EP0184626B1 - Méthode de commande pour moteur à injection de carburant - Google Patents

Méthode de commande pour moteur à injection de carburant Download PDF

Info

Publication number
EP0184626B1
EP0184626B1 EP85112425A EP85112425A EP0184626B1 EP 0184626 B1 EP0184626 B1 EP 0184626B1 EP 85112425 A EP85112425 A EP 85112425A EP 85112425 A EP85112425 A EP 85112425A EP 0184626 B1 EP0184626 B1 EP 0184626B1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
fuel
engine
determining
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85112425A
Other languages
German (de)
English (en)
Other versions
EP0184626A3 (en
EP0184626A2 (fr
Inventor
Teruji Sekozawa
Makoto Shioya
Motohisa Funabashi
Mikihiko Onari
Masami Shida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17173630&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0184626(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of EP0184626A2 publication Critical patent/EP0184626A2/fr
Publication of EP0184626A3 publication Critical patent/EP0184626A3/en
Application granted granted Critical
Publication of EP0184626B1 publication Critical patent/EP0184626B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting

Definitions

  • the present invention relates to a control method and apparatus for fuel injection engines of the type used in vehicles such as automobiles and more particularly to a fuel injection control method so designed that the film mass deposited on the wall of the intake manifold is estimated and the desired fuel injection quantity is determined on the basis of the estimated film mass.
  • the fuel injected from the fuel injection valve is partly deposited on the intake manifold wall or the fuel deposited as the film mass is vaporized and fed into each cylinder thus failing to wholly supply the injected fuel into the cylinder and in particular the quantity of fuel supplied to the engine deviates considerably from the fuel quantity required from moment during the engine acceleration or deceleration.
  • EP-A-0 069 219 discloses a method and apparatus for controlling the fuel injection into an engine, wherein the desired combustion chamber fuel (DFC) is calculated on the basis of a basic fuel amount (BF), a temperature etc. correction coefficient (TCC) and an excess air correction coefficient (EXC) derived from an O2 sensor.
  • DFC desired combustion chamber fuel
  • BF basic fuel amount
  • TCC temperature etc. correction coefficient
  • EXC excess air correction coefficient
  • An interrupt routine is initiated in synchronism with the crankshaft rotation at each fuel injection time to calculate an actual fuel command (AFC) for determining the time the injection valve is opened, by the following steps:
  • the actual amount of fuel (SQF) squirted in through the fuel injection valve for the respective injection pulse is obtained by subtracting from the desired fuel amount (DFC) a fuel sucking-off amount (SOA), i.e. the amount of fuel entrained from fuel adhering to the inner manifold surfaces, and dividing the result by a figure (1-AWC) representing the proportion of the injected fuel that does not get adhered to the manifold wall.
  • SOA fuel sucking-off amount
  • the amount of fuel (WF) adhering to the manifold surface is renewed by adding to the previously calculated amount a figure (AWA) representing the amount that gets adhered to the wall, and subtracting therefrom the above figure (SOA) representing the sucking-off amount.
  • AZA figure representing the amount that gets adhered to the wall
  • SOA figure representing the sucking-off amount
  • AFC actual valve opening duration
  • the invention distinguishes from the prior art in that the amount of fuel to be injected is subjected to the correction derived from an 0 2 sensor and that this corrected value is utilized in updating the film mass quantity adhering to the manifold wall and in determining the fuel injection pulse width.
  • the film mass correction control miss is thus also fed back.
  • the prior art just introduces the correction value (EXC) in determining the desired amount of fuel (DFC) to be supplied to the engine.
  • the method and apparatus of the present invention perform the various calculations on a time basis and use the most recent value to control the engine, thereby again achieving higher accuracy and providing a uniform load on the computer.
  • FIG. 1A illustrates a schematic diagram of a fuel injection control apparatus.
  • the mass of air flow Q a in the intake manifold of an engine is detected by a hot-wire air flow meter 2 and applied to a computer 1.
  • the computer 1 receives the throttle position 8th from a throttle position sensor 3, the intake manifold pressure P from a manifold pressure sensor 4, the cooling water temperature T w from a water temperature sensor 5, the engine speed N from a crank angle sensor 6 and a binary signal indicative of a lean or rich mixture from an O2 sensor 7.
  • the computer 1 directs the desired fuel injection quantity G f to an injector 8.
  • the computer 1 calculates the rate of deposition of the fuel injection quantity on the intake manifold wall and the rate of vaporization of the film mass deposited on the intake manifold wall from the following equations (1) and (2), respectively, according to the inputted data. If the deposition rate is represented by X and the vaporization rate by 1/ T , the deposition rate X is simply given for example as a function of the throttle position 8th as follows
  • the vaporization rate 1/ T is given as a function of the water temperature T w as follows
  • the current film mass quantity is calculated from the film mass quantity obtained during the preceding cycle and the actually injected fuel quantity as follows where AT is the computing cycle period, M, is the film mass quantity, G, is the fuel injection quantity and G f ⁇ y is the actually injected fuel quantity in terms of the fuel quantity per unit time.
  • the fuel injection quantity per unit time is determined in accordance with the deposition rate and the film mass quantity in the following manner.
  • the fuel injection quantity of the engine must correspond to the intake air flow and therefore the desired value of the fuel quantity to be supplied to each cylinder is given as follows.
  • Q a is the intake air flow
  • (A/F) is the desired air-fuel ratio
  • G fe * is the desired value of the quantity of fuel injected into the engine cylinder.
  • Figure 2 shows the behavior within the intake manifold of the fuel quantity entering the engine cylinder.
  • G f represents the injected fuel quantity
  • X ⁇ G f represents the quantity of the fuel deposited on an intake manifold wall 21
  • (1-X)G f represents the quantity of the fuel supplied to the cylinder without deposition.
  • M/T represents the quantity of fuel supplied to the cylinder by the vaporization of the previously deposited fuel quantity (film mass quantity) on the intake manifold wall 21.
  • the equation (7) is obtained as follows.
  • the fuel quantity Q a /(A/F) to be supplied to the cylinder-to attain the desired air-fuel ratio is obtained in accordance with the intake air flow Q a and the fuel quantity 1/ T M f to be carried over to the cylinder is obtained in accordance with the vaporization rate 1/ T and the film mass quantity M f .
  • the fuel quantity 1/ T M f is subtracted from the fuel quantity QJ(A/F) and the difference is divided by the non-deposition rate (1-X) of the injection fuel to be supplied to the cylinder without deposition thereby determining the desired fuel quantity per unit time.
  • the value of G, obtained at the step 103 is the fuel injection quantity per unit time, it is then converted to a fuel injection pulse width per stroke of the engine at a step 104, as follows where N is the engine speed, k l is a coefficient determined by the characteristics of the injector, y is the feedback correction factor derived from the 0 2 sensor signal and T s is a dead fuel injection time.
  • the fuel injection pulse width per stroke T is renewed at intervals of the computing cycle and therefore the actual fuel injection takes place for the duration of the fuel injection pulse width T l existing at the time of arrival of an interrupt signal generated for every stroke. Therefore, as the fuel injection quantity data required for the computer to calculate the quantity of film mass during the next cycle, the actual fuel injection pulse width in terms of the following quantity corresponding to the fuel quantity per unit time is fed back
  • FIG. 3 illustrates a block diagram of the fuel injection control system in the computer 1 of Figure 1A.
  • a fuel injection quantity per unit time G f is calculated by computing means 12 in accordance with the film mass estimated by computing means 13 for estimating the film mass quantity M f deposited on the intake manifold wall and the mass of air flow.
  • Computing means 11 calculates the quantity of fuel injected per stroke as shown by equation: where k i is a coefficient which is used in the conversion to the fuel injection quantity per stroke and dependent on the injector characteristics and T s is a dead injection time.
  • the computing means 13 computes the quantity of film mass in the intake manifold in accordance with equation (3):
  • the right member M fn represents the film mass quantity for the preceding cycle and the left member M fn+1 is the newly estimated film mass quantity.
  • 1/ T represents the rate of vaporization of the film mass
  • X represents the rate of fuel deposition on the intake manifold wall to the injected fuel quantity (referred to as a deposition rate).
  • Represented by AT is one cycle period of the computation by the blocks of Figure 3.
  • the following in the right member represents the quantity of fuel delivered to the cylinder by the vaporization of the film mass during one cycle period
  • the fuel injection quantity per unit time y ⁇ G f resulting from the integration of the feedback correction factor y represents the quantity of fuel injected per unit time which is renewed in response to the application of a stroke start signal from the crank angle sensor.
  • the deposition rate X and the vaporization rate 1/ T are obtained by experiments in accordance with the throttle position ⁇ th, the water temperature T w , the manifold pressure P, the mass air flow Q a , etc.
  • the deposition rate X is given as a function of the throttle position for purposes of simplicity, as in equation (1):
  • the occurrence of lean spikes during the engine acceleration and the occurrence of rich spikes during the engine deceleration are eliminated as compared with the conventional method in which a basic fuel injection quantity is determined in accordance with the flow of intake air.
  • This has the effect of improving the engine performance during the acceleration and ensuring effective removal of the harmful gases during the deceleration.
  • the desired acceleration and deceleration corrections can be provided by matching only the deposition rate of the fuel injection and the vaporization rate of the film mass in accordance with the acceleration and deceleration air-fuel ratios and thus the invention has the effect of providing more efficient manufacturing steps.
  • the quantity of the film mass deposited on the intake manifold wall is estimated by newly estimating the film mass quantity by using the actually injected fuel quantity, it is possible to estimate an accurate film mass quantity closer to the actual film mass quantity.
  • the air-fuel ratio of the mixture supplied to the engine can be controlled at around the stoichiometric air-fuel ratio even during the engine acceleration and deceleration.
  • the invention has the effect of improving the exhaust gas purification and the engine performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (4)

1. Procédé de commande de l'injection de carburant dans un moteur, dans lequel les étapes suivantes sont effectuées dans chacun de cycles de calcul successifs:
(a) détermination d'une quantité d'injection de carburant courante Gfn par temps du moteur selon la formule
Figure imgb0029
dans laquelle
Gfen=la quantité de carburant désirée à délivrer au moteur (10),
1/τ · Mfn=quantité de carburant se vaporisant à partir d'une quantité massique du film Mfn déposé sur la paroi de la tubulure d'admission (21),
X=La partie de la quantité de carburant injecté Gfn qui se dépose sur ladite paroi (21),
(b) calcul d'un facteur de correction y de rétroaction de quantité d'injection de carburant visant à un rapport air-carburant stoéchiométrique A/F basé sur un signal généré par un capteur O2 (7),
(c) détermination d'une largeur d'impulsion d'injection de carburant T1 selon la formule
Figure imgb0030
k,=coefficient dépendant des caractéristiques de l'injecteur (8),
y · G fn=quantité d'injection de carburant réelle corrigée par ledit facteur y,
N=vitesse du moteur,
Ts=temps mort d'injection de carburant,
(d) détermination de la quantité massique de film Mfn+1, pour le cycle de calcul ultérieur selon la formule
Figure imgb0031
T=période du cycle de calcul.
2. Procédé selon la revendication 1, dans lequel la quantité de carburant réellement injectée dans ledit moteur (10) est la quantité d'injection de carburant courante Gfn qui a été déterminée dans le dernier cycle de calcul précédant l'instant d'injection.
3. Dispositif de commande de l'injection de carburant dans un moteur, comportant
(a) des moyens (12) pour déterminer une quantité d'injection de carburant courante Gfn par temps du moteur selon la formule
Figure imgb0032
Gfen=quantité de carburant désirée à délivrer au moteur (10),
1/τ · Mfn=quantité de carburant se vaporisant à partir d'une quantité massique de film Mfn déposée sur la paroi de la tubulure d'admission (21),
X=partie de la quantité de carburant injecté Gfn, qui se dépose sur ladite paroi (21),
(b) des moyens (14) pour calculer un facteur de correction y de rétroaction de quantité d'injection de carburant visant à un rapport air-carburant stoéchiométrique A/F basé sur un signal généré par un capteur 02 (7),
(c) des moyens (11) pour déterminer une largeur d'impulsion d'injection de carburant T, selon la formule
Figure imgb0033
kl= coefficient fonction des caractéristiques de l'injecteur (8),
Y·=G fn =quantité d'injection de carburant réelle Gfn corrigée par ledit facteur y,
N=vitesse du moteur,
Ts=temps mort d'injection de carburant,
(d) des moyens (13) pour déterminer la quantité massique de film Mfn+1 pour le cycle de calcul ultérieur selon la formule
Figure imgb0034
T=la durée du cycle de calcul,
dans lequel lesdits moyens (a) à (d) sont aptes à accomplir leurs fonctions séquentiellement et de façon répétitive dans chacun des cycles de calcul successifs.
4. Dispositif selon la revendication 3, comprenant des moyens (16) pour convertir ladite quantité d'injection de carburant courante Gfn en une valeur de largeur d'une impulsion d'injection de carburant appliquée audit injecteur (8).
EP85112425A 1984-11-26 1985-10-01 Méthode de commande pour moteur à injection de carburant Expired - Lifetime EP0184626B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59248127A JP2550014B2 (ja) 1984-11-26 1984-11-26 エンジンの燃料噴射制御方法
JP248127/84 1984-11-26

Publications (3)

Publication Number Publication Date
EP0184626A2 EP0184626A2 (fr) 1986-06-18
EP0184626A3 EP0184626A3 (en) 1986-08-27
EP0184626B1 true EP0184626B1 (fr) 1990-01-10

Family

ID=17173630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85112425A Expired - Lifetime EP0184626B1 (fr) 1984-11-26 1985-10-01 Méthode de commande pour moteur à injection de carburant

Country Status (4)

Country Link
EP (1) EP0184626B1 (fr)
JP (1) JP2550014B2 (fr)
KR (1) KR930012226B1 (fr)
DE (1) DE3575331D1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636810A1 (de) * 1985-10-29 1987-04-30 Nissan Motor Kraftstoffeinspritzregelsystem fuer eine brennkraftmaschine
JPS63314339A (ja) * 1987-06-17 1988-12-22 Hitachi Ltd 空燃比制御装置
US4903668A (en) * 1987-07-29 1990-02-27 Toyota Jidosha Kabushiki Kaisha Fuel injection system of an internal combustion engine
JPH01182552A (ja) * 1988-01-18 1989-07-20 Hitachi Ltd 空燃比適応制御装置
JP2941282B2 (ja) * 1988-03-25 1999-08-25 株式会社日立製作所 燃料噴射制御方法および装置
US4974563A (en) * 1988-05-23 1990-12-04 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating intake air amount
JP2512787B2 (ja) * 1988-07-29 1996-07-03 株式会社日立製作所 内燃機関のスロットル開度制御装置
JPH07116963B2 (ja) * 1988-09-19 1995-12-18 株式会社日立製作所 空燃比の補正方法、及び、同補正装置
JPH02227532A (ja) * 1989-02-28 1990-09-10 Fuji Heavy Ind Ltd 燃料噴射制御装置
WO1990012958A1 (fr) * 1989-04-26 1990-11-01 Siemens Aktiengesellschaft Dispositif pour le maintien d'un rapport carburant-air predefini dans la chambre de combustion d'un moteur a piston
JPH0323339A (ja) * 1989-06-20 1991-01-31 Mazda Motor Corp エンジンの燃料制御装置
JPH0392557A (ja) * 1989-09-04 1991-04-17 Hitachi Ltd エンジンの燃料噴射制御方法
JP2825920B2 (ja) * 1990-03-23 1998-11-18 株式会社日立製作所 空燃比制御装置
DE4040637C2 (de) * 1990-12-19 2001-04-05 Bosch Gmbh Robert Elektronisches Steuersystem für die Kraftstoffzumessung bei einer Brennkraftmaschine
US5307276A (en) * 1991-04-25 1994-04-26 Hitachi, Ltd. Learning control method for fuel injection control system of engine
CA2077068C (fr) * 1991-10-03 1997-03-25 Ken Ogawa Systeme de regulation pour moteurs a combustion interne
US5383126A (en) * 1991-10-24 1995-01-17 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines with exhaust gas recirculation systems
US5261370A (en) * 1992-01-09 1993-11-16 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
JPH05312072A (ja) * 1992-05-07 1993-11-22 Honda Motor Co Ltd 内燃エンジンの空燃比制御装置
DE4447868B4 (de) * 1993-11-30 2004-04-22 Honda Giken Kogyo K.K. Kraftstoffeinspritzmengen-Steuersysstem für Verbrennungsmotoren und dabei benutzte Bestimmungseinrichtung für die Ansaugkanal-Wandtemperatur
CA2136908C (fr) * 1993-11-30 1998-08-25 Toru Kitamura Systeme de regulation du volume de carburant injecte pour moteurs a combustion interne et dispositif d'evaluation de la temperature utilise dans ce systeme
JPH07208249A (ja) * 1994-01-12 1995-08-08 Honda Motor Co Ltd 内燃エンジンの制御装置
FR2760045B1 (fr) * 1997-02-25 1999-04-16 Renault Procede de regulation de la richesse d'un moteur thermique a injection indirecte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1154121A (fr) * 1979-09-27 1983-09-20 Laszlo Hideg Systeme de dosage de carburant pour moteur a combustion interne
JPS588238A (ja) * 1981-07-06 1983-01-18 Toyota Motor Corp 燃料噴射式エンジンの燃料噴射量制御方法
US4667640A (en) * 1984-02-01 1987-05-26 Hitachi, Ltd. Method for controlling fuel injection for engine
JPS60201042A (ja) * 1984-03-27 1985-10-11 Aisan Ind Co Ltd エンジンの空燃比制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAE-paper 810494 *

Also Published As

Publication number Publication date
KR860004235A (ko) 1986-06-18
EP0184626A3 (en) 1986-08-27
DE3575331D1 (de) 1990-02-15
KR930012226B1 (ko) 1993-12-24
JP2550014B2 (ja) 1996-10-30
JPS61126337A (ja) 1986-06-13
EP0184626A2 (fr) 1986-06-18

Similar Documents

Publication Publication Date Title
EP0184626B1 (fr) Méthode de commande pour moteur à injection de carburant
US4939658A (en) Control method for a fuel injection engine
EP0069219B1 (fr) Procédé et appareil pour commander un moteur à combustion interne comprenant un système d'injection de combustible
EP0286104B1 (fr) Méthode de contrôle de l'alimentation en caburant d'un moteur à combustion interne par un calcul de prévision
US5282449A (en) Method and system for engine control
EP0301548B1 (fr) Système d'injection de carburant de moteur à combustion interne
EP0536001B1 (fr) Système de commande pour moteurs à combustion interne
US4905653A (en) Air-fuel ratio adaptive controlling apparatus for use in an internal combustion engine
US4481928A (en) L-Jetronic fuel injected engine control device and method smoothing air flow meter overshoot
US4886030A (en) Method of and system for controlling fuel injection rate in an internal combustion engine
EP0352657B1 (fr) Méthode et dispositif pour le réglage du degré d'ouverture de la soupape d'étranglement d'un moteur à combustion interne
EP0735261A2 (fr) Commande de moteur à combustion avec compensation de débitmètre d'air
EP0134547B1 (fr) Méthode de commande d'injection de carburant dans un moteur
JPH0573908B2 (fr)
EP0551207B1 (fr) Système de commande de moteurs à combustion interne
KR0158880B1 (ko) 엔진의 연료분사 제어방법
JP2564858B2 (ja) 内燃機関の燃料噴射量制御装置
JP2548273B2 (ja) 内燃機関の燃料噴射制御装置
JPH08312413A (ja) エンジンの空燃比制御装置
EP0156356B1 (fr) Méthode de contrôle de l'alimentation en carburant d'un moteur à combustion interne
EP0335334B1 (fr) Système de commande d'alimentation en carburant de moteur à combustion interne à caractéristique améliorée de reprise après coupure de carburant en décélération
JPS6318766Y2 (fr)
JPS6161940A (ja) 吸気管壁面液膜燃料量の推定方法
SU1719686A1 (ru) Способ регулировани топливоподачи в двигатель внутреннего сгорани с впрыском бензина в впускной тракт
JP2005069045A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19870213

17Q First examination report despatched

Effective date: 19870723

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3575331

Country of ref document: DE

Date of ref document: 19900215

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ROBERT BOSCH GMBH

Effective date: 19901010

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

APAU Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAP

27O Opposition rejected

Effective date: 19960217

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030924

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031203

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041001

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO