EP0182992A2 - Energiegünstiges Verfahren zur Erzeugung von Synthesegas mit einem hohen Methangehalt - Google Patents

Energiegünstiges Verfahren zur Erzeugung von Synthesegas mit einem hohen Methangehalt Download PDF

Info

Publication number
EP0182992A2
EP0182992A2 EP85111795A EP85111795A EP0182992A2 EP 0182992 A2 EP0182992 A2 EP 0182992A2 EP 85111795 A EP85111795 A EP 85111795A EP 85111795 A EP85111795 A EP 85111795A EP 0182992 A2 EP0182992 A2 EP 0182992A2
Authority
EP
European Patent Office
Prior art keywords
gas
reactor
synthesis gas
regenerator
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85111795A
Other languages
English (en)
French (fr)
Other versions
EP0182992B1 (de
EP0182992A3 (en
Inventor
Peter Dr.-Ing. Heinrich
Klaus Dr.-Ing. Knop
Friedbert Dr.-rer. nat. Rübe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Gutehoffnungshutte GmbH
Original Assignee
MAN Gutehoffnungshutte GmbH
MAN Maschinenfabrik Augsburg Nuernberg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Gutehoffnungshutte GmbH, MAN Maschinenfabrik Augsburg Nuernberg AG filed Critical MAN Gutehoffnungshutte GmbH
Publication of EP0182992A2 publication Critical patent/EP0182992A2/de
Publication of EP0182992A3 publication Critical patent/EP0182992A3/de
Application granted granted Critical
Publication of EP0182992B1 publication Critical patent/EP0182992B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/01Recirculation of gases produced to lower part of fuel bed

Definitions

  • the invention relates to a process for the production of synthesis gas, in which the synthesis gas obtained in a reactor by gasifying C-containing fuel is cooled in a regenerator and subjected to a gas treatment, and part of the gas as recycle gas is returned to the reactor together with combustion gas and C -containing fuel is supplied, the gas being heated by the regenerator before re-entering the reactor.
  • Patent 32 23 702 of the applicant discloses a method of the type mentioned for the production of synthesis gas. This process is characterized by low energy consumption since the high temperature energy of the gas emerging from the synthesis gas is used to heat the cycle gas before it re-enters the reactor.
  • the invention has for its object to provide a method for generating synthesis gas with a relatively high methane content, which has a particularly low energy consumption and can therefore be carried out particularly economically.
  • the process is also said to do without a conversion step and to provide a synthesis gas which is particularly suitable for direct ore reduction.
  • This object is achieved in a method according to the invention in that the gas is further cooled in the gas preparation in a 4-pole heat exchanger and a condenser, is subjected to a gas scrub to remove the main part of methane and carbon dioxide and after re-passage through the 4-pole heat exchanger is heated and fed to a heater
  • the raw gas is cooled to the extent that it passes below its dew point after passing through the regenerator in the 4-pole heat exchanger and the condenser.
  • the heat energy extracted from the gas is not dissipated, but is fed back into the circuit at the points where the heat energy is required.
  • the process enables a hydrogen-rich synthesis gas for the direct ore reduction to be prepared in a simple manner, methane also being obtained as a valuable by-product, which is used as synthesis gas for the production of chemical products, for example in the production of methanol, or as fuel gas for others Process can be used.
  • the synthesis gas can be conducted in such a way that after the first Passage passes through the heater by the 4 P ol heat exchanger.
  • the method further provides that oxygen is introduced as combustion gas into the gasification reactor.
  • oxygen is introduced as combustion gas into the gasification reactor.
  • the oxygen improves the gasification behavior of the coal. It is advantageous for the energy balance of the process if part of the excess process steam energy is used to generate oxygen for the reactor.
  • carbon is fed to a fluidized bed reactor 1 in the form of fine-grained, reactive coal dust.
  • Highly heated process steam, oxygen and cycle gas are passed into the reactor 1 as gasifying agents for the coal dust.
  • the composition of the cycle gas is shown in Table 1, column 3.0.
  • the coal is gasified at o a temperature of 800 C and a pressure of 10 bar.
  • the ash produced during coal gasification is withdrawn from the bottom of the reactor.
  • the synthesis raw gas leaves the reactor overhead with a composition according to column 4.0, table 1.
  • the raw gas After passing a fly ash or dust separator 2, the raw gas then enters the cooling element of a regenerator 3, in which it cools from 800 C to 578 C. becomes.
  • a regenerator 3 Suitable regenerators that extract heat from a hot gas stream via a cooling element, store it and transfer the storage heat to another gas stream via a heating element are known to the person skilled in the art, for. B. known from blast furnace technology and glass production and therefore do not need to be described in particular.
  • the gas is cooled further in a 4-pole heat exchanger 4 and a condenser 5, in which the gas is cooled down to 60.degree.
  • the condensate water accumulating in the condenser 5 is drained off.
  • the gas is subjected to a so-called PSA gas scrubbing at 6, through which the methane and carbon dioxide content of the synthesis gas is selectively separated from the gas stream.
  • PSA gas scrubbing is a known absorption process in which certain gases to be separated from a gas stream are absorbed by a solid and then by a purge gas, e.g. B. nitrogen, are removed after depressurization. The separated methane and carbon dioxide are removed from the gas cycle and are available for other use.
  • Gas scrubbing 6 significantly increases the hydrogen content of the synthesis gas, as can be seen in Table 1, column 6.0.
  • the synthesis gas now has the gas composition that is required for the later ore reduction.
  • the synthesis gas is fed to a compressor 7 and then passes through the 4-pole heat exchanger 4 again, in which it is heated to 466 ° C.
  • the gas stream passes through a heater 8, in which the process steam required in the process is additionally generated and in which the synthesis gas is heated to a high degree by burning part of the methane separated off in the gas scrubber 6, so that after passing through the heater 8 the synthesis gas enters the reduction reactor 9 at a temperature of 900 ° C.
  • the synthesis gas is partially oxidized during the reduction and then leaves the reactor 9 with a lower-hydrogen composition according to Table 1, column 3.0.
  • This so-called blast furnace gas is fed to the heating element of the regenerator 3 0, by means of which it is heated to 750 ° C. and is then re-introduced into the reactor 1 as a circulating gas.
  • the superheated steam generated in the heater 8 drives a steam turbine 10, the output of which covers practically the entire electrical energy requirement of the method. Part of the turbine power is used to produce the oxygen required in coal gasification by air separation at 11. The oxygen is then compressed and fed to the reactor 1.
  • the steam emerging from the steam turbine 10 is fed to the reactor 1 as process steam, it having previously been heated to 750 ° C. in the regenerator 3.
  • the top gas and process steam stream need not be conducted in separate lines, but can be combined before entering the regenerator 3 and heated together in the regenerator.

Abstract

Verfahren zur Erzeugung von Synthesegas, bei dem das in einem Reaktor (1) durch Vergasung von C-haltigem Brennmaterial gewonnene Synthesegas in einem Regenerator (3) abgekühlt und einer Gasaufbereitung (6) unterzogen wird, und ein Teil des Gases als Kreislaufgas dem Reaktor (1) wieder zusammen mit Brennstoff zugeführt wird, wobei das Gas vor dem Wiedereintrittt in den Reaktor von dem Regenerator (3) aufgeheizt wird, und bei dem bei der Gasaufbereitung das Synthesegas in einem 4-Pol-Wärmeaustauscher (4) und einem Kondensator (5) weiter abgekühlt wird, einer Gaswäsche (6) zur Entfernung des Hauptanteils von Methan und Kohlendioxid unterzogen wird und nach erneutem Durchtritt durch den 4-Pol-Wärmeaustauscher (4) aufgeheizt wird. Eine weitere Erhitzunger folgt in einem Gaserhitzer (8), wonach das Gas einem Erzreduktionsreaktor (9) zugeführt und nach Austritt aus dem Erzreduktionsreaktor (9) und nach erneutem Aufheizen in dem Regenerator (3) dem Vergasungsreaktor (1) wieder zugeführt wird. Der Methananteil des in dem Reaktor (1) erzeugten Synthesegases kann selektiv in der Gaswäsche (6) entfernt und zur Erzeugung chemischer Produckte verwendet werden.

Description

  • Die Erfindung betrifft ein Verfahren zur Erzeugung von Synthesegas, bei dem das in einem Reaktor durch Vergasung von C-haltigem Brennmaterial gewonnene Synthesegas in einem Regenerator abgekühlt und einer Gasaufbereitung unterzogen wird, und ein Teil des Gases als Kreislaufgas dem Reaktor wieder zusammen mit Verbrennungsgas und C-haltigen Brennmaterial zugeführt wird, wobei das Gas vor dem Wiedereintrittt in den Reaktor von dem Regenerator aufgeheizt wird.
  • Durch das Patent 32 23 702 der Anmelderin ist ein Verfahren der genannten Art zur Erzeugung von Synthesegas bekannt. Dieses Verfahren zeichnet sich durch einen niedrigen Energieverbrauch aus, da die Hochtemperaturenergie des aus dem Synthesegas austretenden Gases dafür verwendet wird, um das Kreislaufgas vor dem Wiedereintritt in den Reaktor aufzuheizen.
  • Unter den im Reaktor herrschenden Vergasungsbedingungen wird bei diesem Verfahren ein Rohgas erhalten, bei dem der Wasserstoffgehalt relativ niedrig liegt und das so gut wie kein Methan enthält. Um den Wasserstoffgehalt des Gases aufzubessern, ist es weiterhin erforderlich, das Gas durch einen Hochtemperatur-Konverter zu schicken.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Erzeugung von Synthesegas mit einem relativ hohen Methangehalt anzugeben, das einen besonders niedrigen Energieverbrauch aufweist und daher besonders wirtschaftlich durchgeführt werden kann. Das Verfahren soll ferner ohne einen Konvertierungsschritt auskommen und ein Synthesegas liefern, das sich insbesondere für die Erzdirektreduktion gut eignet.
  • Diese Aufgabe wird bei einem Verfahren gemäß der Erfindung dadurch gelöst, daß bei der Gasaufbereitung das Synthesegas in einem 4-Pol-Wärmetauscher und einem Kondensator weiter abgekühlt wird, einer Gaswäsche zur Entfernung des Hauptanteils von Methan und Kohlendioxid unterzogen wird und nach erneutem Durchtritt durch den 4-Pol-Wärmeaustauscher aufgeheizt einem Erhitzer zugeführt wird,
  • und daß zumindest ein Teil des im Erhitzer zusätzlich gebildeten Prozeßdampfes dem Vergasungsreaktor zugeführt wird.
  • Bei dem erfindungsgemäßen Verfahren wird das Rohgas nach Durchlaufen des Regenerators in dem 4-Pol-Wärmetauscher und dem Kondensator soweit abgekühlt, daß es seinen Taupunkt unterschreitet. Die dem Gas entzogene Wärmeenergie wird aber nicht abgeführt, sondern an den Stellen in den Kreislauf wieder eingespeist, an denen die Wärmeenergie benötigt wird. Durch das Verfahren läßt sich auf einfache Weise ein wasserstoffreic";;s Synthesegas für die Erzdirektreduktion darstellen, wobei als wertvolles Nebenprodukt auch noch Methan anfällt, das als Synthesegas zur Erzeugung chemischer Produkte, z. B. bei der Methanolerzeugung, oder als Brenngas bei anderen Verfahren eingesetzt werden kann.
  • Bei einer zweiten Variante des Verfahrens kann das Synthesegas derart geführt werden, daß es nach dem ersten Durchtritt durch den 4-Pol-Wärmeaustauscher den Erhitzer durchläuft.
  • Bei dem Verfahren ist weiterhin vorgesehen, daß in den Vergasungsreaktor Sauerstoff als Verbrennungsgas eingeleitet wird. Zusammen mit dem Prozeßdampf, der die Reaktionsfähigkeit der im Reaktor eingesetzten Kohle steigert, wird durch den Sauerstoff das Vergasungsverhalten der Kohle verbessert. Vorteilhaft für die Energiebilanz des Verfahrens ist es, wenn ein Teil der im Überschuß anfallenden Prozeßdampfenergie zur Sauerstofferzeugung für den Reaktor eingesetzt wird.
  • Im folgenden wird anhand eines Schemas ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens näher beschrieben. Die einzige Figur der Zeichnung zeigt ein Blockdiagramm einer Anlage zur Erzeugung von Synthesegas, mit dem ein Erzreduktionsreaktor beschickt wird.
  • Gemäß der Figur wird einem Wirbelbett-Reaktor 1 Kohlenstoff in Form von feinkörnigem, reaktivem Kohlenstaub zugeführt. Als Vergasungsmittel für den Kohlenstaub werden hocherhitzter Prozeßdampf, Sauerstoff und Kreislaufgas in den Reaktor 1 geleitet. Die Zusammensetzung des Kreislaufgases ist aus Tabelle 1, Spalte 3.0 ersichtlich.
  • In dem Reaktor 1 erfolgt die Vergasung der Kohle bei o einer Temperatur von 800 C und einem Druck von 10 bar. Die bei der Kohlevergasung anfallende Asche wird unten aus dem Reaktor abgezogen. Das Synthese-Rohgas verläßt den Reaktor über Kopf mit einer Zusammensetzung gemäß Spalte 4.0, Tabelle 1.
  • Nach Passieren eines Flugasche- oder Staubabscheiders 2 tritt das Rohgas dann in das Kühlelement eines Regenerators 3 ein, in dem es von 800 C auf 578 C abgekühlt wird. Geeignete Regeneratoren, die über ein Kühlelement einem heißen Gasstrom Wärme entziehen, speichern und über ein Heizelement die Speicherwärme auf einen anderen Gasstrom übertragen, sind dem Fachmann z. B. aus der Hochofentechnik und der Glasherstellung bekannt und brauchen daher nicht besonders beschrieben zu werden. Eine weitere Abkühlung erfährt das Gas in einem 4-Pol-Wärmeaustauscher 4 und einem Kondensator 5, in dem das 0 Gas bis auf 60 C abgekühlt wird. Das im Kondensator 5 anfallende Kondensatwasser wird abgeleitet.
  • Im Anschluß an den Kondensator 5 wird das Gas einer sogenannten PSA-Gaswäsche bei 6 unterzogen, durch die der Methan- und Kohlendioxid-Anteil des Synthesegases selektiv aus dem Gasstrom abgetrennt wird. Bei dieser Gaswäsche handelt es sich um ein bekanntes Absorbtionsverfahren, bei dem bestimmte, aus einem Gasstrom abzutrennende Gase an einem Feststoff absorbiert und anschließend durch ein Spülgas, z. B. Stickstoff, nach Druckentspannung entfernt werden. Das abgetrennte Methan und das Kohlendioxid werden aus dem Gaskreislauf ausgeschelust und stehen zur anderweitigen Verwendung zur Verfügung.
  • Durch die Gaswäsche 6 wird der Wasserstoffgehalt des Synthesegases erheblich heraufgesetzt, wie aus Tabelle 1, Spalte 6.0 ersichtlich ist. Das Synthesegas hat jetzt die Gaszusammensetzung, die für die spätere Erzreduktion benötigt wird.
  • Im Anschluß an die Gaswäsche 6 wird das Synthesegas einem Kompressor 7 zugeführt und durchläuft danach erneut den 4-Pol-Wärmeaustauscher 4, in welchem es auf 466° C aufgeheizt wird. Bevor das Gas dann in einen Reduktionsreaktor 9 eingeleitet wird, durchläuft der Gasstrom einen Erhitzer 8, in dem zusätzlich der bei dem Verfahren benötigte Prozeßdampf erzeugt wird und in dem das Synthesegas durch Verbrennen eines Teils des bei der Gaswäsche 6 abgetrennten Methans hoch erhitzt wird, daß nach Durchlaufen des Erhitzers 8 das Synthesegas mit einer Temperatur von 900° C in den Reduktionsreaktor 9 eintritt.
  • In dem Reduktionsreaktor 9, in dem Eisenerz direkt zu Eisenschwamm reduziert wird, wird das Synthesegas bei der Reduktion teilweise oxidiert und verläßt anschliessend den Reaktor 9 mit einer wasserstoffärmeren Zusammensetzung gemäß Tabelle 1, Spalte 3.0. Dieses sogenannte Gichtgas wird dem Heizelement des Regenerators 3 0 zugeführt, durch das es auf 750 C aufgeheizt wird und anschließend hocherhitzt als Kreislaufgas wieder in den Reaktor 1 eingeleitet wird.
  • Der im Erhitzer 8 erzeugte hocherhitzte Wasserdampf treibt eine Dampfturbine 10 an, deren Leistung praktisch den gesamten elektrischen Energiebedarf des Verfahrens deckt. Ein Teil der Turbinenleistung wird dazu verwendet, den bei der Kohle-Vergasung benötigten Sauerstoff durch Luftzerlegung bei 11 herzustellen. Der Sauerstoff wird anschließend komprimiert und dem Reaktor 1 zugeführt.
  • Der aus der Dampfturbine 10 austretende Dampf wird als Prozeßdampf dem Reaktor 1 zugeführt, wobei er zuvor im o Regenerator 3 auf 750 C aufgeheizt wird. Dadurch, daß zusätzlich zum Gichtgas auch der Prozeßdampf im Regenerator 3 aufgeheizt wird, wird die Energiebilanz des Verfahrens weiterhin verbessert. Selbstverständlich brauchen der Gichtgas- und Prozeßdampfstrom nicht in getrennten Leitungen geführt zu werden, sondern können vor dem Eintritt in den Regenerator 3 vereinigt und gemeinsam in dem Regenerator aufgeheizt werden.
  • Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
  • Vorgegebene Verfahrensdaten
  • Figure imgb0005
    Figure imgb0006
    Figure imgb0007

Claims (7)

1. Verfahren zur Erzeugung von Synthesegas, bei dem das in einem Reaktor durch Vergasung von C-haltigem Brennmaterial gewonnene Synthesegas in einem Regenerator abgekühlt und einer Gasaufbereitung unterzogen wird, und ein Teil des Gases als Kreislaufgas dem Reaktor wieder zusammen mit Verbrennungsgas und C-haltigem Brennmaterial zugeführt wird, wobei das Gas vor dem Wiedereintrittt in den Reaktor von dem Regenerator aufgeheizt wird,
dadurch gekennzeichnet, daß
bei der Gasaufbereitung das Synthesegas in einem 4-Pol-Wärmetauscher (4) und einem Kondensator (5) weiter abgekühlt wird, einer Gaswäsche (6) zur Entfernung des Hauptanteils von Methan und Kohlendioxid unterzogen wird und nach erneutem Durchtritt durch den 4-Pol-Wärmeaustauscher (4) aufgeheizt einem Erhitzer (8) zugeführt wird, und daß zumindest ein Teil des im Erhitzer (8) gebildeten Prozeßdampf dem Vergasungsreaktor (1) zugeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Synthesegas nach dem ersten Durchtritt durch den 4-Pol-Wärmeaustauscher (4) den Erhitzer (8) durchläuft.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Synthesegas im Anschluß an die Gasaufbereitung in einem Erzreduktionsreaktor (9) partiell oxidiert wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in den Vergasungsreaktor (1) Sauerstoff als Verbrennungsgas eingeleitet wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Teil der Prozeßdampfenergie zur Sauerstofferzeugung für den Reaktor (1) eingesetzt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in der Gaswäsche (6) der Methan-Anteil des in dem Vergasungsreaktor (1) erzeugten Synthesegases selektiv entfernt und aus dem Gaskreislauf zur anderweitigen Verwendung ausgeschleust wird.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der im Erhitzer (8) gebildete Prozeßdampf vor dem Eintritt in den Vergasungsreaktor (1) durch den Regenerator (3) aufgeheizt wird.
EP85111795A 1984-10-27 1985-09-18 Energiegünstiges Verfahren zur Erzeugung von Synthesegas mit einem hohen Methangehalt Expired EP0182992B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843439487 DE3439487A1 (de) 1984-10-27 1984-10-27 Energieguenstiges verfahren zur erzeugung von synthesegas mit einem hohen methangehalt
DE3439487 1984-10-27

Publications (3)

Publication Number Publication Date
EP0182992A2 true EP0182992A2 (de) 1986-06-04
EP0182992A3 EP0182992A3 (en) 1987-01-21
EP0182992B1 EP0182992B1 (de) 1988-11-02

Family

ID=6248977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85111795A Expired EP0182992B1 (de) 1984-10-27 1985-09-18 Energiegünstiges Verfahren zur Erzeugung von Synthesegas mit einem hohen Methangehalt

Country Status (7)

Country Link
US (1) US4678480A (de)
EP (1) EP0182992B1 (de)
AU (1) AU578312B2 (de)
BR (1) BR8505349A (de)
DE (2) DE3439487A1 (de)
IN (1) IN166503B (de)
ZA (1) ZA857652B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985735A1 (de) * 1998-09-10 2000-03-15 Praxair Technology, Inc. Integrierte Schammeisenherstellung und Krafterzeugung

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3633212A1 (de) * 1986-09-30 1988-04-14 Kwu Umwelttechnik Gmbh Pyrolyseanlage
US5002752A (en) * 1989-06-09 1991-03-26 Gas Research Institute Process for hydroforming hydrocarbon liquids
US4929585A (en) * 1989-06-09 1990-05-29 Gas Research Institute Mixed-solid solution tri-metallic oxide/sulfide catalyst and process for its preparation
US6322763B1 (en) 1998-12-15 2001-11-27 Teco, Inc. Method and apparatus for removing carbonyl sulfide from a gas stream via wet scrubbing
US8114176B2 (en) * 2005-10-12 2012-02-14 Great Point Energy, Inc. Catalytic steam gasification of petroleum coke to methane
US7922782B2 (en) * 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
CN105062563A (zh) * 2007-08-02 2015-11-18 格雷特波因特能源公司 负载催化剂的煤组合物,制造方法和用途
US20090090055A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
WO2009086407A2 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
CN101910370B (zh) * 2007-12-28 2013-09-25 格雷特波因特能源公司 从焦炭中回收碱金属的催化气化方法
WO2009086370A2 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Processes for making syngas-derived products
WO2009086363A1 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Coal compositions for catalytic gasification and process for its preparation
CA2713642A1 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
WO2009086366A1 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Processes for making synthesis gas and syngas-derived products
US20090165384A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Continuous Process for Converting Carbonaceous Feedstock into Gaseous Products
WO2009086374A2 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
WO2009086361A2 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
WO2009111345A2 (en) * 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US8114177B2 (en) * 2008-02-29 2012-02-14 Greatpoint Energy, Inc. Co-feed of biomass as source of makeup catalysts for catalytic coal gasification
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
WO2009111342A2 (en) 2008-02-29 2009-09-11 Greatpoint Energy, Inc Carbonaceous fines recycle
US8361428B2 (en) * 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US20090220406A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Selective Removal and Recovery of Acid Gases from Gasification Products
US20090217582A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Processes for Making Adsorbents and Processes for Removing Contaminants from Fluids Using Them
US7926750B2 (en) * 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US20090217575A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Char Compositions for Catalytic Gasification
CA2718295C (en) 2008-04-01 2013-06-18 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
CA2718536C (en) * 2008-04-01 2014-06-03 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
US20090324459A1 (en) * 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Three-Train Catalytic Gasification Systems
US9132401B2 (en) * 2008-07-16 2015-09-15 Kellog Brown & Root Llc Systems and methods for producing substitute natural gas
US9157042B2 (en) * 2008-07-16 2015-10-13 Kellogg Brown & Root Llc Systems and methods for producing substitute natural gas
KR101290477B1 (ko) 2008-09-19 2013-07-29 그레이트포인트 에너지, 인크. 탄소질 공급원료의 기체화 방법
WO2010033852A2 (en) 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
CN102159687B (zh) 2008-09-19 2016-06-08 格雷特波因特能源公司 使用炭甲烷化催化剂的气化方法
WO2010048493A2 (en) 2008-10-23 2010-04-29 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
WO2010053865A1 (en) * 2008-11-04 2010-05-14 Katana Energy Llc Integration of gasification and hydroprocessing for low emissions refining
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
KR101290453B1 (ko) 2008-12-30 2013-07-29 그레이트포인트 에너지, 인크. 촉매된 탄소질 미립자의 제조 방법
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8268899B2 (en) * 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
CA2759961C (en) 2009-05-13 2013-12-17 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
WO2011017630A1 (en) * 2009-08-06 2011-02-10 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
CA2773845C (en) 2009-10-19 2014-06-03 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
WO2011049858A2 (en) 2009-10-19 2011-04-28 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
AU2010339952B8 (en) 2009-12-17 2013-12-19 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8769964B2 (en) * 2010-01-05 2014-07-08 General Electric Company System and method for cooling syngas produced from a gasifier
WO2011106285A1 (en) 2010-02-23 2011-09-01 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
DE102010028181A1 (de) * 2010-04-26 2011-10-27 Siemens Aktiengesellschaft Produktionsanlage für Chemierohstoffe oder Brennstoffe sowie ein Verfahren zum Betrieb einer solchen Produktionsanlage
EP2563883A1 (de) 2010-04-26 2013-03-06 Greatpoint Energy, Inc. Hydromethanierung eines kohlenstoffhaltigen rohmaterials mit vanadium-gewinnung
CN102906230B (zh) 2010-05-28 2015-09-02 格雷特波因特能源公司 液体重烃进料向气态产物的转化
WO2012024369A1 (en) 2010-08-18 2012-02-23 Greatpoint Energy, Inc. Hydromethanation of carbonaceous feedstock
JP6124795B2 (ja) 2010-11-01 2017-05-10 グレイトポイント・エナジー・インコーポレイテッド 炭素質フィードストックの水添メタン化
CA2827916C (en) 2011-02-23 2016-06-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
WO2012166879A1 (en) 2011-06-03 2012-12-06 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013052553A1 (en) 2011-10-06 2013-04-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
IN2015DN02940A (de) 2012-10-01 2015-09-18 Greatpoint Energy Inc
CN104685038B (zh) 2012-10-01 2016-06-22 格雷特波因特能源公司 附聚的颗粒状低煤阶煤原料及其用途
KR101717863B1 (ko) 2012-10-01 2017-03-17 그레이트포인트 에너지, 인크. 연소를 위한 오염된 저등급 석탄의 용도
AU2014236648B2 (en) * 2013-03-14 2017-11-23 Synthesis Energy Systems, Inc. Method and apparatus for recycling methane
US9109171B2 (en) 2013-11-15 2015-08-18 General Electric Company System and method for gasification and cooling syngas
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN110129100B (zh) * 2019-05-28 2023-12-22 彭万旺 高效燃烧系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928730A (en) * 1957-01-15 1960-03-15 Inland Steel Co Iron ore reduction process
US3853538A (en) * 1973-07-20 1974-12-10 Steel Corp Use of reducing gas by coal gasification for direct iron ore reduction
US3888658A (en) * 1970-11-02 1975-06-10 Westinghouse Electric Corp Process for the direct reduction of iron ore to steel
DE2431537A1 (de) * 1974-07-01 1976-01-22 Metallgesellschaft Ag Verfahren zur direktreduktion mit reduzierten gasen
US4260412A (en) * 1980-01-16 1981-04-07 Midrex Corporation Method of producing direct reduced iron with fluid bed coal gasification
EP0108198A2 (de) * 1982-10-08 1984-05-16 Man Gutehoffnungshütte Gmbh Verfahren zum Betreiben eines Reaktors zur Erzeugung von Synthesegas und Vorrichtung zur Durchführung des Verfahrens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1800856A (en) * 1926-04-07 1931-04-14 Bradley Linn Treating iron ore
US2113774A (en) * 1934-11-26 1938-04-12 Schmalfeldt Hans Process for the gasification of dust or fine-grained fuels with circulating gas
US3698882A (en) * 1970-09-30 1972-10-17 Occidental Petroleum Corp Continuous process for the conversion of carbonaceous solids into pipeline gas
US4094650A (en) * 1972-09-08 1978-06-13 Exxon Research & Engineering Co. Integrated catalytic gasification process
US4011058A (en) * 1975-10-01 1977-03-08 Phillips Petroleum Company Production of substitute natural gas from gasification of coal char
ES8300304A1 (es) * 1980-12-09 1982-11-01 Linde Ag Procedimiento de absorcion para descomponer por lo menos dos corrientes de gas crudo .
DE3223702C2 (de) * 1982-06-25 1984-06-28 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Verfahren zur Erzeugung von Synthesegas und Reaktor zur Durchführung des Verfahrens
DE3306371A1 (de) * 1983-02-24 1984-08-30 Bergwerksverband Gmbh, 4300 Essen Verfahren zur erzeugung eines methanreichen gasgemisches, insbesondere aus grubengas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928730A (en) * 1957-01-15 1960-03-15 Inland Steel Co Iron ore reduction process
US3888658A (en) * 1970-11-02 1975-06-10 Westinghouse Electric Corp Process for the direct reduction of iron ore to steel
US3853538A (en) * 1973-07-20 1974-12-10 Steel Corp Use of reducing gas by coal gasification for direct iron ore reduction
DE2431537A1 (de) * 1974-07-01 1976-01-22 Metallgesellschaft Ag Verfahren zur direktreduktion mit reduzierten gasen
US4260412A (en) * 1980-01-16 1981-04-07 Midrex Corporation Method of producing direct reduced iron with fluid bed coal gasification
EP0108198A2 (de) * 1982-10-08 1984-05-16 Man Gutehoffnungshütte Gmbh Verfahren zum Betreiben eines Reaktors zur Erzeugung von Synthesegas und Vorrichtung zur Durchführung des Verfahrens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985735A1 (de) * 1998-09-10 2000-03-15 Praxair Technology, Inc. Integrierte Schammeisenherstellung und Krafterzeugung

Also Published As

Publication number Publication date
EP0182992B1 (de) 1988-11-02
IN166503B (de) 1990-05-19
DE3439487C2 (de) 1987-09-24
AU4786585A (en) 1986-05-01
DE3439487A1 (de) 1986-06-26
EP0182992A3 (en) 1987-01-21
US4678480A (en) 1987-07-07
DE3565996D1 (en) 1988-12-08
ZA857652B (en) 1986-05-28
AU578312B2 (en) 1988-10-20
BR8505349A (pt) 1986-08-05

Similar Documents

Publication Publication Date Title
EP0182992B1 (de) Energiegünstiges Verfahren zur Erzeugung von Synthesegas mit einem hohen Methangehalt
EP0127825B1 (de) Kraftwerk mit einer integrierten Kohlevergasungsanlage
EP0179014B1 (de) Verfahren zur Herstellung von Roheisen
DE4103362C1 (de)
DE3600432A1 (de) Verfahren zum vergasen eines kohlenstoffhaltigen brennstoffs, insbesondere kohle
EP2342008B1 (de) Igcc-kraftwerk mit rauchgasrückführung und spülgas
DE2920425A1 (de) Integrierte kohlevergasungs-energieerzeugungsanlage und verfahren zum betreiben einer solchen anlage
DE112005001881T5 (de) Verfahren und Vorrichtung zum Herstellen von reinen reduzierenden Gasen aus Koksofengas
DE69825868T2 (de) Synthesegasexpander der sich direkt vor einer gasturbine befindet
DE2735090C2 (de) Verfahren zum Reinigen und Kühlen von Wasserstoff und Kohlenoxid enthaltenden Prozeßgasen
EP0290913B1 (de) Verfahren und Vorrichtung zur Reinigung von Rohgasen unter gleichzeitiger Gewinnung von Synthese- und Brenngas
DE2553506A1 (de) Kohlevergasung
DE2345396C3 (de) Verfahren zum Erzeugen elektrischer Energie
DE3223702C2 (de) Verfahren zur Erzeugung von Synthesegas und Reaktor zur Durchführung des Verfahrens
DE2911692A1 (de) Verfahren zur erzeugung von reduktionsgas aus festen brennstoffen
DD296695A5 (de) Verfahren zur herstellung von brenngas fuer einen kombinierten gas- und dampfturbinenprozess
DE3041054A1 (de) Integrierte methanol-synthese
EP0195200A2 (de) Verfahren zur Aufbereitung eines Restgases aus einer Niederdruckmethanolsynthese
DE1920001A1 (de) Verfahren zur Erzeugung eines Synthesegases fuer die Herstellung von Ammoniak
DE2724833A1 (de) Kohlevergasung mit kernenergie
US4556421A (en) Method of operating a synthesis gas-ore reduction process
DE3740865A1 (de) Verfahren zur gewinnung von wasserstoff und vorrichtung zur durchfuehrung desselben
DE3923840C1 (en) Prodn. of fuel gas - by partial combustion of carbonaceous materials, cooling, removing suspended solid matter, etc.
DE10053778A1 (de) Verfahren zum Erzeugen eines Wasserstoff (H2) und Kohlenmonoxid (CO)enthaltenden Syngases sowie Vorrichtung zur Durchführung des Verfahrens
DE4410812A1 (de) Verfahren zur Herstellung von elektrischer Energie und Kohlenmonoxid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN GUTEHOFFNUNGSHUETTE GMBH

17P Request for examination filed

Effective date: 19860924

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19870918

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 3565996

Country of ref document: DE

Date of ref document: 19881208

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT TE OBER

26N No opposition filed
BECN Be: change of holder's name

Effective date: 19881102

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970811

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970820

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970821

Year of fee payment: 13

Ref country code: DE

Payment date: 19970821

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970828

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19990219

BERE Be: lapsed

Owner name: MAN GUTEHOFFNUNGSHUTTE A.G.

Effective date: 19980930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST