EP0171298B1 - Procédé de désulfuration d'un gaz combustible contenant du soufre - Google Patents

Procédé de désulfuration d'un gaz combustible contenant du soufre Download PDF

Info

Publication number
EP0171298B1
EP0171298B1 EP85400298A EP85400298A EP0171298B1 EP 0171298 B1 EP0171298 B1 EP 0171298B1 EP 85400298 A EP85400298 A EP 85400298A EP 85400298 A EP85400298 A EP 85400298A EP 0171298 B1 EP0171298 B1 EP 0171298B1
Authority
EP
European Patent Office
Prior art keywords
gas
manganese
zinc
iron
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85400298A
Other languages
German (de)
English (en)
Other versions
EP0171298A1 (fr
Inventor
Jean Cordier
André Rist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USINOR SA
Original Assignee
Union Siderurgique du Nord et de lEst de France SA USINOR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Siderurgique du Nord et de lEst de France SA USINOR filed Critical Union Siderurgique du Nord et de lEst de France SA USINOR
Priority to AT85400298T priority Critical patent/ATE40149T1/de
Publication of EP0171298A1 publication Critical patent/EP0171298A1/fr
Application granted granted Critical
Publication of EP0171298B1 publication Critical patent/EP0171298B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/57Gasification using molten salts or metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives

Definitions

  • the present invention relates to a process for desulfurization of a combustible synthesis gas containing sulfur, such as in particular a combustible gas obtained by gasification of coals or petroleum residues.
  • the invention relates in particular to a combustible gas obtained by gasifying coal on a bath of ferrous metal maintained in the liquid state, the coal being injected in a sprayed form into the metal bath by an injection lance, simultaneously with gaseous oxygen and vapor.
  • the gas thus produced contains a residual content of sulfur compounds in particular in the form of H 2 S and COS which is of the order of 100 to 600 ppmv in H 2 S + COS. It may be noted that, with respect to the sulfur content of the gas initially produced, a first significant desulfurization by iron has already taken place to transform the sulfur compounds into iron sulfide, but this desulfurization is insufficient for certain uses of the gas.
  • the present invention aims to solve this problem of advanced desulfurization of a combustible gas resulting from the gasification of sulfurous fuels.
  • Manganese desulphurization is preferably carried out by bringing the combustible gas into contact with the vapors of Mn and / or its oxides in the form of aerosols while it is at a temperature ranging from 1600 ° C. to 600 ° C.
  • Desulfurization with zinc is also preferably carried out by bringing the combustible gas into contact with zinc vapors and / or its oxides in the form of aerosols while it is at a temperature ranging from 1000 ° C. to 350 °. vs.
  • the sulfur content of the gas cooled in the presence of iron aerosols and of iron oxide is reduced to values of between 100 and 600 ppmv of sulfur, in the form of H 2 S, of COS, etc.
  • the sulfur is eliminated, by purification and thorough dedusting of the gas, in the form of iron sulfides and oxysulfides.
  • the subject of the invention is a process for the advanced desulfurization of a combustible gas containing sulfur resulting from the gasification of sulfurous fuel on a bath of ferrous metal maintained in the liquid state in which said combustible gas is subjected to desulfurization by iron vapors, then to a desulfurization by manganese vapors, while it is at a temperature ranging from 1600 ° C to 350 ° C, characterized in that the desulfurization is completed by bringing this gas into contact with vapors of zinc and / or its oxides in the form of aerosols, downstream of the points of contact with iron and manganese, said combustible gas being at a temperature ranging from 1000 ° C. to 350 ° C.
  • the reaction can continue up to 600 ° C and even 400 ° C, the residual sulfur content is extremely low; on the order of a few ppmv.
  • Zinc is an even more effective desulfurizer than manganese at less than 950 ° C. It completes the action of the manganese vapors introduced into the gas. From 850 ° C, zinc sulphide is more stable than manganese sulphide and zinc vapors, in aerosols quickly fix the sulfur of the gas in the form of sulphide and oxysulphides. zinc, so that at 800 ° C the gas contains less than 10 ppmv sulfur. At 600 ° C, the residual sulfur content in the gas is less than a few ppmv.
  • the sulfur is removed from the gas, purified and dusted, in the form of fine sulphide dust and oxysulphides of zinc, manganese and iron.
  • FIG. 1 is a graph illustrating the separate action of the vapors of Fe, Mn and Zn on the desulphurization of a gas resulting from the steel gasification of coal in which the initial sulfur content is 4000 ppmv and the initial content in each of metals (M) is 0.5 to 1 g / N m3.
  • the iron bath be maintained at a temperature between 1500 ° C and 1550 ° C.
  • manganese is added to the gasification zone while the gas is maintained at a temperature ranging from 1600 ° C. to 600 °. vs.
  • the Mn can be added in the form of an oxide such as, for example, a concentrate or a manganese ore, directly mixed with the pulverized coal injected by the lance.
  • Mn can also be added to the bath in the form of ferro-manganese or apt or any other alloy containing Mn.
  • the Mn content of the bath is preferably maintained between 0.5 and 1.5% and for example around 0.8%.
  • the manganese introduced is rapidly vaporized and ensures desulfurization of the bath at the same time as gas (which can only be ensured by desulfurization with iron vapors which only intervenes lower temperature as indicated above).
  • the action of desulphurization of manganese is completed by the addition of Zn vapors which react when the gas is at a temperature below 1000 ° C and up to 350 ° C.
  • This bringing the gas into contact with the Zn vapors can be carried out according to two variants.
  • Zinc introduced into a high temperature zone, is completely volatilized. However, its consumption is not negligible because it occurs, as explained above, at a temperature below about 950 ° C in competition with the manganese aerosol, while the sulfur content of the gas is still around from 20 to 40 ppmv of sulfur compounds.
  • a plasma torch which injects the vapor of Zn into the gas when the latter is at a temperature below 600 ° C., when the manganese has already reduced the sulfur content of the gas below 10 ppmv.
  • Fig. 2 is a graph illustrating the simultaneous action of the vapors of Mn and Zn on the desulphurization of a gas resulting from the steel gasification of coal in which the initial sulfur content is 4000 ppmv (COS + H 2 S + ... ), the Mn content being greater than 0.3 g / m 3 N and in particular from 0.5 to 1 g / m 3 N, the Zn content being greater than 0.01 g / m 3 N, in particular from 0.05 to 0.1 g / m 3 N.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • La présente invention est relative à un procédé de désulfuration d'un gaz de synthèse combustible contenant du soufre, tel que notamment un gaz combustible obtenu par gazéification de charbons ou de résidus pétroliers.
  • L'invention vise en particulier un gaz combustible obtenu par gazéification de charbon sur un bain de métal ferreux maintenu à l'état liquide, le charbon étant injecté sous une forme pulvérisée dans le bain de métal par une lance d'injection, simultanément à de l'oxygène gazeux et de la vapeur.
  • Le gaz ainsi produit contient une teneur résiduelle en composés du soufre notamment sous forme de H2S et COS qui est de l'ordre de 100 à 600 p.p.m.v. en H2S + COS. On peut noter que par rapport à la teneur en soufre du gaz initialement produit, une première désulfuration importante par le fer a déjà eu lieu pour transformer les composés du soufre en sulfure de fer, mais cette désulfuration est insuffisante pour certaines utilisations du gaz.
  • La présente invention vise à résoudre ce problème de désulfuration poussée d'un gaz combustible issu de la gazéification de combustibles sulfureux.
  • Elle a ainsi pour objet un procédé de désulfuration d'un gaz combustible contenant du soufre issu de la gazéification de combustibles sulfureux, caractérisé en ce qu'on le soumet à l'action de vapeurs de manganèse et/ou de zinc et/ou de leurs oxydes sous forme d'aérosols alors qu'il est à une température allant de 1600°C à 350°C.
  • La désulfuration par la manganèse est réalisée de préférence par mise en contact du gaz combustible avec les vapeurs de Mn et/ou de ses oxydes sous forme d'aérosols alors qu'il est à une température allant de 1600°C à 600°C.
  • La désulfuration par le zinc est en outre réalisée de préférence par mise en contact du gaz combustible avec des vapeurs de zinc et/ou de ses oxydes sous forme d'aérosols alors qu'il est à une température allant de 1000°C à 350°C.
  • Dans la gazéification sidérurgique, sur un bain de fonte pure (non alliée), la vaporisation du fer est rapide et la quantité defervaporisé, se condensant sous forme d'un aérosol de particules de fer métallique et d'oxydes de fer, est très importante. La surface spécifique considérable du fer et de l'oxyde de fer, provoque la désulfuration du gaz, à condition que celui-ci soit suffisamment réducteur (faible teneur en C02 et en H20). La réaction de désulfuration se produit à partir de 1100°Cetpeut se poursuivre jusqu'à 400°C environ dans la mesure où les installations de captation sont convenablement dessinées pour donner des temps de séjour au gaz suffisamment importants, en particulier dans la gamme de température de 600° à 800°C. Dans ces conditions, quelle que soit la teneur en soufre initiale du gaz (sous forme de H2S principalement et de COS, S2, etc ...), la teneur en soufre du gaz refroidi en présence d'aérosols de fer et d'oxyde de fer, est réduite à des valeurs comprises entre 100 et 600 ppmv de soufre, sous forme de H2S, de COS, etc ... Le soufre est éliminé, par épuration et dépoussiérage poussé du gaz, sous forme de sulfures et d'oxysulfures de fer.
  • Cette désulfuration par le fer, inhérente au processus même de gazéification du charbon sur bain de fonte maintenu à une température supérieure à 1300°C, est cependant insuffisante pour certaines applications, compte-tenu de la teneur résiduelle en soufre.
  • L'invention a pour objet un procédé de désulfuration poussée d'un gaz combustible contenant du soufre issu de la gazéification du combustible sulfureux sur un bain de métal ferreux maintenu à l'état liquide dans lequel on soumet ledit gaz combustible à une désulfuration par des vapeurs de fer, puis à une désulfuration par des vapeurs de manganèse, alors qu'il est à une température allant de 1600°C à 350°C, caractérisé en ce que la désulfuration est complétée par mise en contact de ce gaz avec des vapeurs de zinc et/ou de ses oxydes sous forme d'aérosols, en aval des points de mise en contact avec le fer et le manganèse, ledit gaz combustible étant à une température allant de 1000°C à 350°C.
  • Le manganèse est très volatil. Ses vapeurs réagissent à haute température, immédiatement, avec les composés sulfureux contenus dans le gaz, si celui-ci est suffisamment réducteur (teneur en C02 < 5%). A 1500°C, la teneur en soufre des gaz est déjà réduite à 900 ppmv. Au cours du refroidissement du gaz, en présence de vapeurs (sous forme d'aérosols), de manganèse et d'oxydes de manganèse, la désulfuration se poursuit et, à 800°C il ne reste plus que 50 ppmv de soufre dans le gaz. Dans une installation convenablement dessinée (volume ettemps de séjour suffisants), la réaction peut se poursuivre à des températures plus basses, étant donné la grande surface spécifique de l'aérosol produit.
  • Si la réaction peut se poursuivre jusque 600°C et même 400°C la teneur résiduelle en soufre est extrêmementfaible; de l'ordre de quelques ppmv.
  • Le zinc est un désulfurant encore plus efficace que le manganèse à moins de 950°C. Il complète l'action des vapeurs de manganèse introduites dans le gaz. A partir de 850°C, le sulfure de zinc est plus stable que le sulfure de manganèse et les vapeurs de zinc, en aérosols fixent rapidement le soufre du gaz sous forme de sulfure et oxysulfures . de zinc, de sorte qu'à 800°C, le gaz contient moins de 10 ppmv de soufre. A 600°C, la teneur résiduelle en soufre dans le gaz est inférieure à quelques ppmv.
  • Le soufre est éliminé du gaz, épuré et dépoussiéré, sous forme de fines poussières de sulfure et d'oxysulfures de zinc, de manganèse et de fer.
  • La figure 1 est un graphe illustrant l'action séparée des vapeurs de Fe, Mn et Zn sur la désulfuration d'un gaz issu de la gazéification sidérurgique de charbon dans lequel la teneur initiale en soufre est de 4000 ppmv et la teneur initiale en chacun des métaux (M) est de 0,5 à 1 g/N m3.
  • Pour l'obtention d'une désulfuration moyenne (gaz industriel dont la teneur en soufre doit être abaissée en dessous de 1000 ppmv), on constate à l'examen du graphe de la figure 1, qu'une désulfuration par les vapeurs de fer est suffisante dans la mesure où une vaporisation appropriée de vapeurs de fer a lieu à partir du bain maintenu à une température allant de 1300°C à 1600°C.
  • Pour des combustibles et notamment des charbons à teneur en soufre normale, on peut opérer en maintenant le bain de fonte à des températures de préférence comprises entre 1450°C et 1550°C.
  • Pour des combustibles à très forte teneur en soufre, il est préférable que le bain de fonte soit maintenu à une température comprise entre 1500°C et 1550°C.
  • Cependant, pour obtenir une désulfuration poussée qui est le but visé par l'invention, selon un premier mode de réalisation, on ajoute du manganèse darrs la zone de gazéification alors que le gaz est maintenu à une température allant de 1600°C à 600°C.
  • Le Mn peut être ajouté sous forme d'oxyde tel que, par exemple, un concentré ou un minerai de manganèse, directement mélangé au charbon pulvérisé injecté par la lance.
  • Le Mn peut également être ajouté au bain sous forme de ferro-manganèse ou de spiegel ou tout autre alliage contenant du Mn.
  • La teneur en Mn du bain est maintenue de préférence entre 0,5 et 1,5% et par exemple à 0,8% environ.
  • L'introduction de manganèse, pour assurer la désulfuration, est particulièrement recommandée dans le cas de la gazéification de combustibles à haute teneur en soufre, tels que charbons sulfureux, asphaltes, coke de pétrole. Celle-ci pourrait être gênée par une teneur excessive en soufre du bain de métal liquide. Il faut en effet, maintenir, si possible, la teneur en soufre du bain à moins de 2% pour obtenir une gazéification complète et efficace du charbon injecté, sans excès de vapeur et d'oxygène afin d'obtenir un gaz de bonne qualité dont la teneur en C02 reste inférieure à 5%.
  • C'est d'ailleurs dans ces conditions que l'on obtient aussi une désulfuration efficace avec l'aérosol de manganèse.
  • Comme expliqué plus haut, dans ces conditions d'injection, le manganèse introduit est rapidement vaporisé et assure une désulfuration du bain en même temps que du gaz (ce que ne peut assurer la seule désulfuration aux vapeurs de fer qui n'intervient qu'à plus basse température comme indiqué ci-dessus).
  • Selon un mode de réalisation complémentaire de l'invention, pour obtenir un gaz à très basse teneur en soufre (<10 ppm), on complète l'action de désulfuration du manganèse par l'addition de vapeurs de Zn qui réagissent lorsque le gaz est à une température inférieure à 1000°C et allant jusqu'à 350°C.
  • Cette mise en contact du gaz avec les vapeurs de Zn peut être réalisée selon deux variantes.
  • Selon une première variante les vapeurs de Zn sont créées:
    • - soint en introduisant des déchets métalliques contenant du zinc dans le bain métallique. Ces déchets peuvent provenir de récupération de démolition d'automobiles par exemple (alliages Zn-AI-Mg et Zn-Cu à bas point de fusion, etc ...).
    • - soit sous forme de poussières contenant du zinc, qui seront additionnées au charbon pulvérisé, typiquement concentrés d'oxydes de zinc, sous diverses formes. On peut utiliser avantageusement des poussières de fours électriques qui constituent des résidus industriels dont la teneur en zinc peut atteindre 18 à 25%.
  • Le zinc, introduit dans une zone à haute tempé- ' rature est entièrement volatilisé. Cependant, sa consommation n'est pas négligeable car elle intervient, comme expliqué plus haut, à une température inférieure à environ 950°C en concurrence avec l'aérosol de manganèse, alors que la teneur en soufre du gaz est encore de l'ordre de 20 à 40 ppmv de composés sulfurés.
  • Selon une seconde variante permettant de réduire la consommation de Zn, il est vaporisé dans une torche à plasma qui injecte la vapeur de Zn dans le gaz alors que celui-ci est à une température inférieure à 600°C, lorsque le manganèse a déjà réduit la teneur en soufre du gaz à moins de 10 ppmv.
  • La Fig. 2 est un graphe illustrant l'action simultanée des vapeurs de Mn et Zn sur la désulfuration d'un gaz issu de la gazéification sidérurgique de charbon dans lequel la teneur initiale du soufre est de 4000 ppmv (COS + H2S + ...), la teneur en Mn étant supérieur à 0,3 g/m3 N et en particulier de 0,5 à 1 g/m3 N, la teneur en Zn étant supérieure à 0,01 g/m3 N, en particulier de 0,05 à 0,1 g/m3 N.
  • Les produits de la désulfuration du gaz qui sont sous forme de fines poussièrs de sulfures et oxysulfures de Fe, Mn et Zn sont éliminés par une épuration poussée par filtre électrostatique après conditionnement du gaz.

Claims (5)

1. Procédé de désulfuration poussée d'un gaz combustible contenant du soufre issu de la gazéification du combustible sulfureux sur un bain de métal ferreux maintenu à l'état liquide dans lequel on soumet ledit gaz combustible à une désulfuration par des vapeurs de fer, puis à une désulfuration par des vapeurs de manganèse, alors qu'il est à une température allant de 1600°C à 350°C, caractérisé en ce que la désulfuration est complétée par mise en contact de ce gaz avec des vapeurs de zinc et/ou de ses oxydes sous forme d'aérosols, en aval des points de mise en contact avec le fer et le manganèse, ledit gaz combustible étant à une température allant de 1000°C à 350°C.
2. Procédé selon la revendication 1, caractérisé en ce que le gaz est un gaz issu de la gazéification de charbon et/ou de résidus prétroliers, sur un bain de métal sulfureux maintenu à l'état liquide et à une température de 1300°C à 1600°C, de préférence 1450° à 1550°C, selon la teneur en soufre du gaz.
3. Procédé selon les revendications 1 et 2, caractérisé en ce que le manganèse est ajouté au charbon à gazéifier sous forme de minerais fins de Mn.
4. Procédé selon les revendications 1 et 2 caractérisé en ce que le manganèse est ajouté sur le bain de métal sulfureux maintenu à l'état liquide sous forme de ferro-manganèse ou d'alliage de Mn.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le zinc est mis au contact du gaz préalablement désulfuré sous forme de vapeurs de zinc produites par une torche à plasma, le gaz étant à une température inférieure à 600°C.
EP85400298A 1984-02-23 1985-02-19 Procédé de désulfuration d'un gaz combustible contenant du soufre Expired EP0171298B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85400298T ATE40149T1 (de) 1984-02-23 1985-02-19 Verfahren zur entschwefelung eines schwefel enthaltenden brennbaren gases.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8402769 1984-02-23
FR8402769A FR2560209B1 (fr) 1984-02-23 1984-02-23 Procede de desulfuration d'un gaz combustible contenant du soufre

Publications (2)

Publication Number Publication Date
EP0171298A1 EP0171298A1 (fr) 1986-02-12
EP0171298B1 true EP0171298B1 (fr) 1989-01-18

Family

ID=9301324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400298A Expired EP0171298B1 (fr) 1984-02-23 1985-02-19 Procédé de désulfuration d'un gaz combustible contenant du soufre

Country Status (11)

Country Link
US (1) US4852995A (fr)
EP (1) EP0171298B1 (fr)
JP (1) JPS617390A (fr)
AT (1) ATE40149T1 (fr)
AU (1) AU581423B2 (fr)
BR (1) BR8500791A (fr)
CA (1) CA1287479C (fr)
DE (1) DE3567673D1 (fr)
FR (1) FR2560209B1 (fr)
IN (1) IN164158B (fr)
ZA (1) ZA851355B (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221292A (ja) * 1985-03-27 1986-10-01 Sumitomo Metal Ind Ltd 低硫黄含有石炭ガス化ガスの製造方法
US5538703A (en) * 1993-10-29 1996-07-23 Massachusetts Institute Of Technology Hot gas desulfurization by injection of regenerable sorbents in gasifier-exit ducts
US5581085A (en) * 1995-03-06 1996-12-03 Spectra-Tech, Inc. Infrared microspectrometer accessory
GB9602037D0 (en) * 1996-02-01 1996-04-03 Univ Birmingham Desulphurisation
US5980606A (en) * 1996-03-22 1999-11-09 Steel Technology Corporation Method for reducing sulfuric content in the offgas of an iron smelting process
US6693280B2 (en) 2001-08-03 2004-02-17 Sensir Technologies, L.L.C. Mid-infrared spectrometer attachment to light microscopes
US8597934B2 (en) * 2009-10-30 2013-12-03 Coskata, Inc. Process for controlling sulfur in a fermentation syngas feed stream
US9847543B2 (en) 2013-03-06 2017-12-19 Fuelcell Energy, Inc. Fuel cell system having biogas desulfurizer assembly with manganese oxide desulfurizer material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2612444A (en) * 1948-12-28 1952-09-30 Rummel Roman Production of metals from their ores
US2858255A (en) * 1953-03-23 1958-10-28 Segui Esteban Domingo Process and device for the regeneration of monomers starting from polymethacrylate and, more especially, methyl polymethacrylate
US3983218A (en) * 1970-11-18 1976-09-28 Heins Sidney M Method for dry removal of sulfur dioxide from furnace flue, coal and other gases
GB1568703A (en) * 1976-03-29 1980-06-04 British Gas Corp Sulphur purification process
DE2620454A1 (de) * 1976-05-08 1977-11-24 Kloeckner Humboldt Deutz Ag Verfahren zum vergasen von kohlenstoffhaltigen brennstoffen zur herstellung eines reduktionsgases
US4180549A (en) * 1976-08-27 1979-12-25 United States Steel Corporation Desulfurization of hot reducing gas
US4141694A (en) * 1977-08-26 1979-02-27 Technology Application Services Corporation Apparatus for the gasification of carbonaceous matter by plasma arc pyrolysis
DE2843997A1 (de) * 1978-10-09 1980-04-10 Kloeckner Humboldt Deutz Ag Verfahren zur herstellung von spaltgas in einem metallbad
DE3032043A1 (de) * 1980-08-26 1982-03-04 Klöckner-Werke AG, 4100 Duisburg Verfahren zur entschwefelung bei der gaserzeugung im eisenbadreaktor
JPS5794092A (en) * 1980-12-01 1982-06-11 Sumitomo Metal Ind Ltd Method for operating coal gasification furnace
SE426074B (sv) * 1981-04-21 1982-12-06 Boliden Ab Forfarande for att avlegsna svavel vid forgasning i metallsmeltor av kolhaltiga material innehallande svavel

Also Published As

Publication number Publication date
AU581423B2 (en) 1989-02-23
US4852995A (en) 1989-08-01
BR8500791A (pt) 1985-10-08
AU3902685A (en) 1985-09-05
JPS617390A (ja) 1986-01-14
DE3567673D1 (en) 1989-02-23
IN164158B (fr) 1989-01-21
FR2560209A1 (fr) 1985-08-30
EP0171298A1 (fr) 1986-02-12
ATE40149T1 (de) 1989-02-15
CA1287479C (fr) 1991-08-13
ZA851355B (en) 1985-10-30
FR2560209B1 (fr) 1986-11-14

Similar Documents

Publication Publication Date Title
US5537940A (en) Method for treating organic waste
AU2007253790B2 (en) Process for treating a gas stream
EP0171298B1 (fr) Procédé de désulfuration d&#39;un gaz combustible contenant du soufre
FR2740354A1 (fr) Procede de traitement de fumees a base d&#39;oxydes de soufre
CA1186490A (fr) Methode d&#39;extraction du h.sub.2s du co.sub.2 des echappements gazeux
FR2554361A1 (fr) Procede et composition d&#39;elimination d&#39;hydrogene sulfure de melanges de gaz
KR960000009B1 (ko) 환원용광로의 폐가스에서 황을 제거하는 방법
US4784670A (en) Partial oxidation process
US4801438A (en) Partial oxidation of sulfur-containing solid carbonaceous fuel
CA2233249C (fr) Composition comprenant au moins du bicarbonate de sodium, son procede d&#39;obtention et ses utilisations
FR2522983A1 (fr) Procede et appareil pour la combustion de gaz residuels contenant de l&#39;ammoniac
JPH0436386A (ja) スラグの改善
FR2565502A1 (fr) Procede d&#39;elimination des composes du soufre dans des melanges de gaz
FR2546178A1 (fr) Procede de desulfuration des gaz a l&#39;aide de bains mineraux fondus lors de la gazeification de produits carbones
LU85478A1 (fr) Procede pour enlever le sulfure de carbonyle des charges d&#39;hydrocarbures liquides olefiniques
FR2532660A1 (fr) Procede de traitement des minerais galeneux ou plomb-zinc sulfures ou des concentres sulfures ou de leurs melanges
RU2020170C1 (ru) Способ непрерывной плавки сульфидных материалов
FR2651796A1 (fr) Procede et dispositif pour enrichir les gaz de gueulard en oxyde(s) de soufre.
CA1272031A (fr) Methode d&#39;oxydation partielle
FR2724328A1 (fr) Composition reactive et procede pour l&#39;epuration d&#39;un gaz contenant de l&#39;oxyde nitrique
BE888426R (fr) Procede de conversion de charbon en hydrocarbures gazeux,
JPS62209196A (ja) 石炭液化残渣のガス化前処理方法
GB190903061A (en) Improvements in or connected with the Obtainment and Utilisation of Sulphur from Sulphuretted Hydrogen and Sulphur Dioxide.
Diaz et al. Process for the Removal of H 2 S and CO 2 from Gaseous Streams
KR19990046864A (ko) 용융금속을 이용한 유기가스 정화방법 및 그 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860211

17Q First examination report despatched

Effective date: 19870212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890118

REF Corresponds to:

Ref document number: 40149

Country of ref document: AT

Date of ref document: 19890215

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3567673

Country of ref document: DE

Date of ref document: 19890223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930126

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930209

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930212

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930225

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930316

Year of fee payment: 9

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940219

Ref country code: GB

Effective date: 19940219

Ref country code: AT

Effective date: 19940219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

Ref country code: BE

Effective date: 19940228

BERE Be: lapsed

Owner name: UNION SIDERURGIQUE DU NORD ET DE L'EST DE LA FRANC

Effective date: 19940228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST