EP0173864A1 - Poröse Anpassungsschicht in einem Ultraschallapplikator - Google Patents

Poröse Anpassungsschicht in einem Ultraschallapplikator Download PDF

Info

Publication number
EP0173864A1
EP0173864A1 EP85109705A EP85109705A EP0173864A1 EP 0173864 A1 EP0173864 A1 EP 0173864A1 EP 85109705 A EP85109705 A EP 85109705A EP 85109705 A EP85109705 A EP 85109705A EP 0173864 A1 EP0173864 A1 EP 0173864A1
Authority
EP
European Patent Office
Prior art keywords
adaptation layer
layer
ultrasonic transducer
acoustic impedance
adaptation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85109705A
Other languages
English (en)
French (fr)
Other versions
EP0173864B1 (de
Inventor
Hans Dr. Kaarmann
Karl Dr. Lubitz
Jutta Mohaupt
Martina Vogt
Wolfram Wersing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT85109705T priority Critical patent/ATE45054T1/de
Publication of EP0173864A1 publication Critical patent/EP0173864A1/de
Application granted granted Critical
Publication of EP0173864B1 publication Critical patent/EP0173864B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators

Definitions

  • the invention relates to an ultrasonic transducer with a piezoelectric transducer, with a first adaptation layer, which adjoins the piezoelectric transducer, and with a second adaptation layer, which is applied to the first adaptation layer and faces an object to be examined in ultrasonic operation.
  • Ultrasonic transducers of the type mentioned are widely used in medical technology in order to obtain information about the internal structures of tissues and organs in a patient.
  • One difficulty here is in coupling the ultrasound waves into the patient.
  • the piezoelectric transducer of medical ultrasound antennas often comprises a material that has a relatively high acoustic impedance.
  • Materials such as ceramics made of lead zirconate titanate, for example, have an acoustic impedance of approx. 30 x 10 6 kg / m 2 s.
  • the skin and tissue of the patient however, has only an acoustic resistance of about 1.5 x 10 6 kg / m 2 s.
  • an adaptation layer is arranged between the transducer and the tissue.
  • a single matching layer has been made from one to transform or adapt the acoustic impedance of the ceramic transducer in or to that of the object to be examined (e.g. human tissue with an impedance of approximately 1.5 x 10 kg / m 2 s) Plastic with a acoustic impedance of approx. 3 x 10 6 kg / m 2 s or a little more.
  • This adaptation layer had a thickness of ⁇ / 4. ⁇ is the wavelength that is present in the material according to the nominal frequency of the ultrasonic transducer.
  • a theoretically favorable value is 7 x 10 6 k g / m 2 s when going from 30 x 10 6 kg / m 2 s (ceramic) to 1, 5 x 1 0 6 kg / m 2 s stepped down.
  • This type of adaptation with a single adaptation layer has the disadvantage that it is not sufficiently broadband. For this reason, in order to achieve high penetration depths and good axial resolution over a large frequency range, a first and a second adaptation layer, each with ⁇ / 4 thickness, have been adopted (cf. Biomedical Technology, Volume 27, Issue 7-8, 1982, p . 182-185).
  • the acoustic impedances of these two adaptation layers are approximately 12 ⁇ 10 6 kg / m's for the first adaptation layer facing the piezoelectric ultrasound transducer and approximately 4.2 ⁇ 10 6 kg / m 2 s for the adaptation layer facing the tissue or patient. In this way, a much better adaptation can be achieved.
  • the second matching layer with an acoustic impedance of approximately 4.2 x 10 kg / m's can be easily found or manufactured. Common plastics can be used for this: Since the acoustic impedance of the second (plastic) matching layer, which can be advantageously used, depends only slightly on the impedance of the ultrasound transducer ceramic, the impedance once selected is equally suitable for all PZT ceramics of the ultrasound transducer.
  • the first adaptation layer has a decisive influence on the quality of the ultrasound image.
  • the object of the invention is therefore to provide a first adaptation layer for an ultrasound transducer of the type mentioned at the outset, which is related to its manufacture acoustic impedance is easily adjustable and its mechanical properties enable relatively easy processing.
  • the first matching layer consists of a porous piezoceramic material, the porosity of which is selected so that with a layer thickness of ⁇ / 4 there is a predetermined acoustic impedance with a value between that of the piezoelectric transducer and that of the second matching layer results, where ⁇ is the wavelength of the ultrasound in the first adaptation layer at nominal frequency.
  • the acoustic impedance of the ceramic material is dependent on its porosity, the acoustic impedance can be influenced in a simple manner during manufacture. Depending on whether the pore quantity and / or the pore size is specifically increased or decreased, there is a smaller or larger acoustic impedance.
  • a value in the critical range of approx. 12 x 10 6 kg / m 2 s can be set well by varying the porosity. It has proven to be advantageous to produce a whole series of, for example, 10 porous ceramic adaptation layers, which cover the area around 12 ⁇ 10 6 kg / m 2 s in fine gradations of, for example, 0.2 ⁇ 10 6 kg / m 2 s. All of these matching layers are given a layer thickness of X / 4 with regard to their acoustic impedance. Experiments can then be used to determine which of the 10 matching layers produced results in an optimal matching for the existing piezoelectric transducer.
  • the base material for the first adaptation layer is a ceramic material, it can be processed easily. It is easy to turn, mill, glue and grind.
  • a further advantageous embodiment of the invention results if the predetermined acoustic impedance of the first matching layer has a gradient which has a positive slope in the direction of the piezoelectric transducer.
  • This measure makes it possible for the first adaptation layer to have a continuous transition in acoustic impedance from approx. 30 x 10 6 kg / m 2 s down to approx. 4 x 10 6 kg / m 1 s, the value of the second adaptation layer, guaranteed.
  • the frequency response of the ultrasound transducer becomes even broader than it is due to the use of two adaptation layers.
  • FIG. 1 shows an ultrasound transducer 1, which comprises a total of four layers: a damping layer 3, a layer 5, in which a number of piezoelectric transducer elements 7 are embedded and which is referred to below as "piezoelectric transducer", a first adaptation layer 9 and a second adaptation layer 11
  • the piezoelectric transducer elements 7 emit pulsed acoustic waves 13 in the ultrasound range in the direction of the first and second adaptation layers 9 and 11, respectively.
  • the acoustic waves 13 should be coupled as freely as possible into an object to be examined, in this case a patient 15. Meet the.
  • Z l is the acoustic impedance of the first matching layer 9
  • Z 2 is the impedance of the second matching layer 11
  • Z K is that of the piezocelectric transducer 7
  • Z g is that of the tissue at the coupling point.
  • the first adaptation layer 9 lies in a range that is difficult to achieve with natural materials.
  • the first matching layer 9 comprises a material of comparatively high impedance, which is provided with cavities or pores 17 which change the acoustic behavior of the selected material, including reducing the impedance.
  • a porous ceramic is preferably selected as the material for the first adaptation layer 9. It can be processed well and easily.
  • the layer thickness of the adaptation layers 9 and 11 is ⁇ / 4 in each case. ⁇ is the wavelength of the ultrasound in the adaptation layers 9, 11. It corresponds to the frequency with which the piezoelectric transducers 7 are excited.
  • the acoustic impedance of the first matching layer 9 When manufacturing the ultrasound transducer 1, it is often not possible to state exactly from the start what value the acoustic impedance of the first matching layer 9 must have. This value depends, among other things, on the acoustic impedance Z K of the piezoelectric transducer elements 7 themselves, which has a certain spread, and also on the impedance of the second matching layer 11, which is preferably made of plastic and can also vary in value. It is therefore desirable to have a number of first matching layers 9 available whose acoustic impedances have a gradation. It can then be determined by experiments with the ultrasound transducer 1 which of these adaptation layers 9 is suitable for being permanently and finally installed in the ultrasound transducer 1 in question.
  • the first adaptation layer 9 is provided with uniformly distributed pores 17.
  • the pores 17 can be varied in their average density and / or their size during manufacture, as a result of which the acoustic impedance Z l specifically assumes different values. In this way, an assortment of finely graduated first adaptation layers 9 can be produced, from which the cheapest is then selected.
  • FIG. 2 shows a diagram in which the acoustic impedance of the first matching layer 9 is plotted against the pore fraction or the porosity (in%) in the first matching layer 9.
  • the first matching layer 9 here preferably consists of lead-zirconate-titanate ceramic. Another material with values in the desired impedance range can also be selected. 2, the desired acoustic impedance of approximately 12 ⁇ 10 6 kg / m 2 s is achieved at a porosity of approximately 36%. By varying this percentage in the range + 2%, the range of acoustic impedance z. B. can be varied between 11 and 13 x 10 6 kg / m 2 s. By small changes in the porosity, for example in the order of 1 % , a fine gradation of the acoustic impedance Z 1 of the first matching layer 9 can be achieved here. In principle, this also applies to other materials.
  • the frequency constants of the various complex ceramic systems in question differ little from each other.
  • a first adaptation layer 9 with the desired acoustic impedance of approx. 12 ⁇ 10 6 kg / m l s can therefore be produced for each ceramic mass transducer.
  • the complex ceramic systems mentioned above all have the further advantage that they have piezoelectric properties. This is of particular importance with regard to the thermal expansion of the first adaptation layer 9. This must namely be adapted to that of the piezoelectric transducer elements 7. If both the piezoelectric transducer elements 7 and the first adaptation layer 9 now consist of a piezoceramic material, their thermal expansion coefficients are so close together that the first adaptation layer 9, for example can be adjusted in their thermal expansion of the piezoelectric transducer elements 7 by adding dopants. This prevents mechanical stresses with crack formation or even breakage at the boundary layer.
  • FIG. 3 shows a first adaptation layer 9, in which the density of the pores 17 is distributed differently. There are more pores 17 towards the second adaptation layer 11 than towards the upper side, which connects to the piezoelectric transducer 5.
  • This different pore density ie the pore concentration and / or size decreasing upwards, also causes a different acoustic impedance, which decreases in the course of the first adaptation layer 9 from top to bottom (gradient).
  • the first matching layer 9 has an acoustic impedance Z K of approximately 30 ⁇ 10 kg / m l s on its upper side, that is to say the boundary layer with the piezoelectric transducer 7, and on its lower side , which points to the second matching layer 11, has an acoustic impedance of approx. 4 x 10 6 kg / m's. So it is possible to produce the first matching layer 9 so that its acoustic impedance Z 1 in the ceiling direction changes continuously between two desired values.
  • An adaptation layer 9 of this type with an impedance gradient results in a particularly broadband adaptation.
  • the porosity gradient can e.g. can be achieved in that the adaptation layer is produced in a film casting process. Bead polymer is added to the pouring slurry, which separates due to gravity. Different gradients can be set both by the viscosity of the casting slip for the film of the first adaptation layer 9 and by the course of the subsequent sintering.
  • first matching layers 9 with different impedance gradients and to subsequently decide by trial and error which of these first matching layers 9 is the most suitable for installation in the ultrasonic transducer 1.
  • This experimental finding of the suitable first adaptation layer 9 is appropriate because a large number of criteria must be taken into account, the mutual influences and interactions of which can only be determined in an experiment. So e.g. For each first adaptation layer 9, it should be checked how it affects the sensitivity of the ultrasound transmitter or receiver, the pulse shape of the transmission pulse, its pulse length, phase jumps, etc. In addition to these criteria, which influence the image quality, the thermal expansion coefficient and the layer thickness of the first adaptation layer 9, which can always only approximate> / 4, are also decisive.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Der Ultraschallwandler (1) ist mit zwei Anpassungsschichten (9, 11) ausgerüstet. Die erste Anpassungsschicht (9) schließt dabei an die piezoelektrischen Wandlerelemente (7) an und ist aus einem porösen, keramischen Material gefertigt. Sie hat eine Impedanz von ca. 12 x 106 kg/m2. Die zweite Anpassungsschicht (11) mit einer Impedanz von ca. 4 x 105 kg/m2 ist dem zu untersuchenden Gewebe zugewandt. Die Porosität in der ersten Anpassungsschicht (9) läßt sich bei der Herstellung einstellen. Dadurch kann auch die akustische Impedanz um den genannten Wert von 12 x 106 kg/m2s feinstufig variiert werden. Vorteilhafterweise ist die poröse keramische erste Anpassungsschicht (9) aus einem piezo elektrischen Material gefertigt. Dadurch läßt sich ihr thermischer Ausdehnungskoeffizient gut an den der piezoelektrischen Wandlerelemente (7) anpassen.

Description

  • Die Erfindung betrifft einen Ultraschallwandler mit einem piezoelektrischen Wandler, mit einer ersten Anpassungsschicht, die an den piezoelektrischen Wandler anschließt, und mit einer zweiten Anpassungsschicht, die auf der ersten Anpassungsschicht aufgebracht ist und im Ultraschallbetrieb einem zu untersuchenden Objekt zugewandt ist.
  • Ultraschallwandler der genannten Art werden verbreitet in der medizinischen Technik angewendet, um Aufschluß über die inneren Strukturen von Geweben und Organen in einem Patienten zu bekommen. Eine Schwierigkeit besteht dabei in der Einkopplung der Ultraschallwellen in den Patienten.
  • Der piezoelektrische Wandler medizinischer Ultraschallantennen umfaßt häufig einen Werkstoff, der eine relativ hohe akustische Impedanz aufweist. Materialien wie Keramiken aus Blei-Zirkonat-Titanat besitzen z.B. eine akustische Impedanz von ca. 30 x 106 kg/m2s. Die Haut und das Gewebe des Patienten dagegen besitzt lediglich einen akustischen Widerstand von ca. 1,5 x 106 kg/m2s. Um eine unerwünschte Reflexion an der Grenzschicht piezoelektrischer Wandler/menschliches Gewebe weitgehend zu vermeiden, wird zwischen Wandler und Gewebe eine Anpassungsschicht angeordnet.
  • Bisher wurde zur Transformation oder Anpassung der akustischen Impedanz des Keramik-Wandlers in bzw. an die des zu untersuchenden Objekts (z. B. menschliches Gewebe mit einer Impedanz von etwa 1,5 x 10 kg/m2s) eine einzige Anpassungsschicht aus einem Kunststoff mit einer akustischen Impedanz von ca. 3 x 106 kg/m2s oder wenig mehr eingesetzt. Diese Anpassungsschicht hatte eine Dicke von λ /4. λ ist dabei die Wellenlänge, die entsprechend der Nennfrequenz des Ultraschallwandlers im Material vorliegt. Ein theoretisch günstiger Wert liegt bei 7 x 106 kg/m2s, wenn man von 30 x 106 kg/m2s (Keramik) auf 1,5 x 10 6 kg/m2s heruntertransformiert.
  • Diese Art der Anpassung mit einer einzigen Anpassungsschicht hat den Nachteil, daß sie nicht ausreichend breitbandig ist. Man ist deswegen zur Erzielung hoher Eindringtiefen und guter axialer Auflösung über einen großen Frequenzbereich hinweg bereits dazu übergegangen, eine erste und eine zweite Anpassungsschicht mit je λ/4 Dicke vorzusehen (vgl. Biomedizinische Technik, Band 27, Heft 7-8, 1982, S. 182-185). Die akustischen Impedanzen dieser beiden Anpassungsschichten betragen ca. 12 x 106 kg/m's für die dem piezoelektrischen Ultraschallwandler zugewandte erste Anpassungsschicht und ca. 4,2 x 106 kg/m2s für die dem Gewebe oder Patienten zugewandte Anpassungsschicht. Auf diese Weise läßt sich eine wesentlich bessere Anpassung erzielen.
  • Materialien für die zweite Anpassungsschicht mit einer akustischen Impedanz von etwa 4,2 x 10 kg/m's lassen sich leicht finden oder fertigen. Es können dazu gängige Kunststoffe verwendet werden: Da die vorteilhaft einzusetzende akustische Impedanz der zweiten (Kunststoff-) Anpassungsschicht nur wenig von der Impedanz der UltraschallWandler-Keramik abhängt, ist die einmal gewählte Impedanz für alle PZT-Keramiken des Ultraschallwandlers gleichermaßen geeignet.
  • Ein Problem hingegen ist es, Materialien für die erste Anpassungsschicht zu finden, die eine mittlere akustische Impedanz besitzen sollte, welche wegen ihrer (theoretisch untermauerten) Abhängigkeit von der Impedanz der gerade verwendeten Piezokeramik des piezoelektrischen Wandlers in gewissen Grenzen frei wählbar sein sollte. Sie sollte unter den genannten Gegebenheiten ca. 12 x 106 kg/m2s betragen. Mit natürlichen Materialien läßt sich eine solche akustische Impedanz nur schwer erreichen. So z.B. liegen Gase und Flüssigkeiten im Bereich von 0 bis 4 x 106 kg/m2s. Oberhalb des letztgenannten Wertes existiert ein gewisses Loch, d.h. Materialen mit einer solchen Impedanz gibt es praktisch nicht, und die Werte von Mineralien, Metallen usw, liegen erst wieder zwischen 14 und ca. 100 x 106 kg/m's. Der hier angestrebte Bereich um ca. 12 x 106 kg/m2s ist nur sehr schwer mit Hilfe von Glasverbindungen zu erreichen. So wird z.B. in der Regel in diesem Bereich Borosilikatglas eingesetzt. Der Einsatz dieses und anderer Gläser bringt aber eine Reihe von Nachteilen mit sich. Glas läßt sich nur zeit- und geldaufwendig verarbeiten. Manche Gläser sind im interessierenden Impedanzbereich zudem noch giftig; ihre Bearbeitung ist daher kritisch. Für den Hersteller solcher Ultraschallwandler mit zwei Anpassungsschichten kommt noch eine zusätzliche Schwierigkeit bei der Beschaffung hinzu. Sie besteht darin, daß Glashersteller nur an großem Absatz von Glasmengen interessiert sind und wenig Initiative zeigen, Mengen in der Größenordnung von einigen Gramm zu fertigen. Auch die Bereitschaft zur Entwicklung und Herstellung von anderen Gläsern mit den nötigen akustischen und mechanischen Eigenschaften ist gering.
  • Es wurde nun erkannt, daß gerade die erste Anpassungsschicht auf die Qualität des Ultraschallbildes entscheidenden Einfluß nimmt.
  • Aufgabe der Erfindung ist es daher, für einen UltraschallWandler der eingangs genannten Art eine erste Anpassungsschicht anzugeben, die bei der Fertigung bezÜglich ihrer akustischen Impedanz leicht einstellbar ist und deren mechanische Eigenschaften eine verhältnismäßig leichte Verarbeitung ermöglichen.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die erste Anpassungsschicht aus einem porösen piezokeramischen Material besteht, dessen Porosität so gewählt ist, daß sich bei einer Schichtdicke von λ /4 eine vorgegebene akustische Impedanz mit einem Wert zwischen dem des piezoelektrischen Wandlers und dem der zweiten Anpassungsschicht ergibt, wobei Ä die Wellenlänge des Ultraschalls in der ersten Anpassungsschicht bei Nennfrequenz ist.
  • Dadurch, daß die akustische Impedanz des keramischen Materials von seiner Porosität abhängig ist, kann man die akustische Impedanz auf einfache Weise bei der Herstellung beeinflussen. Je nachdem, ob die Porenmenge und/ oder die Porengröße gezielt erhöht oder erniedrigt wird, ergibt sich eine kleinere bzw. größere akustische Impedanz. Ein Wert im kritischen Bereich um ca. 12 x 106 kg/m2s kann durch Variieren der Porosität gut eingestellt werden. Es hat sich als Vorteil erwiesen, eine ganze Reihe von z.B. 10 porösen keramischen Anpassungsschichten herzustellen, die den Bereich um 12 x 106 kg/m2s in Feinabstufungen von z.B. 0,2 x 106 kg/m2s abdecken. All diese Anpassungsschichten erhalten bezüglich ihrer akustischen Impedanz eine Schichtdicke von X /4. Anhand von Versuchen kann dann ermittelt werden, welche dieser gefertigten 10 Anpassungsschichten eine optimale Anpassung für den vorhandenen piezoelektrischen Wandler ergibt.
  • Da das Grundmaterial für die erste Anpassungsschicht ein keramischer Werkstoff ist, läßt sich dieser gut verarbeiten. Er läßt sich leicht drehen, fräsen, kleben und schleifen.
  • Eine weitere vorteilhafte Ausgestaltung der Erfindung ergibt sich, wenn die vorgegebene akustische Impedanz der ersten Anpassungsschicht einen Gradienten aufweist, welcher in Richtung auf den piezoelektrischen Wandler eine positive Steigung besitzt. Durch diese Maßnahme läßt sich erreichen, daß die erste Anpassungsschicht einen kontinuierlichen Übergang der akustischen Impedanz von ca. 30 x 106 kg/m2s bis hinunter zu ca. 4 x 106 kg/m1s, dem Wert der zweiten Anpassungsschicht, gewährleistet. Dadurch wird der Ultraschallwandler in seinem Frequenzverhalten noch breitbandiger, als er ohnehin durch die Verwendung von zwei Anpassungsschichten ist.
  • Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen in Verbindung mit den Zeichnungen. Es zeigen:
    • Fig. 1 einen piezoelektrischen Wandler mit erster erfindungsgemäßer Anpassungsschicht,
    • Fig. 2 eine Darstellung des Verlaufs der akustischen Impedanz in Abhängigkeit von der Porenmenge und
    • Fig. 3 eine Anpassungsschicht mit kontinuierlich veränderter Porosität.
  • Figur 1 zeigt einen Ultraschallwandler 1, welcher insgesamt vier Schichten umfaßt: eine Dämpfungsschicht 3, eine Schicht 5, in welche eine Anzahl piezoelektrischer Wandlerelemente 7 eingebettet ist und die nachfolgend als "piezoelektrischer Wandler" bezeichnet wird, eine erste Anpassungsschicht 9 und eine zweite Anpassungsschicht 11. Die piezoelektrischen Wandlerelemente 7 strahlen impulsförmige akustische Wellen 13 im Ultraschallbereich in Richtung der ersten und zweiten Anpassungsschicht 9 bzw. 11 aus. Die akustischen Wellen 13 sollen möglichst ungehindert in ein zu untersuchendes Objekt, in diesem Fall in einen Patienten 15, eingekoppelt werden. Treffen die . akustischen Wellen 13 beim Übergang zum Patienten 15 auf Grenzflächen von Materialien unterschiedlicher akustischer Impedanz, ao werden sie an diesen zum Teil reflektiert, welches einen unerwünschten Nebeneffekt ergibt. Um dieses zu vermeiden, sind die beiden Anpassungsschichten 9, 11 vorgesehen. Die erste Anpassungssohicht 9 hat eine akustische Impedanz von ca. 12 x 106 kg/m's, welches einen Mittelwert darstellt zwischen der Impedanz der piezoelektrischen Wandlerelemente 7 von ca. ZK = 30 x 106 kg/m's und der Impedanz der zweiten Anpassungsschicht 11 von ca. Z2 = 4 x 106 kg/m's. Die zweite Anpassungsschicht 11 wiederum liegt mit ihrem Wert Z2 zwischen der akustischen Impedanz Zl der ersten Anpassungsschicht 9 und der akustisehen Impedanz Zg des Patientengewebes, die ungefähr Zg = 1,5 x 106 kg/m's beträgt. Als piezoelektrisches Wandlermaterial wird hier bevorzugt eine Keramik aus Blei-Zirkonat-Titanat verwendet. Diese hat einen relativ hohen Impedanzwert, nämlich Zr = 34 x 106 kg/m's.
  • Die Werte für die Anpassungsschichten 9, 11 errechnen sich näherungsweise aus den Formeln
    Figure imgb0001
    und
    Figure imgb0002
  • wobei Zl die akustische Impedanz der ersten Anpassungsschicht 9, Z2 die Impedanz der zweiten Anpassungsschicht 11, ZK die des piezokelektrischen Wandlers 7 und Zg die des Gewebes an der Einkoppelstelle ist.
  • Die erste Anpassungsschicht 9 liegt mit dem angestrebten Wert Zl ihrer akustischen Impedanz in einem Bereich, der mit natürlichen Werkstoffen nur schwer zu erreichen ist. Aus diesem Grund umfaßt die erste Anpassungsschicht 9 ein Material vergleichsweise hoher Impedanz, das mit Hohlräumen oder Poren 17 versehen ist, die das akustische Verhalten des gewählten Materials verändern, u.a. die Impedanz herabsetzen. Vorzugsweise wird als Material für die erste Anpassungsschicht 9 eine poröse Keramik gewählt. Sie läßt sich gut und leicht verarbeiten. Die Schichtdicke der Anpassungsschichten 9 und 11 beträgt jeweils λ /4. λ ist dabei die Wellenlänge des Ultraschalls in den Anpassungsschichten 9, 11. Sie entspricht der Frequenz, mit der die piezoelektrischen Wandler 7 angeregt werden.
  • Es ist bei der Fertigung des Ultraschallwandlers 1 häufig von vorneherein nicht genau anzugeben, welchen Wert die akustische Impedanz der ersten Anpassungsschicht 9 aufweisen muß. Dieser Wert hängt unter anderem von der akustischen Impedanz ZK der piezoelektrischen Wandlerelemente 7 selber ab, die eine gewisse Streubreite hat, und auch von der Impedanz der zweiten Anpassungsschicht 11, die bevorzugt aus Kunststoff besteht und in ihrem Wert auch variieren kann. Es ist deswegen wünschenswert, eine Anzahl erster Anpassungsschichten 9 zur Verfugung zu haben, deren akustischen Impedanzen eine Abstufung aufweisen. Es kann dann durch Versuche mit dem Ultraschallwandler 1 ermittelt werden, welche dieser Anpassungsschichten 9 geeignet ist, um in dem betreffenden Ultraschallwandler 1 fest und endgültig eingebaut zu werden. Um diese Einstellung und Abstufung der akustischen Impedanz Zl zu erreichen, ist die erste Anpassungsschicht 9 mit gleichmäßig verteilten Poren 17 versehen. Die Poren 17 lassen sich bei der Herstellung in ihrer mittleren Dichte und/oder in ihrer Größe variieren, wodurch die akustische Impedanz Zl gezielt unterschiedliche Werte annimmt. Auf diese Weise kann ein Sortiment fein abgestufter erster Anpassungsschichten 9 gefertigt werden, aus welchen die günstigste dann ausgewählt wird.
  • Figur 2 zeigt ein Diagramm, in welchem die akustische Impedanz der ersten Anpassungsschicht 9 aufgetragen ist über dem Porenanteil oder der Porosität (in %) in der ersten Anpassungsschicht 9. Die erste Anpassungsschicht 9 besteht hier bevorzugt aus Blei-Zirkonat-Titanat-Keramik. Auch ein anderes Material mit Werten im angestrebten Impedanzbereich kann gewählt werden. Diagramm nach Figur 2 wird die angestrebte akustische Impedanz von etwa 12 x 106 kg/m2s bei einer Porosität von ungefähr 36 % erreicht. Durch Variieren dieser Prozentzahl im Bereich + 2 % kann der Bereich der akustischen Impedanz z. B. zwischen 11 und 13 x 106 kg/m2s variiert werden. Durch kleine Änderungen in der Porosität, z.B. in der Größenordnung von 1 %, läßt sich hier also eine Feinabstufung der akustischen Impedanz Zl der ersten Anpassungsschicht 9 erreichen. Dies gilt im Prinzip auch für andere Materialien.
  • Die Frequenzkonstanten der verschiedenen in Frage kommenden komplexen Keramiksysteme (Mischkristalle) auf der Basis von z.B. PbTi03 und PbZr03, das mit einem zweiten komplexen Oxid wie z.B. Pb(Mg1/3 Nb2/3)03 mit eventuell zusätzlichen Dotierstoffen versetzt ist, unterscheiden sich nur wenig voneinander. Über die Einstellung der Porosität beim Herstellen kann daher für jede Wandler Keramikmasse eine erste Anpassungsschicht 9 mit der gewünschten akustischen Impedanz von ca. 12 x 106 kg/mls hergestellt werden.
  • Die zuvor genannten komplexen Keramiksysteme haben allesamt den weiteren Vorteil, daß sie piezoelektrische Eigenschaften besitzen. Dieses ist von Bedeutung insbesondere bezüglich der thermischen Ausdehnung der ersten Anpassungsschicht 9. Diese muß nämlich angepaßt sein an diejenige der piezoelektrischen Wandlerelemente 7. Bestehen nun sowohl die piezoelektrischen Wandlerelemente 7 als auch die erste Anpassungsschicht 9 aus einem piezokeramischen Material, so liegen ihre thermischen Ausdehnungskoeffizienten so dicht beieinander, daß sich die erste Anpassungsschicht 9 z.B. durch Zusatz von Dotierstoffen in ihrer thermischen Ausdehnung den piezoelektrischen Wandlerelementen 7 anpassen läßt. Dadurch werden mechanische Spannungen mit Rißbildung oder gar Bruch an der Grenzschicht verhindert. Die poröse erste Anpassungsschicht 9, die auf der Basis eines piezoelektrischen Materials gefertigt ist, liegt in ihrem thermischen Ausdehnungskoeffizienten etwa zwischen 1 und 10 ppm/K.
  • Figur 3 zeigt eine erste Anpassungsschicht 9, in welcher die Dichte der Poren 17 unterschiedlich verteilt ist. Zur zweiten Anpassungsschicht 11 hin befinden sich mehr Poren 17 als zur oberen Seite hin, die an den piezoelektrischen Wandler 5 anschließt. Diese unterschiedliche Porendichte, d.h. die nach oben abnehmende Porenkonzentration und/oder -größe, bewirkt auch eine unterschiedliche akustische Impedanz, die sich im Verlaufe der ersten Anpassungsschicht 9 von oben nach unten hin verringert (Gradient). Es ist somit möglich, die erste Anpassungsschicht 9 so zu gestalten, daß sie an ihrer oberen Seite, also der Grenzschicht zum piezoelektrischen Wandler 7, eine akustische Impedanz ZK von ca. 30 x 10 kg/mls aufweist und an ihrer unteren Seite, die zur zweiten Anpassungsschicht 11 weist, eine akustische Impedanz von ca. 4 x 106 kg/m's besitzt. Es ist also möglich, die erste Anpassungsschicht 9 so herzustellen, daß sich ihre akustische Impedanz Z1 in Deckenrichtung kontinuierlich zwischen zwei gewünschten Werten ändert. Eine Anpassungsschicht 9 dieser Art mit einem Impedanzgradienten ergibt eine besonders breitbandige Anpassung.
  • Der Porositätsgradient kann z.B. dadurch erreicht werden, daß die Anpassungsschicht in einem Foliengießverfahren hergestellt wird. Dem Gießschlicker wird Perlpolymerisat zugesetzt, welches sich aufgrund der Schwerkraft entmischt. Sowohl durch die Viskosität des Gießschlickers für die Folie der ersten Anpassungsschicht 9 als auch durch den Verlauf der anschließenden Sinterung können unterschiedliche Gradienten eingestellt werden.
  • Auch hier ist es wieder vorteilhaft, eine größere Anzahl von in ihrem Impedanzgradienten unterschiedlichen ersten Anpassungsschichten 9 zu fertigen und hinterher durch Versuch und Probieren zu entscheiden, welche von diesen ersten Anpassungsschichten 9 die geeignete zum Einbau in den Ultraschallwandler 1 ist. Dieses experimentelle Auffinden der geeigneten ersten Anpassungsschicht 9 ist deswegen angebracht, weil eine Vielzahl von Kriterien berücksichtigt werden müssen, deren gegenseitige Einflüsse und Wechselwirkungen nur im Versuch ermittelt werden können. So z.B. sollte für jede erste Anpassungsschicht 9 geprüft werden, wie sie sich auf die Empfindlichkeit des Ultraschallsenders oder -empfängers, auf die Pulsform des Sendeimpulses, auf dessen Pulslänge, auf Phasensprünge usw. auswirkt. Neben diesen Kriterien, die die Bildqualität beeinflussen, ist noch der thermische Ausdehnungskoeffizient und die Schichtdicke der ersten Anpassungsschicht 9, die immer nur näherungsweise > /4 entsprechen kann, entscheidend.

Claims (10)

1. Ultraschallwandler mit einem piezoelektrischen Wandler, mit einer ersten Anpassungsschicht, die an den piezoelektrischen Wandler anschließt, und mit einer zweiten Anpassungsschicht, die auf der ersten Anpassungsschicht aufgebracht ist und im Ultraschallbetrieb einem zu untersuchenden Objekt zugewandt ist, dadurch gekennzeichnet , daß die erste Anpassungsschicht (9) aus einem porösen piezokeramischen Material besteht, dessen Porosität so gewählt ist, daß sich bei einer Schichtdicke (dl) von λ /4 eine vorgegebene akustische Impedanz (Zl) mit einem Wert zwischen dem des piezoelektrischen Wandlers (5) und dem der zweiten Anpassungsschicht (11) ergibt, wobei λ die Wellenlänge des Ultraschalls in der ersten Anpassungsschicht (9) bei Nennfrequenz ist.
2. Ultraschallwandler nach Anspruch 1, dadurch gekennzeichnet , daß das poröse Material der ersten Anpassungsschicht (9) ein Mischkristall ist, der PbTi03 und PbZr03 enthält.
3. Ultraschallwandler nach Anspruch 2, dadurch gekennzeichnet , daß der Mischkristall ein weiteres komplexes Oxid enthält.
4. Ultraschallwandler nach Anspruch 3, dadurch gekennzeichnet , daß der Mischkristall als komplexes Oxid Pb(Mg1/3Nb2/3)O3 enthält.
5. Ultraschallwandler nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet , daß der Mischkristall einen zusätzlichen Dotierstoff enthält.
6. Ultraschallwandler nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet , daß die akustische Impedanz (Zl) der ersten Anpassungsschicht (9) zwischen 11 und 13 kg/m2s liegt.
7. Ultraschallwandler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet , daß die vorgegebene akustische Impedanz (Zl) der ersten Anpassungsschicht (9) einen Gradienten aufweist, welcher in Richtung auf den piezoelektrischen Wandler (5) eine positive Steigung besitzt.
8. Ultraschallwandler nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet , daß der thermische Ausdehnungskoeffizient der ersten Anpassungsschicht (9) annähernd demjenigen des piezoelektrischen Wandlers (5) entspricht.
9. Ultraschallwandler nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet , daß die zweite Anpassungsschicht (11) eine Dicke (d2) von λ/4 besitzt und aus einem Kunststoff besteht.
10. Ultraschallwandler nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet , daß die erste und die zweite Anpassungsschicht (9, 11) zu einer gemeinsamen porösen Anpassungsschicht zusammengefaßt sind, deren Porenverteilung einen Gradienten aufweist.
EP85109705A 1984-08-16 1985-08-02 Poröse Anpassungsschicht in einem Ultraschallapplikator Expired EP0173864B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85109705T ATE45054T1 (de) 1984-08-16 1985-08-02 Poroese anpassungsschicht in einem ultraschallapplikator.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3430161 1984-08-16
DE19843430161 DE3430161A1 (de) 1984-08-16 1984-08-16 Poroese anpassungsschicht in einem ultraschallapplikator

Publications (2)

Publication Number Publication Date
EP0173864A1 true EP0173864A1 (de) 1986-03-12
EP0173864B1 EP0173864B1 (de) 1989-07-26

Family

ID=6243197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109705A Expired EP0173864B1 (de) 1984-08-16 1985-08-02 Poröse Anpassungsschicht in einem Ultraschallapplikator

Country Status (5)

Country Link
US (1) US4686409A (de)
EP (1) EP0173864B1 (de)
JP (1) JPH0644837B2 (de)
AT (1) ATE45054T1 (de)
DE (2) DE3430161A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171716A2 (de) * 1984-08-16 1986-02-19 Siemens Aktiengesellschaft Verfahren zur Herstellung eines porösen piezoelektrischen Materials und nach diesem Verfahren hergestelltes Material
EP0361757A2 (de) * 1988-09-29 1990-04-04 British Gas plc Anpassungselement
EP0421286A2 (de) * 1989-10-03 1991-04-10 Richard Wolf GmbH Piezoelektrischer Wandler
EP0629992A2 (de) * 1993-06-15 1994-12-21 Hewlett-Packard Company Mikrorillen für Apodisierung und Fokussierung von breitbandiger klinischer Ultraschallwandler
EP0707898A2 (de) * 1994-10-21 1996-04-24 Hewlett-Packard Company Formungsverfahren für integrale Wandler und Impedanzanpassungsschichten

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169099A (ja) * 1985-01-22 1986-07-30 Matsushita Electric Ind Co Ltd 超音波送受波器
US5119840A (en) * 1986-04-07 1992-06-09 Kaijo Kenki Co., Ltd. Ultrasonic oscillating device and ultrasonic washing apparatus using the same
DE8611844U1 (de) * 1986-04-30 1986-08-07 Siemens AG, 1000 Berlin und 8000 München Ultraschall-Applikator mit einer Anpassungsschicht
JPS6313497A (ja) * 1986-07-02 1988-01-20 Nec Corp 水中広帯域送受波器
JP2794720B2 (ja) * 1988-08-23 1998-09-10 松下電器産業株式会社 複合圧電振動子
JP2745147B2 (ja) * 1989-03-27 1998-04-28 三菱マテリアル 株式会社 圧電変換素子
US4928264A (en) * 1989-06-30 1990-05-22 The United States Of America As Represented By The Secretary Of The Navy Noise-suppressing hydrophones
US5275878A (en) * 1990-02-06 1994-01-04 Matsushita Electric Works, Ltd. Composite dielectric and printed-circuit use substrate utilizing the same
DE4117638A1 (de) * 1990-05-30 1991-12-05 Toshiba Kawasaki Kk Stosswellengenerator mit einem piezoelektrischen element
DE4028315A1 (de) * 1990-09-06 1992-03-12 Siemens Ag Ultraschallwandler fuer die laufzeitmessung von ultraschall-impulsen in einem gas
US5121628A (en) * 1990-10-09 1992-06-16 Merkl Arthur W Ultrasonic detection system
US5300852A (en) * 1991-10-04 1994-04-05 Honda Giken Kogyo Kabushiki Kaisha Piezoelectric ceramic laminate device
US5410205A (en) * 1993-02-11 1995-04-25 Hewlett-Packard Company Ultrasonic transducer having two or more resonance frequencies
JP3358851B2 (ja) * 1993-03-11 2002-12-24 本田技研工業株式会社 感湿性アクチュエータ
US5434827A (en) * 1993-06-15 1995-07-18 Hewlett-Packard Company Matching layer for front acoustic impedance matching of clinical ultrasonic tranducers
US5460181A (en) * 1994-10-06 1995-10-24 Hewlett Packard Co. Ultrasonic transducer for three dimensional imaging
JP3926448B2 (ja) * 1997-12-01 2007-06-06 株式会社日立メディコ 超音波探触子及びこれを用いた超音波診断装置
EP0979686A3 (de) * 1998-08-12 2002-02-06 Ueda Japan Radio Co., Ltd. Poröser Piezoelektische-keramikschicht und PiezoelectrischerWandler
JP4223629B2 (ja) * 1999-06-16 2009-02-12 日本特殊陶業株式会社 超音波探触子用送受波素子及びその製造方法並びに該送受波素子を用いた超音波探触子
GB0019140D0 (en) * 2000-08-05 2000-09-27 Univ Strathclyde Ultrasonic transducers
ES2239500B1 (es) * 2003-03-07 2006-12-01 Consejo Sup. Investig. Cientificas Dispositivo para la caracterizacion de materiales por ultrasonidos con acoplamiento por gases (aire) y su aplicacion para llevar a cabo un test no destructivo para verificar la integridad de membranas porosas.
US7513147B2 (en) * 2003-07-03 2009-04-07 Pathfinder Energy Services, Inc. Piezocomposite transducer for a downhole measurement tool
US7075215B2 (en) * 2003-07-03 2006-07-11 Pathfinder Energy Services, Inc. Matching layer assembly for a downhole acoustic sensor
US20050039323A1 (en) * 2003-08-22 2005-02-24 Simens Medical Solutions Usa, Inc. Transducers with electically conductive matching layers and methods of manufacture
DE10344741A1 (de) * 2003-09-25 2005-04-14 Endress + Hauser Gmbh + Co. Kg Schall- oder Ultraschallwandler
DE102005063652B3 (de) 2005-06-09 2020-06-04 Tdk Electronics Ag Piezoelektrisches Vielschichtbauelement
JP2007288289A (ja) * 2006-04-13 2007-11-01 Honda Electronic Co Ltd 超音波振動子及び超音波洗浄機
US7587936B2 (en) * 2007-02-01 2009-09-15 Smith International Inc. Apparatus and method for determining drilling fluid acoustic properties
US8117907B2 (en) * 2008-12-19 2012-02-21 Pathfinder Energy Services, Inc. Caliper logging using circumferentially spaced and/or angled transducer elements
DE102008055123B3 (de) 2008-12-23 2010-07-22 Robert Bosch Gmbh Ultraschallwandler zum Einsatz in einem fluiden Medium
US8283999B2 (en) * 2010-02-23 2012-10-09 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator structures comprising a single material acoustic coupling layer comprising inhomogeneous acoustic property
US8413762B1 (en) * 2011-12-08 2013-04-09 Gulfstream Aerospace Corporation Thermal-acoustic sections for an aircraft
CN107107108B (zh) * 2014-10-01 2019-08-16 海浪科技有限公司 超声换能器匹配层及其制造方法
US10147870B2 (en) * 2014-11-12 2018-12-04 The Trustees Of Dartmouth College Porous piezoelectric material with dense surface, and associated methods and devices
JP6572812B2 (ja) * 2016-03-23 2019-09-11 横浜ゴム株式会社 音響透過性部材
CN110400869A (zh) * 2019-06-19 2019-11-01 中国科学院声学研究所东海研究站 一种可控声阻抗的介质及其声阻抗调控方法
WO2022238326A1 (en) * 2021-05-10 2022-11-17 Koninklijke Philips N.V. Graded acoustic matching layers
WO2023190097A1 (ja) * 2022-03-28 2023-10-05 テイカ株式会社 セラミックス系音響整合層材料、その製造方法、およびその用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR900298A (fr) * 1942-09-11 1945-06-25 G E M A Ges Fu R Elektroakusti Dispositif de transmission des oscillations mécaniques
US2430013A (en) * 1942-06-10 1947-11-04 Rca Corp Impedance matching means for mechanical waves
US4217684A (en) * 1979-04-16 1980-08-19 General Electric Company Fabrication of front surface matched ultrasonic transducer array
GB2052917A (en) * 1979-06-28 1981-01-28 Hewlett Packard Co Acoustic imaging transducers
EP0119855A2 (de) * 1983-03-17 1984-09-26 Matsushita Electric Industrial Co., Ltd. Ultraschallwandler mit akustischen Impedanzanpassungsschichten

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT353506B (de) * 1976-10-19 1979-11-26 List Hans Piezoelektrischer resonator
US4184094A (en) * 1978-06-01 1980-01-15 Advanced Diagnostic Research Corporation Coupling for a focused ultrasonic transducer
US4211948A (en) * 1978-11-08 1980-07-08 General Electric Company Front surface matched piezoelectric ultrasonic transducer array with wide field of view
US4227111A (en) * 1979-03-28 1980-10-07 The United States Of America As Represented By The Secretary Of The Navy Flexible piezoelectric composite transducers
US4283461A (en) * 1979-05-31 1981-08-11 The United States Of America As Represented By The Secretary Of The Navy Piezoelectric polymer antifouling coating
JPS56131979A (en) * 1980-03-19 1981-10-15 Hitachi Ltd Piezoelectric material for transparent vibrator and transparent vibrator
US4297607A (en) * 1980-04-25 1981-10-27 Panametrics, Inc. Sealed, matched piezoelectric transducer
US4387720A (en) * 1980-12-29 1983-06-14 Hewlett-Packard Company Transducer acoustic lens
US4507582A (en) * 1982-09-29 1985-03-26 New York Institute Of Technology Matching region for damped piezoelectric ultrasonic apparatus
US4503861A (en) * 1983-04-11 1985-03-12 Biomedics, Inc. Fetal heartbeat doppler transducer
US4536673A (en) * 1984-01-09 1985-08-20 Siemens Aktiengesellschaft Piezoelectric ultrasonic converter with polyurethane foam damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2430013A (en) * 1942-06-10 1947-11-04 Rca Corp Impedance matching means for mechanical waves
FR900298A (fr) * 1942-09-11 1945-06-25 G E M A Ges Fu R Elektroakusti Dispositif de transmission des oscillations mécaniques
US4217684A (en) * 1979-04-16 1980-08-19 General Electric Company Fabrication of front surface matched ultrasonic transducer array
GB2052917A (en) * 1979-06-28 1981-01-28 Hewlett Packard Co Acoustic imaging transducers
EP0119855A2 (de) * 1983-03-17 1984-09-26 Matsushita Electric Industrial Co., Ltd. Ultraschallwandler mit akustischen Impedanzanpassungsschichten

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171716A2 (de) * 1984-08-16 1986-02-19 Siemens Aktiengesellschaft Verfahren zur Herstellung eines porösen piezoelektrischen Materials und nach diesem Verfahren hergestelltes Material
EP0171716A3 (en) * 1984-08-16 1987-07-29 Siemens Aktiengesellschaft Berlin Und Munchen Process for making a porous piezoelectric material and material made according to the process
EP0361757A2 (de) * 1988-09-29 1990-04-04 British Gas plc Anpassungselement
EP0361757A3 (de) * 1988-09-29 1991-09-25 British Gas plc Anpassungselement
GB2225426B (en) * 1988-09-29 1993-05-26 Michael John Gill A transducer
EP0421286A2 (de) * 1989-10-03 1991-04-10 Richard Wolf GmbH Piezoelektrischer Wandler
EP0421286A3 (en) * 1989-10-03 1992-06-03 Richard Wolf Gmbh Piezoelectric transducer
EP0629992A2 (de) * 1993-06-15 1994-12-21 Hewlett-Packard Company Mikrorillen für Apodisierung und Fokussierung von breitbandiger klinischer Ultraschallwandler
EP0629992A3 (de) * 1993-06-15 1995-10-25 Hewlett Packard Co Mikrorillen für Apodisierung und Fokussierung von breitbandiger klinischer Ultraschallwandler.
EP0707898A2 (de) * 1994-10-21 1996-04-24 Hewlett-Packard Company Formungsverfahren für integrale Wandler und Impedanzanpassungsschichten
EP0707898A3 (de) * 1994-10-21 1997-07-23 Hewlett Packard Co Formungsverfahren für integrale Wandler und Impedanzanpassungsschichten

Also Published As

Publication number Publication date
DE3571887D1 (en) 1989-08-31
EP0173864B1 (de) 1989-07-26
JPH0644837B2 (ja) 1994-06-08
DE3430161A1 (de) 1986-02-27
JPS6153899A (ja) 1986-03-17
US4686409A (en) 1987-08-11
ATE45054T1 (de) 1989-08-15

Similar Documents

Publication Publication Date Title
EP0173864B1 (de) Poröse Anpassungsschicht in einem Ultraschallapplikator
DE3501808C2 (de)
DE4427798C2 (de) Piezoelektrischer Einkristall und dessen Verwendung in einer Ultraschallsonde und Ultraschall-Array-Sonde
DE4304265C2 (de) Ultraschallwandler
DE3526488A1 (de) Ultraschall-wandler mit piezoelektrischem verbundmaterial
DE3304666C2 (de) Ultraschallwandler mit Abstufung
DE60120052T2 (de) Dünnschicht, Verfahren zur Herstellung einer Dünnschicht und elektronische Komponente
EP0547060B1 (de) Ultraschallwandler für die laufzeitmessung von ultraschall-impulsen in einem gas
DE3210925A1 (de) Ultraschallwandler
EP0840655B1 (de) Ultraschallwandler
DE3237358A1 (de) Element fuer elastische oberflaechenwellen
WO2007071233A1 (de) Mit akustischen volumenwellen arbeitender resonator
DE3510247A1 (de) Wandler
DE2351665B2 (de) Rechtwinklige AT-geschnittene Quarzkristallplatte
DE69836457T2 (de) Platten und material zur absorbtion elektromagnetischer wellen
DE2713672C2 (de) Frequenzselektive Anordnung
DE3031758C2 (de) Piezoelektrischer Einkristall und Oberflächenschallwellenelemente mit derartigen Einkristallen
DE4236255C2 (de) Akustische Linse
EP1229514A2 (de) Bauteil mit schwingungsdämpfenden Eigenschaften sowie Material und Verfahren zur Herstellung eines derartigen Bauteils
DE10048373C2 (de) Piezoelektrische Keramiken und Verwendung derselben als Oberflächenwellenbauelemente
DE3409815A1 (de) Porositaet aufweisende gesinterte oxidkeramik und daraus hergestellte wandler
DE8611844U1 (de) Ultraschall-Applikator mit einer Anpassungsschicht
DE1466166B1 (de) Piezoelektrisch zur dickenscherschwingung anregbares resonator element
DE2613831B2 (de) Aus einem Stück gesintertes Keramikformteil und Verfahren zu seiner Herstellung
DE10142268A1 (de) Piezoelektrische Keramikzusammensetzung für eine SAW-Vorrichtung und Oberflächenakustikwellen (SAW)-Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB NL

17P Request for examination filed

Effective date: 19860407

17Q First examination report despatched

Effective date: 19880212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB NL

REF Corresponds to:

Ref document number: 45054

Country of ref document: AT

Date of ref document: 19890815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3571887

Country of ref document: DE

Date of ref document: 19890831

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950717

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950721

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950817

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950823

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960802

Ref country code: AT

Effective date: 19960802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031020

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301