EP0171684A1 - Verfahren zum Stabilisieren der Korrosionsfestigkeit eines Hüllrohres aus einer Zirkoniumlegierung für einen Kernreaktorbrennstab - Google Patents

Verfahren zum Stabilisieren der Korrosionsfestigkeit eines Hüllrohres aus einer Zirkoniumlegierung für einen Kernreaktorbrennstab Download PDF

Info

Publication number
EP0171684A1
EP0171684A1 EP85109390A EP85109390A EP0171684A1 EP 0171684 A1 EP0171684 A1 EP 0171684A1 EP 85109390 A EP85109390 A EP 85109390A EP 85109390 A EP85109390 A EP 85109390A EP 0171684 A1 EP0171684 A1 EP 0171684A1
Authority
EP
European Patent Office
Prior art keywords
cladding tube
tube
coolant
zirconium alloy
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85109390A
Other languages
English (en)
French (fr)
Inventor
Eckard Dipl.-Ing. Steinberg (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kraftwerk Union AG
Original Assignee
Kraftwerk Union AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraftwerk Union AG filed Critical Kraftwerk Union AG
Publication of EP0171684A1 publication Critical patent/EP0171684A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Definitions

  • the invention relates to a method for stabilizing the corrosion resistance of a cladding tube made of a zirconium alloy for a nuclear reactor fuel rod by moving an annealing zone in the longitudinal direction through the cladding tube and subsequent quenching with a coolant.
  • the increased surface corrosion leads to the formation of local oxide pustules on the shell tube of the nuclear reactor fuel rod, on which the cladding tube of the nuclear reactor fuel rod can finally corrode in extreme cases.
  • the " ⁇ -quenching" dissolves the secondary deposits, and in the subsequent quenching only very small and finely divided secondary deposits are formed, which are no longer the starting cells for nodular corrosion.
  • the invention has for its object to avoid such breaks and coarsening of the secondary excretions in the finished cladding tube.
  • the method of the type mentioned at the outset is characterized according to the invention in that the cladding tube is rotated around the tube axis during annealing and quenching and is held in a straight line with the longitudinal axis aligned on both sides of the annealing zone.
  • This cladding tube 2 is held in a straight line by two pairs of inclined drive rollers 3; 4 and 5; 6 with an exactly aligned longitudinal axis. With these pairs of inclined drive rollers 3.4; and 5; 6 the cladding tube 2 is further rotated about its longitudinal axis and also in the direction of this longitudinal axis i.e. moved in the direction of arrow 7.
  • a quartz tube 8 is arranged between the pairs of inclined drive rollers 3; 4 and 5; 6, through which the cladding tube 2 is guided coaxially and which is flushed on the inside with argon or helium, so that the zirconium alloy of the cladding tube cannot absorb atmospheric nitrogen.
  • annular nozzle 9 which is coaxial with the quartz tube 8 and the cladding tube 2 and has nozzle openings on the inner circumferential surface facing the cladding tube 2.
  • the cladding tube 2 is moved at a feed rate of 1 to 10 mm per second through the quartz cylinder 8 in the direction of its longitudinal axis. At the same time, the cladding tube 2 makes one revolution about its longitudinal axis with a rotational speed in the range from 200 to 2000 revolutions per minute.
  • the cladding tube 2 emerging from the quartz cylinder 8 is sprayed by the nozzle ring 9 with a coolant, which can be water containing hydrogen peroxide, for example. With the hydrogen peroxide on the outside Cladding tube 2 produces a gas-tight, oxidic surface coating.
  • An inert gas containing oxygen for example oxygen-containing argon or helium, can also be used as the coolant if the cooling rate of the cladding tube 2 emerging from the quartz cylinder 8 should not be too high.
  • the feed rate of the cladding tube 2 in the range of 1 to 10 mm per second in the direction of the arrow 7 means that the annealing zone generated with the induction coil 10 in the cladding tube 2 is moved into the cladding tube 2 with the same feed rate.
  • a uniform temperature distribution in the cladding tube 2 is achieved at the annealing zone, which is moreover held in a straight line with the aligned longitudinal axis by the pairs of inclined drive rollers 3; 4 and 5; 6, so that the cladding tube 2 when it has finally left the device shown in the drawing, is not only stabilized against corrosion, but also has no deformations ie is straight and has a circular inner and outer cross section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)

Abstract

Zum Stabilisieren der Korrosionsfestigkeit eines Hüllrohres (2) aus einer Zirkoniumlegierung wird das Hüllrohr (2) beim Glühen durch Hindurchbewegen einer Glühzone und nachfolgendem Ahschrecken mit einem Kühlmittel im Umdrehung um die Rohrachse versetzt, auf diese Weise wird ein Hüllrohr erzielt, das keine Brüche in der Rohrwand, keine vergröberten Sekundärausscheidungen und keine Verwerfungen aufweist.

Description

  • Die Erfindung betrifft ein Verfahren zum Stabilisieren der Korrosionsfestigkeit eines Hüllrohres aus einer Zirkoniumlegierung für einen Kernreaktorbrennstab durch Bewegen einer Glühzone in Längarichtung durch das Hüllrohr und nachfolgendes Abschrecken mit einem Kühlmittel.
  • Dieses Verfahren ist als sogenanntes "β - Quenchen" bekannt. In der Zirkoniumlegierung sind nach dem Ziehen oder Pilgern des Hüllrohres Sekundärausacheidungen mit Legierungsbestandteilen wie z.B. Eisen, Chrom und/oder Nickel vorhanden, die Partikel in der Matrix der Zirkoniumlegierung bilden, einen verhältnismäßig großen mittleren Durchmesser im Bereich von 0.01 bis 0.05 /um haben, die technologischen Eigenschaften der Zirkoniumlegierung wie z.B. ihre Härte und Festigkeit beeinflussen und ein anderes Korrosionsverhalten als die Matrix der Zirkoniumlegierung zeigen. Diese Partikel können die Keimzellen für örtlich erhöhte Oberflächenkorrosion, der sogenannten Nodularkorrosion am Hüllrohr eines in einen Kernreaktor eingesetzten Kernreaktorbrennstabes sein. Die erhöhte Oberflächenkorrosion führt zur Ausbildung von örtlichen Oxidpusteln am Hüllrohr des Kernreaktorbrennstabes, an denen schlieBlich in Extremfall das Hüllrohr des Kernreaktorbrennstabes durchkorrodieren kann. In der Glühzone werden beim "β - Quenchen" die Sekundärausscheidungen aufgelöst, und beim nachfolgenden-Abschrecken bilden sich nur sehr kleine und fein verteilte Sekundärausscheidungen, die nicht mehr Ausgangszellen für Nodularkorrosion sind.
  • Das "β - Quenchen" führt jedoch zu Verwerfungen (Dimensionsveränderungen) des Hüllrohres, die für die Fertigung von Kernreaktorbrennstäben unzulässig sind. Das "ß - Quenchen* konnte daher nicht am Fertigrohr durchgeführt werden, sondern mußte in eine Zwischenstufe bei der Rohrherstellung gelegt werden. Beim notwendigerweise nachfolgenden Verformen des Rohres durch Ziehen oder Pilgern konnten dann aber Brüche der Rohrwand auftreten. Auch begünstigt dieses nachfolgende Verformen wieder die Bildung von gröberen lokalen Sekundärausscheidungen in der Zirkoniumlegierung des fertigen Hüllrohres.
  • Der Erfindung liegt die Aufgabe zugrunde, solche Brüche und Vergröberungen der Sekundärausscheidungen im fertigen Hüllrohr zu vermeiden.
  • Zur Lösung dieser Aufgabe ist das Verfahren der eingangs erwähnten Art erfindungsgemäß dadurch gekennzeichnet, daB das Hüllrohr beim Glühen und Abschrecken in Umdrehung um die Rohrachse versetzt und beiderseits der Glühzone geradlinig mit fluchtender Längsachse gehalten wird.
  • Es wurde gefunden, daB auf diese Weise Verwerfungen des Hüllrohres vermieden werden, so daß das "ß - Quenchen" nicht mehr in Zwischenstufen der Hüllrohrfertigung gelegt zu werden braucht, sondern an fertigen Hüllrohr durchgeführt werden kann.
  • Es ist günstig, wenn beim Abschrecken mit dem Kühlmittel auf der Hüllrohraußenfläche ein gasdicht abschließender oxidischer Oberflächenüberzug erzeugt wird. Dadurch wird die Außenoberfläche des Hüllrohres zusätzlich gegen Korrosion in einem Kernreaktor geschützt.
  • Die Erfindung und ihre Vorteile seien anhand der Zeichnung in einem Ausführungsbeispiel näher erläutert:
    • In der Zeichnung ist schematisch eine Einrichtung zum Stabilisieren der Korrosionsfestigkeit eines Hüllrohres 2 dargestellt, das aus einer mit Zircaloy 2 bezeichneten Zirkoniumlegierung besteht, die 1.2 bis 1.7 Gew. % Zinn, 0.07 bis 0.2 Gew. % Eisen, 0.05 bis 0.15 Gew. % Chrom,. 0.03 bis 0.08 Gew. % Nickel, 0.07 bis 0.15 Gew. % Sauerstoff und den Rest Zirkonium enthält.
  • Dieses Hüllrohr 2 wird durch zwei Paare schräggestellter Antriebsrollen 3;4 und 5;6 geradlinig mit genau fluchtender Längsachse gehalten. Mit diesen Paaren schräggestellter Antriebsrollen 3,4; und 5;6 wird das Hüllrohr 2 ferner in Umdrehung um seine Längsachse versetzt und außerdem in Richtung dieser Längsachse d.h. in Richtung des Pfeiles 7 vorbewegt.
  • Zwischen den Paaren schräggestellter Antriebsrollen 3;4 und 5;6 ist ein Quarzrohr 8 angeordnet, durch das das Hüllrohr 2 koaxial geführt ist und das innen mit Argon oder Helium gespült wird, so daB die Zirkoniumlegierung des Hüllrohres keinen Luftstickstoff aufnehmen kann. Außen auf dem Quarzrohr 8 befindet sich eine koaxiale Induktionsheizspule, die an einem
    elektrischen Hochfrequenzgenerator angeschlossen ist und mit der im Hüllrohr 2 innerhalb des Quarzrohres 8 eine GlUhzone erzeugt wird, in der die Zirkoniumlegierung eine Temperatur im Bereich von 900 bis 1200°C hat.
  • An Ende des Quarzrohres 8, an dem das Hüllrohr 2 aus dem Quarzrohr 8 austritt, ist eine zum Quarzrohr 8 und zum Hüllrohr 2 koaxiale Ringdüse 9 angebracht, die auf der inneren Mantelfläche dem Hüllrohr 2 zugewandte Düsenöffnungen aufweist.
  • Das Hüllrohr 2 wird mit einer Vorschubgeschwindigkeit von 1 bis 10 mm pro Sekunde durch den Quarzzylinder 8 hindurch in Richtung seiner Längsachse bewegt. Zugleich vollführt das Hüllrohr 2 um seine Längsachse eine Umdrehung mit einer Umdrehungsgeschwindigkeit im Bereich von 200 bis 2000 Umdrehungen pro Minute. Das aus den Quarzzylinder 8 austretende Hüllrohr 2 wird vom Düsenring 9 mit einem Kühlmittel besprüht, das beispielsweise Wasserstoffperoxid enthaltendes Wasser sein kann. Mit dem Wasserstoffperoxid wird außen auf dem Hüllrohr 2 ein gasdicht abschließender oxidischer Oberflächenüberzug erzeugt. Als Kühlmittel kann auch Sauerstoff enthaltendes Inertgas, z.B. Sauerstoff enthaltendes Argon oder Helium verwendet werden, wenn die AbkUhlgeschwindigkeit des aus den Quarzzylinder 8 austretenden Hüllrohres 2 nicht zu hoch gewählt sein soll.
  • Die Vorschubgeschwindigkeit des Hüllrohres 2 im Bereich von 1 bis 10 mm pro Sekunde in Richtung des Pfeiles 7 bedeutet, daB die mit der Induktionsspule 10 im Hüllrohr 2 erzeugte Glühzone mit der gleichen Vorschubgeschwindigkeit duroh in das Hüllrohr 2 bewegt wird. Durch die Umdrehung des Hüllrohres 2 um seine Längsachse wird an der Glühzone eine über dem Rohrumfang gleichmäßige Tenperaturverteilung im Hüllrohr 2 erzielt, das überdies durch die Paare schräggestellter Antriebsrollen 3;4 und 5;6 geradlinig mit fluchtender Längsachse gehalten ist, so daß das Hüllrohr 2, wenn es schließlich die in der Zeichnung dargestellte Einrichtung verlassen hat,nicht nur gegen Korrosion stabilisiert ist, sondern auch keine Deformationen aufweist d.h. geradlinig ist und einen kreisrunden Innen- und Außenquerschnitt aufweist.

Claims (5)

1. Verfahren zum Stabilisieren der Korrosionsfestigkeit eines Hüllrohres aus einer Zirkoniumlegierung für einen Kernreaktorbrennstab durch Bewegen einer Glühzone in Längsrichtung durch das Hüllrohr und nachfolgendes Abschrecken mit einen Kühlmittel, dadurch gekennzeichnet, daß das Hüllrohr (2) beim Glühen und Abschrecken in Umdrehung um die Rohrachse versetzt und beiderseits der GlUhzone geradlinig mit fluchtender Längsachse gehalten wird.
2. Verfahren nach Anspruch 1, dadurch ge- kennzeichnet, daß beim Abschrecken mit dem Kühlmittel auf der Hüllrohraußeafläche ein gasdicht abschließender oxidischer Oberflächenüberzug erzeugt wird.
3. Verfahren nach Anspruch 2, dadurch ge- kennzeichnet, daB als Kühlmittel Wasserstoffperoxid enthaltendes Wasser verwendet wird.
4. Verfahren nach Anspruch 2, dadurch ge- kennzeichnet, daß als Kühlmittel Sauerstoff enthaltendes Inertgas verwendet wird.
5. Verfahren nach Anspruch 1, dadurch ge- kennzeichnet, daß eine Vorschubgeschwindigkeit der GlUhzone im Bereich von 1 bis 10 mm/Sekunde und eine Umdrehungsgeschwindigkeit des Hüllrohres im Bereich von 200 bis 2000 Umdrehungen pro Minute gewählt wird.
EP85109390A 1984-08-10 1985-07-26 Verfahren zum Stabilisieren der Korrosionsfestigkeit eines Hüllrohres aus einer Zirkoniumlegierung für einen Kernreaktorbrennstab Withdrawn EP0171684A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843429567 DE3429567A1 (de) 1984-08-10 1984-08-10 Verfahren zum stabilisieren der korrosionsfestigkeit eines huellrohres aus einer zirkoniumlegierung fuer einen kernreaktorbrennstab
DE3429567 1984-08-10

Publications (1)

Publication Number Publication Date
EP0171684A1 true EP0171684A1 (de) 1986-02-19

Family

ID=6242835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109390A Withdrawn EP0171684A1 (de) 1984-08-10 1985-07-26 Verfahren zum Stabilisieren der Korrosionsfestigkeit eines Hüllrohres aus einer Zirkoniumlegierung für einen Kernreaktorbrennstab

Country Status (3)

Country Link
EP (1) EP0171684A1 (de)
JP (1) JPS6148560A (de)
DE (1) DE3429567A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944509A1 (de) * 1999-09-16 2001-04-19 Siemens Ag Kernbrennelementbauteile mit Schutzschichtsystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826124A (en) * 1972-10-25 1974-07-30 Zirconium Technology Corp Manufacture of tubes with improved metallic yield strength and elongation properties
US4065328A (en) * 1975-05-06 1977-12-27 Atomic Energy Of Canada Limited High strength Sn-Mo-Nb-Zr alloy tubes and method of making same
US4238251A (en) * 1977-11-18 1980-12-09 General Electric Company Zirconium alloy heat treatment process and product
US4360389A (en) * 1975-11-17 1982-11-23 General Electric Company Zirconium alloy heat treatment process
FR2509509A1 (fr) * 1981-07-07 1983-01-14 Asea Atom Ab Procede de fabrication de tubes de revetement en un alliage a base de zirconium pour barres de combustible pour reacteurs nucleaires

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826124A (en) * 1972-10-25 1974-07-30 Zirconium Technology Corp Manufacture of tubes with improved metallic yield strength and elongation properties
US4065328A (en) * 1975-05-06 1977-12-27 Atomic Energy Of Canada Limited High strength Sn-Mo-Nb-Zr alloy tubes and method of making same
US4360389A (en) * 1975-11-17 1982-11-23 General Electric Company Zirconium alloy heat treatment process
US4238251A (en) * 1977-11-18 1980-12-09 General Electric Company Zirconium alloy heat treatment process and product
FR2509509A1 (fr) * 1981-07-07 1983-01-14 Asea Atom Ab Procede de fabrication de tubes de revetement en un alliage a base de zirconium pour barres de combustible pour reacteurs nucleaires

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944509A1 (de) * 1999-09-16 2001-04-19 Siemens Ag Kernbrennelementbauteile mit Schutzschichtsystem

Also Published As

Publication number Publication date
DE3429567A1 (de) 1986-02-20
JPS6148560A (ja) 1986-03-10

Similar Documents

Publication Publication Date Title
EP0205828B1 (de) Verfahren und Verwendung eines Stahles zur Herstellung von Stahlrohren mit erhöhter Sauergasbeständigkeit
DE69309305T2 (de) Erzeugung eines zirkoniumhüllrohres mit innerer beschichtung
DE3504031C2 (de)
DE69502081T2 (de) Verfahren zur Fertigung eines Rohrs für Kernbrennstabbündel und danach erhaltene Rohre
DE4019845C2 (de) Verfahren zur Herstellung einer Arbeitswalze für ein Metallwalzwerk
DE19536978A1 (de) Verfahren zur Herstellung schweißplattierter Stahlrohre
DE2035654B2 (de) Verfahren zur Herstellung von Verbundsupraleitern
CH504926A (de) Verfahren zur Herstellung hochwarmfester, korrosionsbeständiger Aufpanzerungen
DE2607146C2 (de) Verfahren zur Wärmebehandlung eines Konstruktionsteils aus einer Zirkoniumlegierung
DE2513763B2 (de) Verfahren zur Herstellung einer Walze mit einer oder mehreren Umfangsnuten
DE69203228T2 (de) Metalldraht aus einem stahlsubstrat mit kaltgehärteter geglühter martensitischer struktur und beschichtung.
DE69600630T2 (de) Hüllrohr aus zirkoniumlegierung für kernreaktorbrennstabbündel und sein herstellungsverfahren
DE1508400A1 (de) Verfahren zum Verbessern der mechanischen Festigkeit von Metall
DE102019209170A1 (de) Subelement auf Basis von Nb-haltigen Stabelementen mit pulvergefülltem Kernrohr für einen Nb3Sn-haltigen Supraleiterdraht und zugehörige Herstellungsverfahren
DE2717780B2 (de) Herstellung von Walzdraht
DE1558790B2 (de) Verfahren zur Herstellung von Rollenelektroden für die elektrische Widerstandsschweißung
DE69129993T2 (de) Verbessertes beta-abschreckverfahren für kernbrennelemente-hüllenrohre
DE3224686C2 (de) Verfahren zur Herstellung von Kapselrohren aus einer Zirkoniumlegierung für Brennstäbe von Kernreaktoren
DE2303991A1 (de) Zusatzmetall
EP0370588A1 (de) Verfahren zur Herstellung hochfester nahtloser Stahlrohre
EP0171684A1 (de) Verfahren zum Stabilisieren der Korrosionsfestigkeit eines Hüllrohres aus einer Zirkoniumlegierung für einen Kernreaktorbrennstab
DE2651870C2 (de) Verfahren zum Herstellen eines Bauteils aus einer Zirkoniumlegierung
DE3507124C2 (de)
EP0171675B2 (de) Hüllrohr aus einer Zirkoniumlegierung insbesondere für einen Kernreaktorbrennstab und Verfahren zum Herstellen dieses Hüllrohres
DE69728861T2 (de) Ein fur die verwendung in einem leichtwasserkernreaktor entworfener bauteil und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE SE

17P Request for examination filed

Effective date: 19860326

17Q First examination report despatched

Effective date: 19870507

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19871029

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STEINBERG, ECKARD, DIPL.-ING. (FH)