EP0168587B1 - Verfahren zur Herstellung von Monoperoxydicarbonsäuren und deren Salze - Google Patents

Verfahren zur Herstellung von Monoperoxydicarbonsäuren und deren Salze Download PDF

Info

Publication number
EP0168587B1
EP0168587B1 EP85105978A EP85105978A EP0168587B1 EP 0168587 B1 EP0168587 B1 EP 0168587B1 EP 85105978 A EP85105978 A EP 85105978A EP 85105978 A EP85105978 A EP 85105978A EP 0168587 B1 EP0168587 B1 EP 0168587B1
Authority
EP
European Patent Office
Prior art keywords
acid
anhydride
process according
minutes
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85105978A
Other languages
English (en)
French (fr)
Other versions
EP0168587A3 (en
EP0168587A2 (de
Inventor
Manfred Dr. Dankowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6236182&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0168587(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP0168587A2 publication Critical patent/EP0168587A2/de
Publication of EP0168587A3 publication Critical patent/EP0168587A3/de
Application granted granted Critical
Publication of EP0168587B1 publication Critical patent/EP0168587B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/24Peroxy compounds the —O—O— group being bound between a >C=O group and hydrogen, i.e. peroxy acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/24Peroxy compounds the —O—O— group being bound between a >C=O group and hydrogen, i.e. peroxy acids
    • C07C409/28Peroxy compounds the —O—O— group being bound between a >C=O group and hydrogen, i.e. peroxy acids a >C=O group being bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/24Peroxy compounds the —O—O— group being bound between a >C=O group and hydrogen, i.e. peroxy acids
    • C07C409/30Peroxy compounds the —O—O— group being bound between a >C=O group and hydrogen, i.e. peroxy acids a >C=O group being bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds

Definitions

  • the invention relates to the production of monoperoxydicarboxylic acids and their salts.
  • the use of these compounds as bleaching agents in detergents has long been known.
  • FR-PS 2 129 034 relates to the production of stable monoperoxyphthalic acid from phthalic anhydride and hydrogen peroxide in the presence of 0.01 to 1 mol of magnesium oxide per mol of anhydride.
  • the at least partially formed magnesium salt of peracid is precipitated by adding a strong mineral acid.
  • An alkaline-acting magnesium compound is also required according to EP-B1-0 027 693 in order to carry out the oxidation of phthalic anhydride with hydrogen peroxide and at the same time to obtain the magnesium salt of monoperoxyphthalic acid.
  • the object of the invention is a method to obtain monoperoxydicarboxylic acids and their salts in a simple manner.
  • the invention relates to a process for the preparation of monoperoxydicarboxylic acids (hereinafter peracids) and their alkali metal or alkaline earth metal salts by oxidation of the corresponding anhydrides with hydrogen peroxide in an organic solvent which dissolves the resulting peracids, which is characterized in that the oxidation is carried out in the presence of a Anion exchanger, after the reaction has been carried out, the anion exchanger is separated off and the monoperoxydicarboxylic acid is isolated from the solution or the corresponding mono salt precipitates by adding an amount of an alkaline-acting alkali or alkaline-earth compound which is sufficient to neutralize the resulting non-peroxidized carboxyl group.
  • peracids monoperoxydicarboxylic acids
  • alkali metal or alkaline earth metal salts by oxidation of the corresponding anhydrides with hydrogen peroxide in an organic solvent which dissolves the resulting peracids
  • Hydrogen peroxide is used in the form of aqueous solutions, the peroxide concentration of which ranges from 20-99%, preferably 40 to 60%, by weight.
  • the embodiment in which the water content of the oxidation mixture does not yet lead to emulsion formation with the solvent is particularly suitable.
  • Hydrogen peroxide is used in a stoichiometric ratio of 1: 1 to the anhydride. However, a slight excess of up to 0.2 mol, preferably 0.1 mol, of hydrogen peroxide is advantageous.
  • the range for the quantitative ratio of basic ion exchangers to anhydride ranges from 0.1 g to 50 g, preferably 10 g to 20 g, of ion exchangers per mole of anhydride.
  • Basic ion exchangers preferably weakly basic ones, can be used, provided that they are stable to oxidation. This information can be obtained without difficulty from the data sheets of the commercially available ion exchangers.
  • the use of the ion exchanger enables the peracids according to the invention to be prepared continuously by, for. B. brings the reaction mixture into contact with the ion exchanger over a distance sufficient for implementation.
  • an alkali or alkaline earth oxide, hydroxide or carbonate, preferably magnesium compound is added to the remaining reaction solution after the ion exchanger has been separated off in an amount which is theoretically sufficient to neutralize the remaining carboxy group , preferably in an excess of 1%.
  • the particularly suitable magnesium hydroxide is used in a molar ratio of at least 1: 2, based on the peracid. Magnesium hydroxide / peracid ratios of 1: 2 to 1.1: 2 are particularly suitable.
  • the order of adding anhydride and anion exchanger to the organic solvent is not critical.
  • the reaction temperature is in the range from -10 ° C to 50 ° C, preferably 0 ° C to 20 ° C, especially 10 ° C to 20 ° C.
  • the reaction time is 5 minutes to 5 hours, preferably 10 minutes to 1 hour.
  • the reaction between the alkaline alkali or alkaline earth compound and the monoperoxydicarboxylic acid formed is preferably carried out between 15 ° C. and 20 ° C. with a reaction time of 2 to 20 minutes.
  • the resulting salt of peracid is then separated according to the rules of technology such. B. from filters or centrifuges. It is then preferably washed with non-aqueous solvents in order to dissolve out any remaining amounts of anhydride.
  • the organic solvent used is an aliphatic ester with a low molecular weight, preferably acetates and especially ethyl acetate. It is important for the selection that the solvent has good solvent power for the peracid that is formed.
  • the anhydride used must at least be dissolved, the alkali or alkaline earth salts of peracid do not dissolve in the solvent used.
  • the Lewatit® MP 62 anion exchanger (Bayer AG) used in the examples below is a weakly basic ion exchanger.
  • phthalic anhydride 25 g are dissolved in 150 ml of ethyl acetate and cooled to 10 ° C. Then 3 g of Lewatit® MP 62 are added. 11.5 g of 50% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. The mixture is then stirred for 1 h, the temperature of the batch rising to approximately 20 ° C. The ion exchanger is then separated off and 25.4 g of monoperoxyphthalic acid with an AO content of 7.0% are obtained from the solution.
  • phthalic anhydride 25 g are dissolved in 150 ml of ethyl acetate and cooled to 10 ° C. Then add 3 g Lewatit® MP 62. 11.5 g of 50% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. The mixture is then stirred for 1 h, the temperature of the batch rising to approximately 20 ° C. The ion exchanger is then separated off and, after neutralization with 5 g of magnesium hydroxide at 20 ° C. in 15 minutes and drying, 31 g of hydrated monoperoxyphthalic acid mono-Mg salt with an AO content of 5.1% are obtained.
  • phthalic anhydride 25 g are dissolved in 150 ml of ethyl acetate and cooled to 10 ° C. Then add 3 g Lewatit ® MP 62. 11.5 g of 50% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. The mixture is then stirred for 3 h, the temperature of the batch rising to approximately 20 ° C. The ion exchanger is then separated off and, after neutralization with 5 g of magnesium hydroxide at 20 ° C. in 15 minutes and drying, 27 g of hydrated monoperoxyphthalic acid mono-Mg salt with an AO content of 5.4% are obtained.
  • phthalic anhydride 25 g are dissolved in 150 ml of ethyl acetate and the temperature is raised to 20 ° C. 3 g of Lewatit® MP 62 are then added. 11.5 g of 50% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. The mixture is then stirred at this temperature for 1 h. The ion exchanger is then separated off and, after neutralization with 5 g of magnesium hydroxide at 20 ° C. in 15 minutes and drying, 23 g of hydrated monoperoxyphthalic acid mono-Mg salt with an AO content of 5.2% are obtained.
  • phthalic anhydride 25 g are dissolved in 100 ml of ethyl acetate and heated to 20 ° C. Then add 3 g Lewatit ® MP 62. 11.5 g of 50% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. The mixture is then stirred at 30 ° C for 1 h. The ion exchanger is then separated off and, after neutralization with 5 g of magnesium hydroxide at 20 ° C. in 15 minutes and drying, 25 g of hydrated monoperoxyphthalic acid mono-Mg salt with an AO content of 5.2% are obtained.
  • phthalic anhydride 25 g are dissolved in 150 ml of ethyl acetate and cooled to 10 ° C. Then add 1 g Lewatit ® MP 62. 11.5 g of 50% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. Now stir for 1 h the temperature of the batch increases to approximately 20 ° C. The ion exchanger is then separated off and, after neutralization with 5 g of magnesium hydroxide at 20 ° C. in 15 minutes and drying, 25 g of hydrated monoperoxyphthalic acid mono-Mg salt with an AO content of 5.4% are obtained.
  • phthalic anhydride 25 g are dissolved in 150 ml of ethyl acetate and cooled to 10 ° C. Then add 3 g of Lewatit MP 62. 11.5 g of 50% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. The mixture is then stirred for 1 h, the temperature of the batch rising to approximately 20 ° C. The ion exchanger is then separated off and, after neutralization with 3.4 g of magnesium oxide at 20 ° C. in 15 minutes and drying, 23 g of hydrated monoperoxyphthalic acid mono-Mg salt with an AO content of 5.2% are obtained.
  • phthalic anhydride 25 g are dissolved in 150 ml of ethyl acetate and cooled to 10 ° C. Then add 3 g Lewatit® MP 62. 11.5 g of 50% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. The mixture is then stirred for 1 h, the temperature of the batch rising to approximately 20 ° C. The ion exchanger is then separated off and, after neutralization with 9.8 g of basic magnesium carbonate at 20 ° C. in 15 minutes and drying, 12 g of hydrated monoperoxyphthalic acid mono-Mg salt with an AO content of 2.3% are obtained.
  • phthalic anhydride 25 g are dissolved in 150 ml of ethyl acetate and cooled to 10 ° C. Then 3 g of Lewatit® MP 62 are added. 20 g of 30% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. The mixture is then stirred for 1 h, the temperature of the batch rising to approximately 20 ° C. The ion exchanger is then separated off and, after neutralization with 5 g of magnesium hydroxide at 20 ° C. in 15 minutes and drying, 18 g of hydrated monoperoxyphthalic acid mono-Mg salt with an AO content of 4.9% are obtained.
  • phthalic anhydride 25 g are dissolved in 100 ml of ethyl acetate and cooled to 10 ° C. Then add 3 g Lewatit ® MP 62. 15 g of 40% by weight of hydrogen peroxide are then added dropwise at the same temperature and with stirring over the course of 15 minutes. The mixture is then stirred for 1 h, the temperature of the batch rising to approximately 20 ° C. The ion exchanger is then separated off and, after neutralization with 5 g of magnesium hydroxide at 20 ° C. in 15 minutes and drying, 25 g of hydrated monoperoxyphthalic acid mono-Mg salt with an AO content of 5.3% are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

  • Die Erfindung betrifft die Herstellung von Monoperoxydicarbonsäuren und deren Salze. Die Verwendung dieser Verbindungen als Bleichmittel in Waschmitteln ist seit langem bekannt.
  • In der AU-PS 417 480 wird die verbesserte Bleichwirkung von Monoperoxyphthalsäure in Gegenwart von Mg2+-lonen in der Bleichflotte beschrieben. Die FR-PS 2 129 034 betrifft die Herstellung von stabiler Monoperoxyphthalsäure aus Phthalsäureanhydrid und Wasserstoffperoxid in Gegenwart von 0,01 bis 1 Mol Magnesiumoxid, pro Mol Anhydrid. Aus dem dabei zumindest teilweise entstehenden Mg-Salz der Persäure wird diese durch Zusatz einer starken Mineralsäure ausgefällt. Eine alkalisch wirkende Magnesiumverbindung benötigt man ebenfalls gemäß der EP-B1-0 027 693, um die Oxydation von Phthalsäureanhydrid mit Wasserstoffperoxid durchzuführen und gleichzeitig das Magnesiumsalz der Monoperoxyphthalsäure zu gewinnen.
  • Die Herstellung von Monoperoxyphthalsäure wird in der Acta Chem. Scand. 12 (1958) 6, 1331 beschrieben. Um eine ausreichende Ausbeute zu erreichen, ist es notwendig, das Phthalsäureanhydrid bei einer Temperatur von unter -5 °C mit der alkalischen Oxydationslösung umzusetzen. Die Persäure wird nach Versetzen der Lösung mit Schwefelsäure und Wasser durch Extraktion mit Äther abgetrennt.
  • Aufgabe der Erfindung ist ein Verfahren, um auf einfachem Wege Monoperoxydicarbonsäuren und deren Salze zu gewinnen.
  • Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Monoperoxydicarbonsäuren (im folgenden Persäuren) und deren Alkali- bzw. Erdalkalisalze durch Oxidation der entsprechenden Anhydride mit Wasserstoffperoxid in einem die entstehenden Persäuren lösenden organischen Lösungsmittel, das dadurch gekennzeichnet ist, daß man die Oxidation in Gegenwart eines Anionenaustauschers vornimmt, nach erfolgter Umsetzung den Anionenaustauscher abtrennt und die Monoperoxydicarbonsäure aus der Lösung isoliert oder das entsprechende Monosalz durch Zusatz einer solchen Menge einer alkalisch wirkenden Alkali- oder Erdalkali-Verbindung ausfällt, die ausreicht, die resultierende nicht peroxidierte Carboxylgruppe zu neutralisieren.
  • Als Anhydride werden Verbindungen der folgenden Formeln eingesetzt :
    • a) Formel (I)
      Figure imgb0001
      in der R1 und R2 gleich oder verschieden sind, Wasserstoff oder eine lineare oder verzweigte C1-C18 Alkylgruppe und n eine ganze Zahl von 0 bis 10, insbesondere 0 bis 2, bedeuten ; bevorzugt sind die Anhydride der Glutarsäure, Bemsteinsäure und deren einfach alkylierte Derivate, deren Alkylgruppe 1 bis 18 Kohlenstoffatome aufweist.
    • b) Formel (11)
      Figure imgb0002
      in der R1 und R2 dieselbe Bedeutung wie in Formel (I) haben ; bevorzugt sind die Anhydride der Maleinsäure, Citraconsäure.
    • c) Formel III
      Figure imgb0003
      in der R3, R4, R5, R6 gleich oder verschieden sind und Wasserstoff eine lineare oder verzweigte C1-C10 Alkylgruppe, die Sulfonat oder Nitro-gruppe, Chlor oder Brom bedeuten oder R3 und R4, oder R4 und R5 oder R5 und R6 entfallen und zwischen den jeweiligen Ringkohlenstoffatomen eine Doppelbindung besteht ; bevorzugt sind die Anhydride der Cyclohexan (1, 2) dicarbonsäure, 4-Methylcyclohexan-1,2-dicarbonsäure 4-Cyclohexen-1,2-dicarbonsäure.
    • d) Formel IV
      Figure imgb0004
      in der R7, R8, R9 und R10 gleich oder verschieden sind und Wasserstoff, eine lineare oder verzweigte C1-C10 Alkylgruppe, die Sulfonat- oder Nitrogruppe, Chlor oder Brom bedeuten ; bevorzugt eingesetzt wird das Anhydrid der o-Phthalsäure.
  • Wasserstoffperoxid kommt in Form von wässrigen Lösungen zur Anwendung, deren Peroxidkonzentration von 20-99 %, bevorzugt 40 bis 60 % Gew.-% reicht.
  • Besonders geeignet ist die Ausführungsform, in der der Wassergehalt der Oxidationsmischung noch nicht zur Emulsionsbildung mit dem Lösungsmittel führt.
  • Wasserstoffperoxid wird in stöchiometrischem Verhältnis 1 : 1 zum Anhydrid eingesetzt. Ein leichter Überschuß von bis zu 0,2 Mol, bevorzugt 0,1 Mol Wasserstoffperoxid ist jedoch vorteilhaft.
  • Der Bereich für das Mengenverhältnis basischer lonenaustauscher zu Anhydrid reicht von 0,1 g bis 50 g, bevorzugt 10 g bis 20 g, Ionenaustauscher je Mol Anhydrid. Verwendbar sind basische lonenaustauscher, bevorzugt schwach basische, unter der Voraussetzung, daß sie oxidationsstabil sind. Diese Angabe kann man ohne Schwierigkeiten den Datenblättem der im Handel erhältlichen Ionenaustauscher entnehmen.
  • Die Verwendung der Ionenaustauscher ermöglicht im Gegensatz zu Verfahren nach dem Stand der Technik die kontinuerliche Herstellung der erfindungsgemäßen Persäuren, indem man z. B. die Reaktionsmischung auf einer zur Umsetzung ausreichenden Strecke mit dem Ionenaustauscher in Kontakt bringt.
  • Bei dem erfindungsgemäßen Verfahren entsteht ohne die Anwesenheit von nach dem Stand der Technik üblichen basischen Salzen wie z. B. Alkali- oder Erdalkalihydroxiden oder basischen Carbonaten und ohne Zusatz von Mineralsäure direkt die Monoperoxycarbonsäure.
  • Die Herstellung dieser Säuren wurde bisher dadurch erschwert, daß man den geeignetsten Zeitpunkt des Ansäuems der Reaktionsmischung nicht genau vorausbestimmen konnte.
  • Wird ein Salz der Persäure gewünscht, fügt man nach dem Abtrennen des Ionenaustauschers der restlichen Reaktionslösung ein Alkali- oder Erdalkalioxid, -hydroxid oder -carbonat, bevorzugt Magne- .siumverbindung, in einer Menge zu, die theoretisch ausreicht, um die verbleibende Carboxygruppe zu neutralisieren, bevorzugt in einem Überschuß von 1 %. Das besonders geeignete Magnesiumhydroxid wird in einem Molverhältnis von mindestens 1 :2, bezogen auf die Persäure, eingesetzt. Besonders geeignet sind Magnesiumhydroxid/Persäure-Verhältnisse von 1 : 2 bis 1,1 :2.
  • Im Fall der Monoperoxyphthalsäure entsteht das hydratisierte Salz
    Figure imgb0005
  • Die Reihenfolge der Zugabe von Anhydrid und Anionenaustauscher zum organischen Lösungsmittel ist nicht ausschlaggebend.
  • Es ist jedoch wichtig, daß die Temperatur bei der Umsetzung von Anhydrid und Wasserstoffperoxid kontrolliert wird. Die Reaktionstemperatur liegt in dem Bereich von - 10°C bis 50 °C, bevorzugt 0°C bis 20 °C, insbesondere 10°C bis 20 °C. Als Reaktionszeit sind 5 min bis 5 h, bevorzugt 10 min bis 1 h, anzusetzen.
  • Die Reaktion zwischen der alkalischen Alkali- oder Erdalkaliverbindung und der gebildeten Monoperoxydicarbonsäure wird bevorzugt zwischen 15 °C und 20 °C mit einer Reaktionsdauer von 2 bis 20 min durchgeführt.
  • Das entstanden Salz der Persäure trennt man anschließend nach den Regeln der Technik z. B. über Filter oder Zentrifugen ab. Anschließend wird es bevorzugt mit nicht wässrigen Lösungsmitteln gewaschen, um die eventuell vorhandenen restlichen Anhydridmengen herauszulösen.
  • Als organisches Lösungsmittel setzt man aliphatische Ester mit geringem Molekulargewicht ein, bevorzugt Acetate und speziell Ethylacetat. Wichtig für die Auswahl ist ein gutes Lösevermögen des Lösungsmittels für die entstehende Persäure.
  • Das eingesetzte Anhydrid muß zumindest angelöst werden, die Alkali- oder Erdalkalisalze der Persäure lösen sich nicht in dem eingesetzten Lösungsmittel.
  • Bei dem in den nachfolgenden Beispielen eingesetzten Anionenaustauscher Lewatit ® MP 62 (Bayer AG) handelt es sich um einen schwach basischen lonenaustauscher.
  • Beispiel 1
  • 25 g Phthalsäureanhydrid werden zu 150 ml Ethylacetat angelöst und auf 10 °C abgekühlt Dann fügt man 3 g Lewatit® MP 62 hinzu. Anschließend werden innerhalb von 15 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h nachgerührt, wobei die Temperatur des Ansatzes auf ca. 20 °C steigt. Hiernach trennt man den lonenaustauscher ab und gewinnt aus der Lösung 25,4 g Monoperoxyphthalsäure mit einem AO-Gehalt von 7,0 %.
  • Beispiel 2
  • 25 g Phthalsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 10 °C abgekühlt. Dann fügt man 3 g Lewatit® MP 62 hinzu. Anschließend werden innerhalb von 15 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h nachgerührt, wobei die Temperatur des Ansatzes auf ca. 20 °C steigt. Hiernach trennt man den lonentauscher ab und gewinnt nach Neutralisation mit 5 g Magnesiumhydroxid bei 20 °C in 15 min und Trocknen 31 g hydratisiertes Monoperoxyphthalsäure-mono-Mg-Salz mit einem AO-Gehalt von 5,1 %.
  • Beispiel 3
  • 25 g Phthalsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 10 °C abgekühlt. Dann fügt man 3 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb von 15 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 3 h nachgerührt, wobei die Temperatur des Ansatzes auf ca. 20 °C steigt. Hiernach trennt man den lonentauscher ab und gewinnt nach Neutralisation mit 5 g Magnesiumhydroxid bei 20°C in 15 min und Trocknen 27 g hydratisiertes Monoperoxyphthalsäure-mono-Mg-Salz mit einem AO-Gehalt von 5,4 %.
  • Beispiel 4
  • 25 g Phthalsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 20 °C temperiert.. Dann fügt man 3 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb von 15 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h bei dieser Temperatur nachgerührt. Hiernach trennt man den lonentauscher ab und gewinnt nach Neutralisation mit 5 g Magnesiumhydroxid bei 20 °C in 15 min und Trocknen 23 g hydratisiertes Monoperoxyphthalsäure-mono-Mg-Salz mit einem AO-Gehalt von 5,2 %.
  • Beispiel 5
  • 25 g Phthalsäureanhydrid werden in 100 ml Ethylacetat angelöst und auf 20 °C temperiert. Dann fügt man 3 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb von 15 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h bei 30 °C nachgerührt. Hiernach trennt man den lonentauscher ab und gewinnt nach Neutralisation mit 5 g Magnesiumhydroxid bei 20 °C in 15 min und Trocknen 25 g hydratisiertes Monoperoxyphthalsäure-mono-Mg-Salz mit einem AO-Gehalt von 5,2 %.
  • Beispiel 6
  • 25 g Phthalsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 10 °C abgekühlt. Dann fügt man 1 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb von 15 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h nachgerührt, wobei die Temperatur des Ansatzes auf ca. 20 °C steigt. Hiernach trennt man der lonentauscher ab und gewinnt nach Neutralisation mit 5 g Magnesiumhydroxid bei 20 °C in 15 min und Trocknen 25 g hydratisiertes Monoperoxyphthalsäure-mono-Mg-Salz mit einem AO-Gehalt von 5,4 %.
  • Beispiel 7
  • 25 g Phthalsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 10 °C abgekühlt. Dan fügt man 3 g Lewatit MP 62 hinzu. Anschließend werden innerhalb von 15 min 11,5g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h nachgerührt, wobei die Temperatur des Ansatzes auf ca. 20 °C steigt. Hiernach trennt man den lonentauscher ab und gewinnt nach Neutralisation mit 3,4 g Magnesiumoxid bei 20 °C in 15 min und Trocknen 23 g hydratisiertes Monoperoxyphthalsäure-mono-Mg-Salz mit einem AO-Gehalt von 5,2 %.
  • Beispiel 8
  • 25 g Phthalsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 10 °C abgekühlt. Dann fügt man 3 g Lewatit® MP 62 hinzu. Anschließend werden innerhalb von 15 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h nachgerührt, wobei die Temperatur des Ansatzes auf ca. 20 °C steigt. Hiernach trennt man den lonentauscher ab und gewinnt nach Neutralisation mit 9,8 g basischem Magnesiumcarbonat bei 20 °C in 15 min und Trocknen 12 g hydratisiertes Monoperoxyphthalsäure-mono-Mg-Salz mit einem AO-Gehalt von 2,3 %.
  • Beispiel 9
  • 25 g Phthalsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 10 °C abgekühlt Dann fügt man 3 g Lewatit® MP 62 hinzu. Anschließend werden innerhalb von 15 min 20 g 30 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h nachgerührt, wobei die Temperatur des Ansatzes auf ca 20 °C steigt. Hiemach trennt man den Ionentauscher ab und gewinnt nach Neutralisation mit 5 g Magnesiumhydroxid bei 20 °C in 15 min und Trocknen 18 g hydratisiertes Monoperoxyphthalsäure-mono-Mg-Salz mit einem AO-Gehalt von 4,9 %.
  • Beispiel 10
  • 25 g Phthalsäureanhydrid werden in 100 ml Ethylacetat angelöst und auf 10 °C abgekühlt. Dann fügt man 3 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb von 15 min 15 g 40 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h nachgerührt, wobei die Temperatur des Ansatzes auf ca. 20 °C steigt. Hiernach trennt man den Ionentauscher ab und gewinnt nach Neutralisation mit 5 g Magnesiumhydroxid bei 20 °C in 15 min und Trocknen 25 g hydratisiertes Monoperoxyphthalsäure-mono-Mg-Salz mit einem AO-Gehalt von 5,3 %.
  • Beispiel 11
  • 16,7 g Maleinsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 0 °C abgekühlt. Dann fügt man 3 g Lewatit® MP 62 hinzu. Anschließend werden innerhalb von 10 min 11,5g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren zugetropft. Dann wird 1 h nachgerührt, wobei die Temperatur zwischen 0 und 5 °C gehalten wird. Hiernach trennt man den Ionentauscher ab und gewinnt aus der Lösung 16 g Monoperoxymaleinsäure mit einem AO-Gehalt von 10,8 %.
  • Beispiel 12
  • 19,4 g Glutarsäureanhydrid werden in 150 ml Ethylacetat- angelöst und auf 10 °C abgekühlt. Dann fügt man 3 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb von 5 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren zugetropft. Dann wird 1 h nachgerührt, wobei die Temperatur des Ansatzes auf ca. 20 °C steigt. Hiernach trennt man den lonentauscher ab und gewinnt aus der Lösung 21 g Monoperoxyglutarsäure mit einem AO-Gehalt von 6,7 %.
  • Beispiel 13
  • 26,2 g Cyclohexan-1,2-dicarbonsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 10°C abgekühlt. Dann fügt man 3 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb von 5 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Dann wird 1 h nachgerührt, wobei die Temperatur auf ca. 20 °C steigt. Hiernach trennt man den lonentauscher ab und gewinnt aus der Lösung 25 g Monoperoxy-cyclohexan-1,2-dicarbonsäure mit einem AO-Gehalt von 4,0 %.
  • Beispiel 14
  • 28,6 g 4-Methylcyclohexan-1,2-dicarbonsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 10 °C abgekühlt. Dann fügt man 3 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb von 5 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h nachgerührt, wobei die Temperatur auf ca. 20 °C steigt. Hiemach trennt man den lonentauscher ab und gewinnt aus der Lösung 28 g Monoperoxy-4-methylcyclohexan-1,2-dicarbonsäure mit einem AO-Gehalt von 4,0 %.
  • Beispiel 15
  • 36,1 g Octylbernsteinsäureanhydrid werden in 150 ml Ethylacetat angelöst und auf 10°C abgekühlt. Dann fügt man 3 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb 5 min 11,5 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 1 h nachgerührt, wobei die Temperatur auf ca. 20 °C steigt. Hiernach trennt man den Ionentauscher ab und gewinnt aus der Lösung 37 g Monoperoxy-2-octylbemsteinsäure mit einem AO-Gehalt von 3,5 %.
  • Beispiel 16
  • 14,8 g Tetradecylbemsteinsäureanhydrid werden in 100 ml Ethylacetat angelöst und auf 100C abgekühlt. Dann fügt man 1 g Lewatit ® MP 62 hinzu. Anschließend werden innerhalb von 10 min 3,4 g 50 Gew.-% Wasserstoffperoxid bei gleicher Temperatur und unter Rühren eingetropft. Nun wird 3h h nachgerührt, wobei die Temperatur auf ca. 20 °C steigt. Hiernach trennt man den lonentauscher ab und gewinnt aus der Lösung 9 g Monoperoxy-2-tetradecylbernsteinsäure mit einem AO-Gehalt von 2,7 %.

Claims (7)

1. Verfahren zur Herstellung von Monoperoxydicarbonsäuren und deren Alkali- bzw. Erdalkalisalze durch Oxidation der entsprechenden Anhydride mit Wasserstoffperoxid in einem die entstehenden Persäuren lösenden organischen Lösungsmittel, dadurch gekennzeichnet, daß man die Oxidation in Gegenwart eines Anionenaustauschers vornimmt, nach erfolgter Umsetzung den Anionenaustauscher abtrennt und die Monoperoxydicarbonsäure aus der Lösung isoliert oder das entsprechende Monosalz durch Zusatz einer Menge einer alkalisch wirkenden Alkali- oder Erdalkaliverbindung ausfällt, die ausreicht, die resultierende nichtperoxidierte Carboxylgruppe zu neutralisieren.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man Anhydride der Formeln (I) bis (IV) oxidiert : Formel (I)
Figure imgb0006
in der R1 und R2 gleich oder verschieden sind und Wasserstoff oder eine lineare oder verzweigte C1-C18 Alkylgruppe und n eine ganze Zahl von 0 bis 10 bedeuten ; Formel (11)
Figure imgb0007
in der R1 und R2 gleich oder verschieden sind und Wasserstoff oder eine lineare oder verzweigte C1-C18 Alkylgruppe bedeuten ; Formel (III)
Figure imgb0008
in der R3, R4, R5, R6 gleich oder verschieden sind und Wasserstoff eine lineare oder verzweigte C1-C10 Alkylgruppe, die Sulfonat oder Nitro-gruppe, Chlor oder Brom bedeuten oder R3 und R4, oder R4 und R5, oder R5 und R6 entfallen und zwischen den jeweiligen Ringkohlenstoffatomen eine Doppelbindung besteht ; Formel IV
Figure imgb0009
in der R7, R8, R9 und R10 gleich oder verschieden sind und Wasserstoff, eine lineare oder verzweigte C1-C10 Alkylgruppe, die Sulfonat- oder Nitrogruppe, Chlor oder Brom bedeuten.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man Phthalsäureanhydrid einsetzt.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man die Persäurebildung bei einer Temperatur von -10 °C bis 50 °C, bevorzugt von 0 °C bis 20 °C, einer Reaktionszeit von 5 min bis 5 h, bevorzugt 10 min bis 1 h, einem Wasserstoffperoxid/Anhydrid-Verhältnis von 1 : bis 1,2 1, bevorzugt 1,1 1, in Ethylacetat vornimmt
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man zur Bildung eines Salzes der Monoperoxycarbonsäure eine alkalisch wirkende anorganische Magnesiumverbindung verwendet.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man ein Magnesiumhydroxid/Persäure-Molverhältnis von 1 : 2 bis 1,1 2,0 wählt.
7. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß das Verhältnis Anionenaustauscher/Anhydrid von 0,1 g bis 50 g, bevorzugt 10 g bis 20 g, je Mol Anhydrid reicht.
EP85105978A 1984-05-18 1985-05-15 Verfahren zur Herstellung von Monoperoxydicarbonsäuren und deren Salze Expired EP0168587B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843418450 DE3418450A1 (de) 1984-05-18 1984-05-18 Verfahren zur herstellung wasserunloeslicher peroxycarbonsaeuren
DE3418450 1984-07-20

Publications (3)

Publication Number Publication Date
EP0168587A2 EP0168587A2 (de) 1986-01-22
EP0168587A3 EP0168587A3 (en) 1986-08-20
EP0168587B1 true EP0168587B1 (de) 1989-07-19

Family

ID=6236182

Family Applications (2)

Application Number Title Priority Date Filing Date
EP85104345A Expired EP0161485B1 (de) 1984-05-18 1985-04-10 Verfahren zur Herstellung wasserunlöslicher Peroxycarbonsäuren
EP85105978A Expired EP0168587B1 (de) 1984-05-18 1985-05-15 Verfahren zur Herstellung von Monoperoxydicarbonsäuren und deren Salze

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP85104345A Expired EP0161485B1 (de) 1984-05-18 1985-04-10 Verfahren zur Herstellung wasserunlöslicher Peroxycarbonsäuren

Country Status (11)

Country Link
US (1) US4959497A (de)
EP (2) EP0161485B1 (de)
JP (1) JPS60255761A (de)
AT (2) ATE36523T1 (de)
BR (1) BR8502284A (de)
CA (1) CA1239423A (de)
DE (3) DE3418450A1 (de)
DK (1) DK218285A (de)
ES (1) ES8607230A1 (de)
FI (1) FI851976L (de)
PT (1) PT80482B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017082B2 (en) 2006-10-18 2011-09-13 Ecolab Usa Inc. Apparatus and method for making a peroxycarboxylic acid
US8030351B2 (en) 1998-08-20 2011-10-04 Ecolab, Inc. Treatment of animal carcasses
US8075857B2 (en) 2006-10-18 2011-12-13 Ecolab Usa Inc. Apparatus and method for making a peroxycarboxylic acid

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659519A (en) * 1984-07-02 1987-04-21 The Clorox Company Process for synthesizing alkyl monoperoxysuccinic acid bleaching compositions
DE3628263A1 (de) * 1986-08-25 1988-03-03 Degussa Verfahren zur phlegmatisierung von wasserunloeslichen peroxycarbonsaeuren
DE3822798A1 (de) * 1988-07-06 1990-01-11 Huels Chemische Werke Ag Verfahren zur herstellung von phlegmatisierten aliphatischen diperoxidicarbonsaeuren
US5098607A (en) * 1989-12-08 1992-03-24 Ube Industries Ltd. Process for stabilizing percarboxylic acid
WO1995014760A1 (en) * 1993-11-25 1995-06-01 Warwick International Group Limited Bleach activators

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2377038A (en) * 1941-09-15 1945-05-29 Du Pont Manufacture of peracids
US2624655A (en) * 1949-10-13 1953-01-06 Buffalo Electro Chem Co Stable aqueous hydrogen peroxide and method of preparing same
US2609391A (en) * 1950-09-13 1952-09-02 Buffalo Electro Chem Co Stabilization of peracids with dipicolinic acid
US2663621A (en) * 1952-02-07 1953-12-22 Buffalo Electro Chem Co Stabilization of peracids
US2910504A (en) * 1954-11-29 1959-10-27 Du Pont Preparation of aliphatic peracids
DE1158956B (de) * 1957-11-25 1963-12-12 Degussa Verfahren zur Herstellung von Peressigsaeure bzw. deren Salze enthaltenden waessrigen Bleichloesungen
SU117580A1 (ru) * 1958-07-10 1958-11-30 П.С. Угрюмов Способ получени гидроперекисей кислот
BE630363A (de) * 1962-04-04
US3956159A (en) * 1974-11-25 1976-05-11 The Procter & Gamble Company Stable concentrated liquid peroxygen bleach composition
US4119660A (en) * 1976-08-27 1978-10-10 The Procter & Gamble Company Method for making diperoxyacids
DE2930546A1 (de) * 1978-10-25 1980-05-08 Degussa Verfahren zur phlegmatisierung von wasserunloeslichen peroxycarbonsaeuren
DE2929839C2 (de) * 1979-07-23 1983-01-27 Degussa Ag, 6000 Frankfurt Verfahren zur Herstellung von Peroxyphthalsäuren
DE3064301D1 (en) * 1979-10-18 1983-08-25 Interox Chemicals Ltd Magnesium salts of peroxycarboxylic acids, processes for their preparation and their use as bleaching agents in washing compositions, and processes
US4370251A (en) * 1980-07-25 1983-01-25 Fmc Corporation Continuous process for the production of peroxycarboxylic acid compositions
DE3320497A1 (de) * 1983-06-07 1984-12-13 Degussa Ag, 6000 Frankfurt Verfahren zur herstellung von wasserunloeslichen peroxycarbonsaeuren

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030351B2 (en) 1998-08-20 2011-10-04 Ecolab, Inc. Treatment of animal carcasses
US8043650B2 (en) 1998-08-20 2011-10-25 Ecolab Inc. Treatment of animal carcasses
US9560875B2 (en) 1998-08-20 2017-02-07 Ecolab Usa Inc. Treatment of animal carcasses
US9560874B2 (en) 1998-08-20 2017-02-07 Ecolab Usa Inc. Treatment of animal carcasses
US8017082B2 (en) 2006-10-18 2011-09-13 Ecolab Usa Inc. Apparatus and method for making a peroxycarboxylic acid
US8075857B2 (en) 2006-10-18 2011-12-13 Ecolab Usa Inc. Apparatus and method for making a peroxycarboxylic acid
US8957246B2 (en) 2006-10-18 2015-02-17 Ecolab USA, Inc. Method for making a peroxycarboxylic acid
US9288982B2 (en) 2006-10-18 2016-03-22 Ecolab USA, Inc. Method for making a peroxycarboxylic acid
US9708256B2 (en) 2006-10-18 2017-07-18 Ecolab Usa Inc. Method for making a peroxycarboxylic acid

Also Published As

Publication number Publication date
CA1239423A (en) 1988-07-19
DK218285A (da) 1985-11-19
ATE44732T1 (de) 1989-08-15
DE3418450A1 (de) 1985-11-28
DK218285D0 (da) 1985-05-15
DE3564430D1 (en) 1988-09-22
JPS60255761A (ja) 1985-12-17
FI851976L (fi) 1985-11-19
PT80482B (de) 1986-12-12
BR8502284A (pt) 1986-01-14
ES8607230A1 (es) 1986-05-16
EP0168587A3 (en) 1986-08-20
EP0161485B1 (de) 1988-08-17
US4959497A (en) 1990-09-25
ES542909A0 (es) 1986-05-16
DE3571611D1 (en) 1989-08-24
EP0161485A2 (de) 1985-11-21
ATE36523T1 (de) 1988-09-15
FI851976A0 (fi) 1985-05-17
EP0161485A3 (en) 1986-08-20
PT80482A (de) 1985-06-01
EP0168587A2 (de) 1986-01-22

Similar Documents

Publication Publication Date Title
EP0168587B1 (de) Verfahren zur Herstellung von Monoperoxydicarbonsäuren und deren Salze
EP0127782B1 (de) Verfahren zur Herstellung von wasserunlöslichen Peroxycarbonsäuren
DE3426792A1 (de) Verfahren zur herstellung von monoperoxydicarbonsaeuren und deren salze
EP0120399B1 (de) Verfahren zur Herstellung saurer, elektrolytarmer Farbstoffe der Triphenylmethan-Reihe
DE1219484B (de) Verfahren zur Herstellung von Peroxycarbonsaeuren
EP0179223B1 (de) Verfahren zur Herstellung stabilisierter substituierter Diperoxybernsteinsäuren
EP0305925B1 (de) Verfahren zur Herstellung von Umsetzungsprodukten epoxidierter Ricinolsäureglyceride mit Schwefeltrioxid
EP0463477A1 (de) Verfahren zur Herstellung von Chinophthalonen
DE1155113B (de) Verfahren zur Herstellung von Peroxybenzolcarbonsaeuren
EP0001084B1 (de) Verfahren zur Herstellung von 1-Amino-4-bromanthrachinon-2-sulfonsäure
DE2259239A1 (de) Verfahren zur herstellung von 2alkoxy-5-alkylsulfonyl-benzoesaeure
DE3517158C2 (de)
DE1938227A1 (de) Verfahren zur Herstellung von Mono- und Dicarbomethoxybenzolsulfonaten
EP0741123B1 (de) Verfahren zur Herstellung von Salzen substituierter oder unsubstituierter Phthalsäure-Derivate
EP0053314B1 (de) Verfahren zur Chlorsulfonierung von Diphenyl und Diphenylether
EP0038999B2 (de) Verfahren zur Herstellung von 2-Chlor-5-formylbenzolsulfonsäure
EP0460544A2 (de) Verfahren zur Herstellung von sulfonierten Anthranilsäuren
AT224107B (de) Verfahren zur Herstellung reiner Natriumsalze der 5-Sulfoisophthalsäure und 2-Sulfoterephthalsäure
DE1933419B2 (de) Verfahren zur Herstellung eines l,r-Dimethyl-4,4'-bipyridyliumsalzes
DE2510139C3 (de) Verfahren zur Herstellung von Monochlorbenzoesäuren
SU615066A1 (ru) Способ получени растворов мононадмалеиновой или мононадфталевой кислот
DE3411196A1 (de) Verfahren zur herstellung von 4-halogennaphthalsaeureanhydriden
DE2550874C3 (de) Verfahren zur Herstellung von 2,4,6-Tribromanilin hoher Reinheit
DE2918538C2 (de) Verfahren zur Herstellung von α-Naphthol
DE2159883C3 (de) Aromatische Dicarbonsäuren und Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850515

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880921

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 44732

Country of ref document: AT

Date of ref document: 19890815

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3571611

Country of ref document: DE

Date of ref document: 19890824

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900425

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900509

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900510

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900525

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900531

Year of fee payment: 6

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910502

Year of fee payment: 7

Ref country code: DE

Payment date: 19910502

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910529

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910531

Ref country code: CH

Effective date: 19910531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910531

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920531

BERE Be: lapsed

Owner name: DEGUSSA A.G.

Effective date: 19920531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85105978.2

Effective date: 19911209