has been pressed in - in two stages.
  • the insulation layer 2 can also be prefabricated as a plate and thus pre-pressed and prefabricated into the receiving shell 1. In this case too, without the presence of the receiving shell 1, the formation of the bearing layer 7, the fitting thereof with the heating coil 5 and possibly the bearing ring 8 in the above described manner.
  • the bearing layer 7 can also be prefabricated separately and fitted with the heating coil 5, optionally also with the support ring 8, and thus dried or hardened.
  • This assembly unit can then be used together with a separately prefabricated plate-shaped insulating layer 2 in a receiving shell 1, or in a receiving shell 1 with pressed-in insulating layer 2.
  • the heating device according to the invention thus allows a large number of manufacturing possibilities with great freedom of movement with regard to the manufacturing locations.
  • the production is in any case simple and problem-free, especially since the effort to produce grooves can also be dispensed with in view of the planar design of the surface of the bearing layer 7 according to the invention.
  • heating up to a desired temperature can take place immediately after embedding the heating coil 5, so that in any case sufficient drying and hardening of the mass for the bearing layer 7 takes place in the local storage areas.
  • Mineral pigments can also be contained in the bearing layer 7, in particular in the form of substances containing TiO 2 or TiO 2 .
  • the mineral pigments which are not absolutely necessary, serve to scatter or reflect part of the IR radiation and to increase the abrasion resistance.
  • a mixture of, for example, a Ti0 2 -containing substance A1 2 0 3 and TiO 2 can be chosen, the TiO 2 not only serving as a pigment but also as an opacifier against IR radiation.
  • suitable pigments include rutile, ilmenite, iron oxide, chromium oxide and the like.
  • the mineral pigments are present in the storage layer 7 in a proportion of up to a maximum of about 20% by weight of the dry mixture, but preferably in a proportion less than 10% by weight.
  • the storage layer 7 may contain 5% by weight of mineral pigments in the form of TiO 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Baking, Grill, Roasting (AREA)
  • Formation And Processing Of Food Products (AREA)

Abstract

@ Aus einer anorganischen Masse mit Bindemittel und Füllstoffen, insbesondere auf der Basis von Kieselsol mit Faserzusatz wird eine ebene Lagerschicht (7) für die Heizwendel (5) einer Heizvorrichtung gebildet. Die Masse für die Lagerschicht (7) wird feucht auf eine Unterlage oder direkt auf eine Dämmschicht (2) aufgetragen und die Heizwendel (5) in die noch feuchte Masse bis in eine Tiefe zwischen einer halben und einer ganzen Drahtstärke des Wendeldrahtes eingedrückt. Dadurch wird jeder untere Bogenabschnitt der Heizwendel einzeln im aushärtenden und gegebenenfalls keramisierenden Material der Lagerschicht gehalten. Auf diese Weise sind jegliche gegenseitige Verschiebungen der Wendelabschnitte, die etwa zu Kurzschluss führen könnten, sicher ausgeschlossen und dennoch eine maximale Nutzabstrahlung gewährleistet. Die Herstellung ist einfach und lässt grosse Freizügigkeit bezüglich einer stufenweisen Vorfertigung.

Description

  • Die Erfindung betrifft eine Heizvorrichtung, insbesondere für eine strahlungsbeheizte Kochplatte, nach dem Oberbegriff des Anspruchs 1, sowie für ihre Herstellung besonders geeignete Verfahren nach dem Oberbegriff des Anspruches 9.
  • Bei derartigen Heizvorrichtungen muß die Wärmedämmung auf der der Heizwendel abgewandten Außenseite auf sehr geringem Raum mit hohem Temperaturgradienten erfolgen. Daher wird für die Dämmschicht ein hochdisperses Dämmaterial verwendet, wie es durch die Anmelderin unter der Bezeichnung MINILEIT (eingetr. Warenzeichen) hergestellt und vertrieben wird; dieses Dämmaterial besteht aus einem aus der Flammenhydrolyse gewonnenen mikroporösen Oxidaerogel, insbesondere Kieselsäureaerogel und/oder Aluminiumoxidaerogel, in der Regel mit geeigneten Zuschlagstoffen wie verstärkenden Mineralfasern und/oder Trübungsmittel und/ oder Bindemittel zur Härtung. Dieses Wärmedämmaterial wird entweder zur Bildung der Dämmschicht unmittelbar in die Aufnahmeschale der Heizvorrichtung eingepreßt, oder aber als Platte vorgepreßt und in die Aufnahmeschale eingelegt.
  • Ein wesentliches Problem besteht in der Lagerung der Heizwendel auf der Oberseite der Dämmschicht aus dem geschilderten Dämmaterial. Zwar ist es aus der EP-OS 79 076 bekannt geworden, die Heizwendel oder ein sonstiges Heizelement unmittelbar in das Wärmedämmaterial der Dämmschicht einzupressen. Hierzu wird das Heizelement im Preßwerkzeug vorgelegt und mit dem noch pulverigen Dämmaterial überschichtet, wonach das Heizelement zusammen mit dem Dämmaterial zur Erzielung des gewünschten Verdichtungsgrades des Wärmedämmateriales gepreßt wird. Die obere Einpreßschicht des Wärmedämmaterials kann dabei eine gegenüber dem Rest der Dämmschicht unterschiedliche Konsistenz und neben einem hohen Härteranteil eine elektrisch isolierende, wärmeleitende Substanz enthalten. Die Heizwendel wird, dabei mindestens zu einem Drittel ihres Wendeldurchmessers, also ihrer Bauhöhe eingepreßt, wobei der eingepreßte Teil vollständig von dem gepreßten Wärmedämmaterial umgeben ist und so verankert wird.
  • Zweifellos ergäbe eine solche Vorgehensweise minimalen Herstellungsaufwand bei - jedenfalls anfangs - bestmöglicher Lagesicherung der Heizwendel. Jedoch ist ein solches Vorgehen nicht praktikabel, da die Heizwendel infolge der im Betrieb entwickelten hohen Temperaturen nicht unmittelbar mit dem Wärmedämmaterial in Berührung kommen darf; denn im Dämmaterial, insbesondere in den Mineralfasern, die zur Verstärkung gerade der Lager- oder Einpreßschicht erforderlich sind, enthaltenes Eisenoxid verbindet sich mit dem Chrom-Nickel-Draht der Heizwendel, so daß das Metall der Heizwendel seine Hochtemperaturbeständigkeit verliert und durchbrennt. Überdies wird durch die zumindest weitgehende Einbettung der Heizwendel die Abstrahlung nach oben, also die eigentliche Nutzstrahlung, erheblich vermindert. Abgesehen von der angestrebten herstellungstechnischen Vereinfachung durch Verpressung in einem Arbeitsgang ergeben sich auch keine dämmtechnischen Vorteile, wenn das Material der Einpreßschicht gut wärmeleitende Zusätze enthalten muß, um in jedem Falle zerstörende Wärmestaus im Einbettungsbereich durch entsprechende Wärmeableitung zu vermeiden; hierdurch wird das Wärmedämmaterial der Einpreßschicht gerade seiner wesentlichen Eigenschaft, nämlich der überragenden Wärmedämmung, wieder beraubt.
  • Da in der Praxis stets darauf geachtet werden muß, daß ein inniger unmittelbarer Kontakt zwischen dem Wärmedämmmaterial und der Heizwendel vermieden wird, wird regelmäßig ein besonderes Lagermaterial für die Heizwendel vorgesehen. Neben einer Minimierung des Montageaufwandes ist hierbei die Lagerung der Heizwendel nach verschiedenen, zum Teil einander widersprechenden Gesichtspunkten zu optimieren. Neben bestmöglicher Wärmedämmung bei geringstmöglicher Bauhöhe ist dabei insbesondere zu gewährleisten, daß die Heizwendel einerseits bestmöglich nach oben abstrahlen kann, andererseits aber ausreichend sicher an Ort und Stelle gehalten ist, um auch im Hinblick auf die sehr erheblichen Wärmedehnungen im Betrieb Kurzschlüsse durch gegenseitige Berührungen von Wendelabschnitten auszuschließen und ein gleichmäßiges Strahlungsbild zu erhalten.
  • Eine Maximierung der Abstrahlung wird ersichtlich dann erzielt, wenn die einzelnen Abschnitte der Heizwendel auf einer planen Unterlage aufliegen und somit abgesehen von den im wesentlichen punktförmigen Auflagestellen keine Berührung mit dem Lagermaterial besitzen, insbesondere nicht in merklichem Umfange in dieses eingebettet sind. Hierzu ist es beispielsweise aus der US-PS 38 33 793 bekannt, die einzelnen Wendelabschnitte der Heizwendel auf eine ebene Platte aus gebundenen Keramikfasern aufzulegen und mittels Metallklammern lagezusichern, welche an im Abstand voneinander liegenden Stellen der Heizwendel einen unteren Bogenabschnitt des Heizdrahtes übergreifen und durch die Platte aus Keramikfasern hindurch in das Wärmedämmaterial hineingesteckt sind. Eine solche mechanische Verankerung an in relativ großem Abstand voneinander liegenden Stellen ermöglicht jedoch Relativbewegungen der Wendelabschnitte zwischen den Verankerungspunkten, die sich überdies im Laufe der Zeit lockern können. Durch die tief im Wärmedämmaterial steckenden metallischen Klammern ergeben sich erhebliche Wärmebrücken, so daß bei gegebener Wärmedämmfähigkeit die Bauhöhe erheblich vergrößert werden muß.
  • Ähnlich ist es aus der DE-OS 27 29 930 bekannt, die Heizwendel auf eine ebene Keramikfaserplatte aufzulegen, die jedoch mit sternförmigen Erhebungen versehen ist. Die Wendelabschnitte werden dabei in die noch weichen Erhebungen der Keramikfaserplatte hineingedrückt, wenn die Fasermatte zur Bildung der Platte gepreßt wird, und sind nach Trocknung oder Aushärtung durch diese lokalen Einbettungen auf der ansonsten planen Oberfläche der Keramikfaserplatte verankert. Hierdurch sind zwar Wärmebrücken durch Metallklammern oder dergleichen vermieden, jedoch erfolgt ebenfalls eine Verankerung nur an in relativ grossen Abständen voneinander liegenden Stellen der Heizwendel; an diesen Stellen ist die Abstrahlung erheblich behindert, so daß die Anzahl der Verankerungspunkte relativ gering gehalten werden muß. Zwischen den Verankerungspunkten kommt es zu freien radialen Wärmedehnungsbewegungen, die entsprechende Kräfte in die Verankerungen einleiten, so daß diese im Laufe der Zeit gelockert werden können oder die Heizwendel ganz frei kommt.
  • Um Relativbewegungen der Wendelabschnitte zueinander trotz der ständigen Temperaturwechsel zu vermeiden, ist es andererseits bekannt, die Heizwendel in Nuten der Lagerschicht zu lagern und dort zu verankern. So ist es aus der DE-OS 27 28 776 bekannt, die Heizwendel in im Querschnitt halbkreisförmigen Nuten erheblich größeren Durchmessers zu lagern und hierzu in eine feuerfeste Klebemasse einzudrücken, welche die Lagernut ausfüllt, so daß die Heizwendel mit ihrer gesamten unteren Bogenhälfte eingebettet und nach entsprechender Trocknung und Aushärtung der Feuerfestmasse gewissermaßen einzementiert ist. Hierdurch sind jegliche Relativbewegungen zwischen den einzelnen Wendelabschnitten mit Gewißheit unterbunden. Jedoch ist auch die Nutzabstrahlung durch die Einbettung der Heizwendel bis auf halbe Höhe stark vermindert. Die bei Temperaturwechseln auftretenden Wärmedehnungen führen durch die Einbettung des gesamten unteren Bogens jeder Drahtwendel zu ganz erheblichen Spannungen, die zu einem allmählichen Lockern der Einbettung der Drahtwendel in der Feuerfestmasse und/oder einem Ausarbeiten der Nut durch die Feuerfestmasse führen.
  • Letzteres ist bei einem Stand der Technik, von dem die Erfindung im Oberbegriff des Anspruchs 1 ausgeht und der aus der DE-OS 31 02 935 bekannt ist, dadurch vermieden, daß die Oberfläche der Dämmschicht mit einer geschlossenflächigen Lagerschicht überzogen ist, die ein anorganisches temperaturbeständiges Bindemittel und einen anorganischen Füllstoff insbesondere in Form von gemahlenen Mineralfasern enthält. Hierdurch ist eine mechanisch stabile, durchgehende Lagerschicht gebildet, die auch die Bereiche zwischen den Nuten erfaßt und wie eine dünne stabile Platte wirkt. Die Wendelabschnitte der Heizwendel werden klebend in den Nuten befestigt.
  • Bei der Aufnahme der Heizwendel in Nuten ist immer ein wesentlicher Teil der Außenoberfläche der Heizwendel abgedeckt und kann daher nur vermindert Nutzstrahlung erzeugen. Andererseits ergibt aber die Lagerung in Nuten, insbesondere wenn diese mit einem geschlossenflächigen harten Überzug ausgekleidet sind, eine saubere Lagesicherung. Umgekehrt läßt sich mit der Verankerung der Heizwendel auf einer ebenen Lagerschicht die Abstrahlung optimieren, jedoch läßt sich die Heizwendel auf einer solchen ebenen Lagerschicht im Hinblick auf die erheblichen Temperaturwechsel nicht bleibend sicher verankern.
  • Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine Heizvorrichtung der im Oberbegriff des Anspruchs 1 angegebenen Gattung zu schaffen, bei der die Heizwendel trotz der auftretenden extremen Temperaturwechsel dauerhaft sicher gelagert ist und gleichzeitig eine verbesserte, das heißt optimale Wärmeabstrahlung gewährleistet, wobei die Herstellung der Heizvorrichtung mit einem Minimum an Aufwand erfolgen soll und weiterhin auch größtmögliche Wärmedämmung bei geringstmöglicher Bauhöhe erzielt wird.
  • Die Lösung dieser Aufgabe erfolgt durch die kennzeichnenden Merkmale des Anspruchs 1.
  • Dadurch, daß die Oberfläche der Lagerschicht eben ausgebildet ist, entfällt eine Einbettung in Nuten oder dergleichen, welche eine Abstrahlung behindern könnten. Die erforderliche Verankerung ist gleichwohl dadurch gegeben, daß jeder einzelne Wendeldraht nur mit seinem unteren Bogenabschnitt im Material der Lagerschicht eingebettet ist, d. h. nur höchstens bis zu etwa der vollen Drahtstärke. Dies bedeutet, daß der Draht der Heizwendel quasi punktförmig nur im unteren Scheitelbereich des Bogenabschnittes in der Lagerschicht eingespannt ist, im übrigen aber auf seiner ganzen Länge frei zur Abstrahlung zur Verfügung steht. Diese geringe Verankerungstiefe reicht für eine sichere Verankerung aus, da jeder untere Bogenabschnitt des Wendeldrahtes auf diese Weise einzeln gehalten ist, und Wärmedehnungen ohne wesentliche Spannungen durch Expansionen im Bereich der oberen Bogenabschnitte der Heizwendel aufgenommen werden können. Hierdurch werden in zwei benachbarte Verankerungspunkte, zwischen denen lediglich ein einziger Ring des Wendeldrahtes liegt, allenfalls ganz geringe Biegespannungen eingeführt und so jegliche Lageänderungen der Heizwendel insgesamt, etwa im Sinne einer zu starken gegenseitigen Annäherung von Wendelabschnitten, vermieden.
  • Da - anders als bei einer Einbettung der Heizwendel in Nuten - das gesamte Wärmedämmaterial an der zu dämmenden Seite der Heizwendel angeordnet ist, entfaltet es volle Dämmwirkung zu der zu dämmenden Seite hin. Durch den Wegfall von Nuten oder sonstigen Vertiefungen kann das Material der Dämmschicht eben oder mit unkomplizierter Form gepreßt werden, so daß hierdurch Herstellungsaufwand vermindert wird. Die Lagerschicht braucht nur sehr geringe Schichtdicke, entsprechend der Drahtstärke der Heizwendel oder sogar weniger, besitzen und trägt somit zur Bauhöhe nur geringfügig bei. Da nur der im wesentlichen punktförmige Scheitelbereich des Wendeldrahtes eingebettet ist, kann das Material der Lagerschicht, etwa durch Zusatz von Trübungsmittel oder dergleichen, im Hinblick auf die Optimierung seines Beitrags zur Wärmedämmung ausgelegt werden, ohne daß nachteilige Wärmestaus zu befürchten sind. Da weiterhin das Material der Dämmschicht nicht mechanisch durch die Lagerung der Heizwendel beansprucht ist, kann es in seiner Konsistenz, insbesondere in seinem Verdichtungsgrad, ebenfalls hinsichtlich Wärmedämmgesichtspunkten optimiert werden, so daß sich insgesamt größtmögliche Wärmedämmung bei geringstmöglicher Bauhöhe ergibt.
  • Die Unteransprüche haben vorteilhafte Weiterbildungen der Erfindung zum Inhalt.
  • Beim erfindungsgemäßen Verfahren kann entweder die Lagerschicht als dünne Platte mit darauf verankerter Heizwendel vorgefertigt und anschließend - gegebenenfalls an einem anderen Ort - mit der ebenfalls plattenförmigen oder auch eingepreßten Dämmschicht vereinigt werden, oder aber es erfolgt eine Beschichtung unmittelbar der Dämmschicht mit dem Material der Lagerschicht mit nachfolgendem Eindrücken der Heizwendel, wobei dann auch ein Auflagering besonders vorteilhaft klebend mit dem Material der Lagerschicht verbunden werden kann.
  • In der Zeichnung ist eine Ausführungsform der Erfindung veranschaulicht.
  • Es zeigt
    • Fig. 1 einen Schnitt durch eine erfindungsgemäße Heizvorrichtung und
    • Fig. 2 die Einzelheit aus Kreis II in Fig. 1 in stark vergrößerter Darstellung.
  • Die veranschaulichte Heizvorrichtung besteht im wesentlichen aus einer Aufnahmeschale 1 aus Metall, insbesondere Aluminiumblech, und Wärmedämmaterial in Form einer Wärmedämmschicht 2, welche an der Innenseite der Umfangswand 3 der Aufnahmeschale 1 zwischen deren Boden 4 und einer Heizwendel 5 angeordnet ist. Die elektrisch betriebene Heizwendel 5 weist nicht näher dargestellte elektrische Anschlüsse auf, die auf geeignete Weise aus dem Bereich der Aufnahmeschale 1 herausgeführt sind. Die dargestellte Heizvorrichtung dient zur Strahlungsbeheizung einer Glaskeramikabdeckung einer Kochplatte, wobei die nicht näher dargestellte Glaskeramikplatte auf einer Auflagefläche 10 aufliegt und damit Abstand vom oberen Rand der Umfangswand 3 der Aufnahmeschale 1 sowie von der Heizwendel 5 erhält. Die Umfangswand 3 der Aufnahmeschale 1 und damit die gesamte Heizvorrichtung hat in Draufsicht im wesentlichen Kreisform und liegt konzentrisch zu einer Mittelachse 9.
  • Die Dämmschicht 2 besteht aus feinporigem Kieselsäureaerogel mit Zuschlagstoffen. Dieses Material ist an sich bekannt und weist neben dem Kieselsäureaerogel in aller Regel eine Mineralfaserverstärkung und/oder ein Trübungsmittel und/oder ein Bindemittel als Härter auf; solche hochwirksamen Wärmedämm-Materialien werden durch die Anmelderin unter der Bezeichnung MINILEIT (eingetr. Warenzeichen) vertrieben, wobei hinsichtlich Einzelheiten auf die einschlägigen DE-OSen 27 47 663, 27 48 307, 27 54 956 und 31 08 816 verwiesen wird, auf die insoweit ausdrücklich Bezug genommen wird. Bevorzugt wird ein Material für die Dämmschicht 2 verwendet, welches aus 30 bis 50 Gew.-% pyrogener Kieselsäure, 20 bis 50 Gew.-% Trübungsmittel und 5 bis 15 Gew.-% Aluminiumfasern besteht sowie in einem Raumgewicht von 200 bis 400 kg/m vorliegt, jedoch nicht organisch oder anorganisch gehärtet zu sein braucht. Ein solches Spezial-Wärmedämmaterial besitzt eine Wärmeleitfähigkeit, die geringer ist als diejenige ruhender Luft, und ist darüber hinaus nur wenig temperaturabhängig. Allerdings sind die aus derartigen pulverförmigen Grundstoffen gepreßten Platten oder Schichten mechanisch wenig widerstandsfähig. Anstelle von Kieselsäureaerogel kann das Material auch Aluminiumoxid-Aerogel aufweisen, oder eine geeignete Mischung beider Aerogele, um bei Bedarf höhere Temperaturbeständigkeit zu erreichen. Zur weiteren Erhöhung der Temperaturbeständigkeit kann das Dämmaterial der Dämmschicht 2 Zuschläge an hochtemperaturbeständigen Stoffen wie Manganoxid, Zirkonoxid oder Titanoxid enthalten. Für Spezialzwecke kann auch mit deren Aerogelen gearbeitet werden.
  • Auf der Dämmschicht 2 ist eine Lagerschicht 7 angeordnet, die eine Dicke von etwa 1 mm oder wenig mehr haben kann. Im Beispielsfalle möge die Lagerschicht 7 aus einem Stoffgemisch bestehen, welches mineralische Fasern und ein keramisches Bindemittel enthält, das bei Temperaturen zwischen etwa 500°C und 1000°C durch keramische Bindung verfestigt. Der Anteil an mineralischen Fasen sollte möglichst hoch sein, da die mineralischen Fasern einer Tendenz der Lagerschicht 7 zum Schrumpfen bei erhöhten Temperaturen entgegenwirken. Daher sollten die mineralischen Fasern in einem Anteil von über 50 Gew.-% am trockenen Gemisch enthalten sein, vorzugsweise jedoch mit einem noch höheren Anteil von 75 bis 95 Gew.-%, wobei im Beispielsfalle ein Anteil von etwa 80 Gew.-% gewählt sein möge. Die mineralischen Fasern besitzen einen Erweichungs- bzw. Schmelzpunkt von über 1000°C. vorzugsweise von über 11000 C, sind also gegenüber den im Betrieb auftretenden Temperaturen beständig. Eine solche Einstellung des Erweichungs- oder Schmelzpunktes der Fasern gelingt einerseits über die Wahl einer bestimmten Partikelgröße, wobei größere Partikel später erweichen und sintern als kleinere pulverartige Partikel, sowie über die Wahl der Zuschlagstoffe oder Flußmittel zusätzlich zum Aluminiumoxid- oder Siliziumoxid-Hauptbestandteil der Mineralfasern. Die Mineralfasern werden aus der Schmelze mit einer Dicke zwischen etwa 0,5 und 3 µm, vorzugsweise zwischen 1 und 2 µm gezogen und anschließend gemahlen, so daß sie auf Längen zwischen 2 und 20 µm, vorzugsweise zwischen 5 und 10 µm gebrochen werden, wobei jedoch in jedem Falle die Länge der Mineralfasern deren Dicke um wenigstens das Doppelte übersteigt, so daß tatsächlich noch ein Fasercharakter vorliegt. Unter Berücksichtigung dieser Faserabmessungen können sodann die Zusatzstoffe wie Flußmittel in der Schmelze zur Herstellung der Fasern, wie Na20, 8203, MgO, Fe203 und andere, an sich bekannte Zuschlagstoffe so gewählt werden, daß sich die gewünschte Temperaturbeständigkeit bis in Bereiche über 1000°C oder über 1100°C ergibt, also in Bereiche, in denen die Mineralfasern auf Aluminium-Silikat-Basis bei der im Betrieb auftretenden Maximaltemperatur nicht erweichen oder erschmelzen.
  • Das keramische Bindemittel kann ebenfalls aus Aluminium-Silikat-Partikeln oder -faserelementen bestehen, die jedoch im Unterschied zu den Mineralfasern bei Temperaturen zwischen 500 und 1000°C erweichen und sintern und so die keramische Bindung ergeben. Hierin liegt ein wesentlicher Unterschied eines solchen Bindemittels gegenüber anderen anorganischen Bindemitteln wie etwa Wasserglas, welches als Bindemittel für eine ähnliche Beschichtung eines Formkörpers aus Wärmedämmaterial aus der DE-OS 27 47 663 bekannt ist. Wasserglas hat auch bei Raumtemperatur sofort eine ausreichende Klebewirkung, die bei höheren Temperaturen grundsätzlich unverändert bleibt, bis das Wasserglas sich zersetzt. Während Wasserglas als Material für die Lagerschicht 7 grundsätzlich in Frage kommen kann, hat sich jedoch gezeigt, daß eine Beschichtung mit Wasserglas als Bindemittel bei erhöhten Temperaturen sehr stark schrumpft und insbesondere durch den Wasserglaszusatz Kriechströme auftreten können, wenn die Heizwendel 5 unter Strom gesetzt wird. Diese Probleme treten nicht auf, wenn anstelle des Wasserglas das erläuterte keramische Bindemittel gewählt wird, wobei auch im Falle eines keramischen Bindemittels eine gewisse Schrumpfung auftreten kann, die jedoch erst bei einem relativ hohen Bindemittelgehalt von über etwa 50 Gew.-% des trockenen Gemisches störend in Erscheinung tritt. Daher liegt der Bindemittelanteil zwischen etwa 5 und 50 Gew.-%, vorzugsweise zwischen 10 und 20 Gew.-% des trockenen Gemisches, im Beispielsfalle bei etwa 15 Gew.-%, wobei eine gegenüber den Mineralfasern geringere, vorzugsweise hinsichtlich des Partikelvolumens um eine Zehnerpotenz oder Größenordnung geringere Partikelgröße der Mineralteilchen des keramischen Bindemittels gewählt ist; schon die geringere Partikelgröße ergibt einen Erweichungs- oder Schmelzpunkt bei niedrigeren Temperaturen, wobei die Einstellung im einzelnen durch entsprechende Wahl der Flußmittel zur Erzeugung entsprechend niederschmelzender Mineralteilchen erfolgen kann.
  • Mit besonderem Vorteil wird ein keramisches bzw. bei hohen Temperaturen keramisierendes Bindemittel auf der Basis von Kieselsol gewählt, wie dies beispielsweise für eine Beschichtung eines derartigen Materials aus der EP-OS 81 825 an sich bekannt ist. Das Kieselsol als keramisches Bindemittel wird zusammen mit anorganischen Fasern wie Aluminiumsilikatfasern oder Quarzfasern sowie gegebenenfalls weiteren anorganischen Füllstoffen in einer Aufschlämmung aufgebracht. Als anorganische Fasern für die Beschichtungsmasse kommen grundsätzlich alle entsprechend temperaturbeständigen Fasern wie Aluminiumsilikatfasern, Quarzfasern usw. in Frage, wobei jedoch Aluminiumsilikatfasern aus Kostengründen in der Regel bevorzugt sein werden. Die Fasern müssen so eng beieinanderliegen, daß das Kieselsol dazwischen eine Verbindung zu benachbarten Fasern bildet und an diesen haftet, statt eigene, nicht an Füllstoff gebundene Partikel zu bilden. Die Fasern wirken somit primär als Dispergierungsmittel für das Kieselsol, um mit diesem eine geschlossene Oberfläche zu bilden.
  • Auch Aluminiumsilikatfasern sind jedoch noch teurer als die meisten anorganischen körnigen Zuschlagstoffe wie gemahlenes Aluminiumoxid, Quarzsand, Mullit, Zirkonoxid usw., so daß diese Fasern aus Kostengründen durch körnige Füllstoffe gestreckt werden können, die ähnlich wie die Fasern, wenn auch in geringerem Umfange, als Dispergierungsmittel für das Kieselsol dienen können. Als anorganische körnige Zuschlagstoffe kommen weiterhin Tone und Kaolin in Frage. Bevorzugt ist Aluminiumoxid gegebenenfalls mit einer Zumischung aus Kaolin, welches die Geschmeidigkeit der Lagerschicht 7 verbessert.
  • Die Menge an Kieselsol ergibt sich im wesentlichen aus dem Bedarf an Bindemittel für die geschlossene Oberflächenbeschichtung im Hinblick auf die gewünschte Verbackung der Füllstoffe miteinander. Die Menge des Kieselsol hat eine Untergrenze dort, wo sich eine zu geringe Abriebfestigkeit der Oberfläche durch zu geringen Bindemittelanteil ergibt. Aus diesem Gesichtspunkt darf der Anteil des Kieselsol als Feststoff nicht geringer sein als etwa ein Zehntel der damit zu bindenden Füllstoffe und Fasern in der Oberflächenbeschichtung, so daß das Kieselsol in der geschlossenen Oberflächenbeschichtung jedenfalls in einem Feststoffanteil von 10 Gew.-% oder mehr vorliegt. Eine Erhöhung des Kieselsolanteils ergibt zunächst eine Erhöhung der Abriebfestigkeit durch bessere Einbindung der Fasern und der körnigen Füllstoffe sowie weiterhin eine glänzende und glattere Oberfläche. Eine Obergrenze für den Kieselsolanteil in der geschlossenen Oberflächenbeschichtung liegt da, wo das Kieselsol dazu neigt, sich in körniger Form zu partikulieren und auf diese Weise brüchig zu werden. Dies wird durch einen ausreichend hohen Füllstoff-, insbesondere Fasergehalt des Kieselsol vermieden. Daher darf der Anteil des Kieselsol bezogen auf die Menge der Füllstoffe in der Beschichtungsmasse nur etwa bei 1:1 liegen, so daß also mindestens ebenso viele Gewichtsanteile Füllstoffe wie Trockengewichtsanteile Kieselsol in der geschlossenen Lagerschicht 7 vorhanden sind. Hierbei sollte jedoch der Anteil der in Faserform vorliegenden Füllstoffe nicht unter einem Drittel der Füllstoffe der Lagerschicht 7 liegen, um die Fasern ausreichend als Netzwerkbildner zur Bildung eines geschlossenen Films wirksam werden zu lassen.
  • Die vorstehenden Angaben beziehen sich auf die Gewichtsanteile in der fertigen Lagerschicht 7, wobei also die Trockenmasse des Kieselsol berücksichtigt ist. Das wässrige Kieselsol, also die kolloidale Kieselsäure, besitzt jedoch einen Wasseranteil von zwischen 60 und 70 Gew.-%, der gegebenenfalls zusammen mit einer zusätzlichen Wasserzugabe zur Verdünnung dazu dient, durch Einstellung der Viskosität oder allgemein des Fließverhaltens das Bindemittel mit den Füllstoffen zu vermischen und einen geschlossenen Auftrag zu ermöglichen. Dies kann unterstützt werden durch eine Zugabe von Netzmitteln, wie dies an sich bekannt ist, wobei natürlich auch eine mechanische Unterstützung durch Rakeln oder Walzen in Frage kommt.
  • Nachfolgend werden vier Beispiele für eine solche Überzugsmasse angegeben:
  • Beispiel 1
  • 58,8 Gew.-% wässriges Kieselsol (30 % Feststoffanteil) 23,5 Gew.-% Aluminiumsilikatfasern 11,8 Gew.-% Aluminiumoxid 5,9 Gew.-% Kaolin
  • Nach Herausrechnung des Wasseranteils der kolloidalen Kieselsäure der obigen Masse ergibt sich eine Feststoffverteilung in der Lagerschicht 7 von etwa 30 Gew.-% Kieselsol, 40 Gew-% Aluminiumsilikatfasern, 20 Gew.-% Aluminiumoxid und 10 Gew.-% Kaolin.
  • Beispiel 2
  • 70,0 Gew.-% wässriges Kieselsol (30 % Feststoffanteil) 13,3 Gew.-% Aluminiumsilikatfasern 6,7 Gew.-% Aluminiumoxid 10,0 Gew.-% Kaolin
  • Nach Herausrechnung des Wasseranteils der kolloidalen Kieselsäure der vorstehenden Masse ergibt sich eine Feststoffverteilung von etwa 41 Gew.-% Kieselsol, 26 Gew-% Aluminiumsilikatfasern, 13 Gew.-% Aluminiumoxid und 20 Gew.-% Kaolin.
  • Beispiel 3
  • 48,97 Gew.-% wässriges Kieselsol (30 % Feststoffanteil) 25,53 Gew.-% Aluminiumsilikatfasern 12,75 Gew.-% Aluminiumoxid 12,75 Gew.-% Ton
  • Nach Herausrechnung des Wasseranteils der kolloidalen Kieselsäure der vorstehenden Masse ergibt sich eine Feststoffverteilung von etwa 23 Gew.-% Kieselsol, 39 Gew.-% Aluminiumsilikatfasern, 19 Gew.-% Aluminiumoxid und 19 Gew.-% Ton.
  • Beispiel 4
  • 48,94 Gew.-% wässriges Kieselsol (30 % Feststoffanteil) 44,66 Gew.-% Aluminiumsilikatfasern 6,40 Gew.-% Ton
  • Nach Herausrechnung des Wasseranteils der kolloidalen Kieselsäure der obigen Masse ergibt sich eine Feststoffverteilung von etwa 22 Gew.-% Kieselsol, 69 Gew.-% Aluminiumsilikatfasern und 9 Gew.-% Ton.
  • Die Massen werden feucht mit einer der Art der Aufbringung durch Spritzen, Rakeln, Streichen, Tauchen, Siebdruck oder dergleichen entsprechenden flüssigen bis pastenartigen Konsistenz aufgebracht. Die Heizwendel 5 ist in der gewünschten Form zuvor spannungsfrei geglüht worden und wird so vorbehandelt mittels eines Magneten mit einer Temperatur von beispielsweise 2000C aufgenommen und in die noch feuchte Lagerschicht 7 eingedrückt. Die Eindrückung erfolgt dabei bevorzugt nur soweit, bis etwa zwei Drittel der Drahtstärke des unteren Bogenabschnittes jedes Wendelringes in die Masse eintaucht, wobei infolge der erhöhten Temperatur der Heizwendel bereits beim Einpressen eine gewisse Verfestigung der Masse und so eine Anheftung der Heizwendel erfolgt. Bei Bedarf kann der Masse auch ein geringer Anteil an organischen Zuschlagstoffen zur Erzielung einer Klebewirkung beigefügt werden. Bei Betrieb der Heizwendel keramisiert das Material dann unter der Wärmeeinwirkung vollständig aus und zementiert den eingebetteten Bogenabschnitt der Heizwendel gewissermaßen ein. Wie ohne weiteres ersichtlich ist, ergibt sich eine besonders gute Haltewirkung dann, wenn der untere Bogenabschnitt der Heizwendel über mehr als die Hälfte der Drahtstärke eintaucht, da dann beim Aushärten der Masse durch die oberen hintergreifenden Oberflächenschichten der Masse eine formschlüssige Halterung erfolgt. Andererseits sollte die Eintauchtiefe so gering wie möglich gehalten werden, um die Abstrahlung möglichst wenig zu behindern. Daher ergibt sich die in Fig. 2 dargestellte Eintauchtiefe von etwa 2/3 der Drahtstärke als optimal.
  • Der radial äußere Umfangsbereich 6 der Aufnahmeschale 1 bzw. der Dämmschicht 2 und damit auch der Lagerschicht 7 ist im Beispielsfalle in der dargestellten Weise nach oben hin abgekröpft, so daß die Heizvorrichtung insgesamt im Querschnitt etwa tellerförmiges Aussehen erhält. Auf den abgekröpften Umfangsbereich 6 ist ein Auflagering 8 aus gebundenen Fasern, etwa einem Material, wie es unter der Bezeichnung Fiberfrax (eintr. Warenzeichen) im Handel ist, aufgesetzt, und bildet mit der oberen Auflagefläche 10 in der bereits geschilderten Weise die Abstützung zur Unterseite der Glaskeramikplatte.
  • Die Herstellung der Heizvorrichtung kann auf verschiedene Weise erfolgen. So kann zunächst das Material der Dämmschicht 2 in an sich bekannter Weise gegen den Boden 4 der Aufnahmeschale 1 verpreßt werden und somit als verdichtete Dämmschicht 2 direkt über dem Boden 4 der Aufnahmeschale 1 ausgebildet werden. Sodann kann die Masse zur Bildung der Lagerschicht 7 durch Spritzen, Streichen oder dergleichen auf die Oberfläche der so gebildeten Dämmschicht 2 aufgebracht und die Heizwendel eingedrückt werden. Dann kann zweckmäßig auch der Auflagering 8 aufgesetzt werden, solange die Masse zur Bildung der Lagerschicht 7 noch feucht ist, und so durch Haftung gehalten werden. In einem solchen Falle wird die veranschaulichte Heizvorrichtung entweder einstufig oder - mit Unterbrechung und gegebenenfalls Ortswechsel nach dem Einpressen der Dämmschicht 2 - zweistufig vollständig vorgefertigt.
  • Alternativ kann die Dämmschicht 2 auch als Platte vorgefertigt und so vorgepreßt und vorgefertigt in die Aufnahmeschale 1 eingesetzt werden. Auch in diesem Falle kann, ohne Anwesenheit der Aufnahmeschale 1, die Ausbildung der Lagerschicht 7, deren Bestückung mit der Heizwendel 5 und gegebenenfalls dem Auflagering 8 in der vorstehend geschilderten Weise erfolgen.
  • Es kann jedoch auch die Lagerschicht 7 separat vorgefertigt und mit der Heizwendel 5, gegebenenfalls auch mit dem Auflagering 8 bestückt und so getrocknet bzw. gehärtet werden. Diese Montageeinheit kann dann anschließend zusammen mit einer separat vorgefertigten plattenförmigen Dämmschicht 2 in eine Aufnahmeschale 1 eingesetzt werden, oder in eine Aufnahmeschale 1 mit eingepreßter Dämmschicht 2 eingesetzt werden.
  • Die erfindungsgemäße Heizvorrichtung läßt somit eine Vielzahl von Fertigungsmöglichkeiten mit großer Freizügigkeit bezüglich der Fertigungsorte zu. Dabei gestaltet sich die Fertigung in jedem Falle einfach und problemlos, zumal auch Aufwand zur Herstellung von Nuten im Hinblick auf die erfindungsgemäß ebene Ausbildung der Oberfläche der Lagerschicht 7 entfallen kann.
  • Da in jedem Falle die Heizwendel 5 auf der Lagerschicht 7 montiert und verankert wird, bevor der Auflagering 8 aufgebracht werden muß, eignet sich die Fuge zwischen der Unterseite des Auflageringes 8 und der dortigen Lagerschicht 7 besonders gut für die Durchführung der elektrischen Anschlüsse der Heizwendel 5. In jedem Falle kann bei Bedarf unmittelbar nach Einbettung der Heizwendel 5 eine Aufheizung bis auf eine gewünschte Temperatur erfolgen, so daß jedenfalls in den lokalen Lagerbereichen eine ausreichende Trocknung und Härtung der Masse für die Lagerschicht 7 erfolgt.
  • In der Lagerschicht 7 können weiterhin mineralische Pigmente enthalten sein, und zwar insbesondere in Form von Ti02 oder Ti02-haltigen Stoffen. Die mineralischen Pigmente, die nicht unbedingt erforderlich sind, dienen dazu, bereits einen Teil der IR-Strahlung zu streuen oder zu reflektieren sowie die Abriebfestigkeit zu erhöhen. Als Ti02-haltiger Stoff kann beispielsweise ein Gemisch aus A1203 und TiO2 gewählt werden, wobei das TiO2 neben seiner Funktion als Pigment auch als Trübungsmittel gegenüber IR-Strahlung dient. Weitere Beispiele für geeignete Pigmente sind etwa Rutil, Ilmenit, Eisenoxid, Chromoxid und dergleichen. Es genügt, wenn die mineralischen Pigmente in einem Anteil von bis zu maximal etwa 20 Gew.-% des Trockengemisches, vorzugsweise jedoch in einem geringeren Anteil als 10 Gew.-% in der Lagerschicht 7 enthalten sind. Im Beispielsfalle möge die Lagerschicht 7 5 Gew.-% mineralische Pigmente in Form von TiO2 enthalten. Eine Verwendung von Pigmenten bzw. Trübungsmitteln in der Lagerschicht 7 ist deshalb relativ problemlos möglich, weil infolge der nur ganz geringfügigen Einbettung des Wendeldrahtes ein merklicher Wärmestau nicht zu befürchten ist.

Claims (11)

1. Heizvorrichtung, insbesondere für eine strahlungsbeheizte Kochplatte,
mit einer mit elektrischem Strom betriebenen Heizwendel und
mit einer Lagereinrichtung für die Heizwendel,
- mit einer geschlossenflächigen Lagerschicht enthaltend ein anorganisches temperaturbeständiges Bindemittel insbesondere mit einem anorganischen Füllstoff, wobei die Heizwendel auf ihrer ganzen Länge gegen Querbewegungen in Richtung der Oberflächenerstreckung der Lagerschicht gesichert und durch Klebewirkung an der Lagerschicht gehalten ist, und
- mit einer auf der der Heizwendel gegenüberliegenden Seite der Lagerschicht angeordneten Dämmschicht auf der Basis von aus der Flammenpyrolyse gewonnenem mikroporösem Oxidaerogel-insbesondere von Silizium und/oder Aluminium, insbesondere mit Mineralfaserverstärkung und/oder Trübungsmittel, die zusammen mit der Lagerschicht und der Heizwendel in einer Aufnahmeschale anordenbar ist, welche an der Unterseite der Kochplatte befestigbar ist,

dadurch gekennzeichnet,
daß die Oberfläche der Lagerschicht (7) eben ausgebildet ist und
daß jeder der Lagerschicht (7) zugewandte Bogenabschnitt der Heizwendel (5) höchstens bis zu etwa der vollen Drahtstärke der Heizwendel (5) im Material der Lagerschicht (7) eingebettet ist.
2. Heizvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das anorganische Bindemittel der Lagerschicht (7) ein keramisches Bindemittel ist, das bei Temperaturen zwischen etwa 500°C und 1000°C durch keramische Bindung verfestigt.
3. Heizvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das anorganische Bindemittel Kieselsol ist, welches in einem Verhältnis zu den anorganischen Füllstoffen von höchstens 1:1 und mindestens 1:9 enthalten ist, wobei die anorganischen Füllstoffe vorzugsweise wenigstens zu einem Drittel anorganische Fasern, Rest körnige Füllstoffe, sind.
4. Heizvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Lagerschicht (7) mineralische Pigmente enthält.
5. Heizvorrichtung nach Anspruch 4, gekennzeichnet durch Ti02 oder Ti02-haltige Stoffe als mineralische Pigmente.
6. Heizvorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die mineralischen Pigmente in einem Anteil von bis zu 20 Gew.-%, vorzugsweise bis zu 10 Gew.-% des trockenen Gemisches enthalten sind.
7. Heizvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Lagerschicht (7) eine Dicke von etwa 1 mm oder wenig mehr aufweist.
8. Heizvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Eintauchtiefe des Wendeldrahtes der Heizwendel (5) mehr als die halbe Drahtstärke, insbesondere etwa 2/3 der Drahtstärke beträgt.
9. Verfahren zur Herstellung einer Heizvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Masse zur Bildung der Lagerschicht auf einer Unterlage aufgetragen und die vorgeformte und spannungsfrei geglühte Heizwendel vorzugsweise noch warm in die noch feuchte Masse der Lagerschicht eingepreßt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Lagerschicht anschließend getrocknet bzw. gehärtet wird und nach Abnahme von ihrer Unterlage als mit daran verankerter Heizwendel vorgefertigtes Bauteil zur Verfügung gestellt wird.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als Unterlage die verdichtete Dämmschicht benutzt wird, und an der noch feuchten Masse der Lagerschicht weitere Anbauteile wie ein umfangsseitiger Auflagering durch Klebung angeheftet werden.
EP86100466A 1985-01-25 1986-01-15 Heizvorrichtung, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Verfahren zu ihrer Herstellung Revoked EP0189108B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86100466T ATE65150T1 (de) 1985-01-25 1986-01-15 Heizvorrichtung, insbesondere fuer eine strahlungsbeheizte kochplatte, sowie verfahren zu ihrer herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853502497 DE3502497A1 (de) 1985-01-25 1985-01-25 Heizvorrichtung, insbesondere fuer eine strahlungsbeheizte kochplatte, sowie verfahren zu ihrer herstellung
DE3502497 1985-01-25

Publications (2)

Publication Number Publication Date
EP0189108A1 true EP0189108A1 (de) 1986-07-30
EP0189108B1 EP0189108B1 (de) 1991-07-10

Family

ID=6260781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86100466A Revoked EP0189108B1 (de) 1985-01-25 1986-01-15 Heizvorrichtung, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Verfahren zu ihrer Herstellung

Country Status (3)

Country Link
EP (1) EP0189108B1 (de)
AT (1) ATE65150T1 (de)
DE (2) DE3502497A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475285A2 (de) * 1990-09-11 1992-03-18 Miele & Cie. GmbH & Co. Backofen mit einer Backmuffel
EP0644707A1 (de) * 1993-09-17 1995-03-22 Wacker-Chemie GmbH Strahlungsheizkörper, insbesondere zum Beheizen einer glaskeramischen Kochplatte
GB2324693A (en) * 1997-04-12 1998-10-28 Ceramaspeed Ltd Vapour barrier in a radiant electric heater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE464026A (de) *
US1831889A (en) * 1931-11-17 Electrically heated cooking
FR929589A (fr) * 1945-06-21 1947-12-31 élément chauffant à résistance électrique perfectionné
US4091355A (en) * 1977-01-19 1978-05-23 Btu Engineering Corporation Anchored coil heater
EP0057252A2 (de) * 1981-01-29 1982-08-11 Grünzweig + Hartmann und Glasfaser AG Vorrichtung zur wärmedämmenden Lagerung einer elektrischen Heizwendel, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Wärmedämmplatte hierzu und Verfahren zu ihrer Herstellung
EP0105968A1 (de) * 1982-10-20 1984-04-25 Elpag Ag Chur Elektrische Heizeinrichtung für Herde oder Kochplatten
DE3302489A1 (de) * 1983-01-26 1984-07-26 Ego Elektro Blanc & Fischer Elektrischer strahlheizkoerper zur beheizung von koch- oder waermeplatten, insbesondere glaskeramikplatten

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1433478A (en) * 1972-08-05 1976-04-28 Mcwilliams J A Electrical heating apparatus
DE2729930A1 (de) * 1977-07-02 1979-01-11 Karl Fischer Strahlungs-heizeinheit fuer glaskeramik-elektrokochgeraete
US4090881A (en) * 1976-06-30 1978-05-23 The Babcock & Wilcox Company High temperature refractory adhesive
DE2950302A1 (de) * 1979-12-14 1981-06-19 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen Elektrischer strahlheizkoerper sowie verfahren und vorrichtung zu seiner herstellung
DE3020326C2 (de) * 1980-05-29 1985-12-19 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Strahlungsheizkörper mit einer elektrischen Heizwendel, insbesondere für eine Glaskeramik-Kochplatte
DE3129239A1 (de) * 1981-07-24 1983-02-10 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen Elektrischer heizkoerper fuer die beheizung einer platte und verfahren zu seiner herstellung
DE3144661A1 (de) * 1981-11-10 1983-05-19 Wacker-Chemie GmbH, 8000 München Heizplatte
DE3315438A1 (de) * 1983-04-28 1984-10-31 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen Heizelement zur beheizung von koch-, heizplatten oder dgl.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE464026A (de) *
US1831889A (en) * 1931-11-17 Electrically heated cooking
FR929589A (fr) * 1945-06-21 1947-12-31 élément chauffant à résistance électrique perfectionné
US4091355A (en) * 1977-01-19 1978-05-23 Btu Engineering Corporation Anchored coil heater
EP0057252A2 (de) * 1981-01-29 1982-08-11 Grünzweig + Hartmann und Glasfaser AG Vorrichtung zur wärmedämmenden Lagerung einer elektrischen Heizwendel, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Wärmedämmplatte hierzu und Verfahren zu ihrer Herstellung
EP0105968A1 (de) * 1982-10-20 1984-04-25 Elpag Ag Chur Elektrische Heizeinrichtung für Herde oder Kochplatten
DE3302489A1 (de) * 1983-01-26 1984-07-26 Ego Elektro Blanc & Fischer Elektrischer strahlheizkoerper zur beheizung von koch- oder waermeplatten, insbesondere glaskeramikplatten

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475285A2 (de) * 1990-09-11 1992-03-18 Miele & Cie. GmbH & Co. Backofen mit einer Backmuffel
EP0475285A3 (de) * 1990-09-11 1992-04-01 Miele & Cie. GmbH & Co. Backofen mit einer Backmuffel
EP0644707A1 (de) * 1993-09-17 1995-03-22 Wacker-Chemie GmbH Strahlungsheizkörper, insbesondere zum Beheizen einer glaskeramischen Kochplatte
US5532458A (en) * 1993-09-17 1996-07-02 Wacker-Chemie Gmbh Radiant heater, in particular, for heating a glass-ceramic hot plate
GB2324693A (en) * 1997-04-12 1998-10-28 Ceramaspeed Ltd Vapour barrier in a radiant electric heater

Also Published As

Publication number Publication date
ATE65150T1 (de) 1991-07-15
EP0189108B1 (de) 1991-07-10
DE3502497A1 (de) 1986-07-31
DE3680120D1 (de) 1991-08-14

Similar Documents

Publication Publication Date Title
EP0057252A2 (de) Vorrichtung zur wärmedämmenden Lagerung einer elektrischen Heizwendel, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Wärmedämmplatte hierzu und Verfahren zu ihrer Herstellung
DE2748307C2 (de) Wärmedämmplatte und Verfahren zu ihrer Herstellung
DE3519350A1 (de) Strahlungs-heizeinheit
EP0152849B1 (de) Giesspfanne oder Zwischenpfanne
EP0041203B2 (de) Vorrichtung zur wärmedämmenden Lagerung einer elektrischen Heizwendel, insbesondere für eine strahlungsbeheizte Kochplatte und Verfahren zu ihrer Herstellung
EP0189108B1 (de) Heizvorrichtung, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Verfahren zu ihrer Herstellung
EP0781738A1 (de) Grossformatiger Schamottestein, insbesondere Zinnbadbodenstein, und Verfahren zu seiner Herstellung
DE3248661C2 (de)
EP0081825B1 (de) Durch Pressen verdichteter Wärmedämmkörper aus einem hochdispersen Dämmaterial, sowie Verfahren zu seiner Herstellung
DE3127183C2 (de) Metallschmelzen-Rinneneinheit, insbesondere für Hochöfen
EP0533072B1 (de) Flachheizkörper
EP1701122B1 (de) Zweischichtfeuerfestplatte sowie Verfahren zu deren Herstellung
DE10132414B4 (de) Elektrisch betreibbarer, flächiger Infrarotstrahler
DE3735179A1 (de) Strahlungs-heizeinheit sowie verfahren zur herstellung einer strahlungs-heizeinheit
DE4020771A1 (de) Hochtemperaturfester klebstoff
DE3051009C2 (de)
DE8102211U1 (de) Wärmedämmplatte zur wärmedämmenden Lagerung einer elektrischen Heizwendel, insbesondere für eine strahlungsbeheizte Kochplatte
EP0095118A1 (de) Wärmedämmplatte für die Lagerung einer elektrischen Heizwendel, sowie Verfahren zu ihrer Herstellung
EP0011774A1 (de) Vorgefertigte Fussbodenplatten mit Heizkanälen für Heizrohre und Verwendung dieser Platten für einen Fussboden
EP0598401A1 (de) Flächenheizkörper und Verfahren zur Herstellung eines Flächenheizkörpers
AT397119B (de) Mehrschaliger isolierschacht
DE19809685C2 (de) Festkörperfilter auf der Basis von Quarzsand
WO1988002355A1 (en) Process for manufacturing cermets, and composites manufactured according to this process, and the use thereof
DE102007004243A1 (de) Schichtmaterial für den Hochtemperatureinsatz
DE10110793A1 (de) Keramisches Kochsystem mit Glaskeramikplatte, Isolationsschicht und Heizelementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB IT LI

17P Request for examination filed

Effective date: 19861215

17Q First examination report despatched

Effective date: 19880803

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CERAMASPEED LIMITED

17Q First examination report despatched

Effective date: 19901018

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI

REF Corresponds to:

Ref document number: 65150

Country of ref document: AT

Date of ref document: 19910715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3680120

Country of ref document: DE

Date of ref document: 19910814

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: E.G.O. ELEKTRO-GERAETE BLANC U. FISCHER

Effective date: 19920410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961203

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19961205

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961213

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970108

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970226

Year of fee payment: 12

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19980327

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 980327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO